JPS6227517A - Manufacture of high tensile cast steel - Google Patents

Manufacture of high tensile cast steel

Info

Publication number
JPS6227517A
JPS6227517A JP16664485A JP16664485A JPS6227517A JP S6227517 A JPS6227517 A JP S6227517A JP 16664485 A JP16664485 A JP 16664485A JP 16664485 A JP16664485 A JP 16664485A JP S6227517 A JPS6227517 A JP S6227517A
Authority
JP
Japan
Prior art keywords
cast steel
tensile strength
high tensile
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16664485A
Other languages
Japanese (ja)
Inventor
Hiroshi Noguchi
野口 紘
Nisaku Suzuki
鈴木 二作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16664485A priority Critical patent/JPS6227517A/en
Publication of JPS6227517A publication Critical patent/JPS6227517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To manufacture high tensile cast steel with a low cost, by holding cast steel having a specified compsn. composed of C, Si Mn, Cr, Ni, Mo, Al and Fe at austenitizing temp., then applying suitable quenching and tempering thereto. CONSTITUTION:Cast steel having a compsn. composed of, by weight 0.20-0.5% C, 0.30-0.60% Si, 0.50-1.60% Mn, 0.80-1.50% Cr, 1.50-2.50% Ni, 0.60-1.00% Mo. <=0.060% Al and the balance Fe with inevitable impurity is held at 800-1,000 deg.C austenitizing temp. Thereafter, quenching or normalizing treatment in which 800-400 deg.C range is cooled at >=20 deg.C/min average rate is applied to cast steel at least >= one time, then it is tempered in 540-620 deg.C range. In this way, high tensile cast steel having >= about 100kgf/mm<2> strength is obtd. inexpensively with a low alloying element quantity, without accompanying deterioration of low temp. toughness.

Description

【発明の詳細な説明】 (産業上の利用分野) 高張力鋳鋼それともとくに引張強さ100kgf/−以
上であって、主として海洋開発に有利に使用される構造
用の高張力[11に関連してこの明細書には、合金成分
を抑制して有利に高張力化を図ることを目指した開発研
究の成果について以下に述べる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) High tensile strength cast steel or especially high tensile strength steel having a tensile strength of 100 kgf/- or more and used mainly for structures advantageously used in offshore development [Related to 11] This specification describes the results of research and development aimed at advantageously increasing the tensile strength by suppressing alloy components.

(従来の技術) この発明は、引張強さが100kgfz”m−以上であ
る高張力鋳鋼に関するところ、従来、引張強さが80k
gf/d級の高張力鋳鋼は、たとえば特公昭53− 1
2885号公報に開示されているが、とくに引張り強さ
100bf/iイを満足する高張力鋳鋼は未開発であっ
た。
(Prior Art) The present invention relates to high-strength cast steel having a tensile strength of 100 kgfz"m or more.
GF/D class high tensile strength cast steel, for example,
Although disclosed in Japanese Patent No. 2885, a high tensile strength cast steel that satisfies a tensile strength of 100 bf/i has not yet been developed.

発明者らは、さきに引張強さ101051C/mイ以上
、−20℃における低温じん性2.8kgfrn以上の
厚肉高張力鋳鋼を開発(特許58−200528号並び
に特願昭59−122910号明IIB書)したが、こ
れらはいわゆる高合金鋳鋼であり、グレードも高く、従
って製造コストも高い。
The inventors first developed a thick-walled, high-strength cast steel with a tensile strength of 101051 C/m or more and a low-temperature toughness of 2.8 kgfrn or more at -20°C (Patent No. 58-200528 and Japanese Patent Application No. 59-122910). However, these are so-called high-alloy cast steels, and the grade is high, so the manufacturing cost is also high.

(発明が解決しようとする問題点ノ イ氏温じん性があまり要求されないにしてもさほどの悪
イヒを伴うことなく、強度だけ(、!少くともiook
gf / mイが要求される高張力鋳鋼に関して、合金
元素■をできる限り少くして低コスト化をはかることが
この発明のねらいである。
(Problem to be solved by the invention) Even though the thermal toughness is not required, only the strength is required (,! at least iook).
The aim of the present invention is to reduce the alloying element (2) as much as possible to reduce the cost of high-strength cast steel that requires gf/m.

〈問題点を解決するための手段) 合金元素は主要5成分<C,Si 、Mn 、P。<Means to solve the problem) The five main alloying elements are <C, Si, Mn, and P.

S)の他は、一般によく添加されているCr。Besides S), Cr is commonly added.

N l 、 MOの如きを添加し、特殊な微量添加元素
たとえばB、Nbなどは添加せずして、つまり合金元素
の種類と添加値を減らし、その代りに、適切な熱処理条
件を設定することによって、じん性のさしたる劣化なし
に 100kg f /、!!1以上の高張力HS74
を達成するが、ここに次の構成が不可欠である。
Adding Nl, MO, etc., without adding special trace additive elements such as B, Nb, etc. In other words, reducing the types and addition values of alloying elements, and instead setting appropriate heat treatment conditions. 100kg f/, without significant deterioration of toughness! ! 1 or more high tension HS74
To achieve this, the following configuration is essential.

C:  Q、20〜0.50wt%。C: Q, 20-0.50 wt%.

S i  :  0,30〜o、eowt%。Si: 0,30~o, eowt%.

Mn :  0.50〜1.60wt%。Mn: 0.50 to 1.60 wt%.

Cr  :  0,80〜1.50wt%。Cr: 0.80 to 1.50 wt%.

\i  :  1.50 〜2.50wt  %Mo 
 :  0.60 〜1.00wt  %△、Q : 
 0.060vt%以下 を含有し、残部がFeおよび不可避的不純物からなる組
成の鋳鋼を 850℃〜1ooo℃のオーステナイト化温度に保持し
た後、 800℃〜400℃間の温度域を20℃/min以上の
平均冷却速度で冷r!Iyる焼入れまたは焼ならし処理
を少くとも1回施し、その後5110℃〜620℃の温
度範囲内で焼戻す ことを特徴とする高張力鋳鋼の製造方法。
\i: 1.50 ~ 2.50wt%Mo
: 0.60 ~ 1.00wt%△, Q:
Cast steel containing 0.060 vt% or less and the remainder consisting of Fe and unavoidable impurities is held at an austenitizing temperature of 850 °C to 1 ooo °C, and then heated at a temperature range of 800 °C to 400 °C at 20 °C/min. Cool with the above average cooling rate! A method for producing high-strength cast steel, which comprises subjecting the steel to at least one quenching or normalizing treatment, and then tempering within a temperature range of 5110°C to 620°C.

(作用) C:  0.20〜0.50wt% 0.20wt%未満では引張強さ100kgf / m
f以上の強度を確保することができず、一方o、sow
t%を越えればじん性を損なう。
(Function) C: 0.20 to 0.50wt% If less than 0.20wt%, tensile strength is 100kgf/m
It is not possible to secure strength greater than f, while o, sow
If it exceeds t%, the toughness will be impaired.

S i   O,30〜0.60wt%鋳造性および強
度向上のため、0.30wt%以上必要であるが0.6
0wt%を越えるとじん性を劣化させる。
S i O, 30-0.60wt% To improve castability and strength, 0.30wt% or more is required, but 0.6
If it exceeds 0 wt%, the toughness will deteriorate.

Mn :  0,50〜1.60wt%焼入性向上元素
として知られているがこの効果を最大限に生かし、かつ
多すぎた場合の粒界への偏析がじん性を劣化させること
を考慮して、0.50〜1.60wt%とした。
Mn: 0.50 to 1.60wt% Known as an element that improves hardenability, it is necessary to take full advantage of this effect and to take into account that if too much Mn is present, segregation to grain boundaries will deteriorate toughness. The content was set at 0.50 to 1.60 wt%.

Cr :  0.80〜1.50wt%焼入性向上元素
で、とくに強度を高めるのに有効であるため、主要成分
のひとつであるが0.80wt%未満では効果はなく、
1.50wt%を越えても強度向上効果は大きくならな
いので0.8〜1.50wt%の範囲を眼度とした。
Cr: 0.80 to 1.50 wt% hardenability improving element, it is particularly effective in increasing strength, so it is one of the main components, but if it is less than 0.80 wt%, it is not effective.
Even if it exceeds 1.50 wt%, the strength improvement effect does not become large, so the ophthalmic power is set in the range of 0.8 to 1.50 wt%.

Nl  :  1.50〜2.50wt%強度およびじ
ん性に有効に働く合金元素で、やはり主要成分のひとつ
であり、1.50wt%未満では効果うずく、2.50
wt%を越えると、製造コストアップとオーバーグレー
ドになるため、 1.50へ−2,50wt%の範囲に
限定した。
Nl: 1.50 to 2.50wt% An alloying element that effectively affects strength and toughness, and is also one of the main components.
If it exceeds wt%, manufacturing costs will increase and overgrade will occur, so it is limited to a range of 1.50 to 2.50 wt%.

Mo  :  0,60.〜 +、oowt  %焼入
性向上元素であり、かつ焼戻軟化抵抗を高めるとして知
られているがこの発明では0.60wt%以上必要であ
るところ、1.00wt%を越えると製造コストアップ
とオーバーグレードになるため、0.60〜1.00w
t%の範囲に限定した。
Mo: 0,60. ~ +, oowt% It is an element that improves hardenability and is known to increase resistance to temper softening, but in this invention, 0.60wt% or more is required, but if it exceeds 1.00wt%, the manufacturing cost increases. Since it is an overgrade, 0.60 to 1.00w
It was limited to a range of t%.

八2≦0.060% 結晶粒微細化効果を持つが、0.060wt%を越える
と非金属介在物を増大させ、健全性をそこなうので0.
060wt%以下とした。
82≦0.060% It has a grain refining effect, but if it exceeds 0.060 wt%, it increases nonmetallic inclusions and impairs soundness.
060 wt% or less.

次に鋼中不純物としてP≦ 0.020%、S≦0.0
10%は何れも機械的性質に有害であるため、低いほど
良いが、製品コストを考えてP≦0.020%、S≦o
、oio%ならば許容される。
Next, as impurities in steel, P≦0.020%, S≦0.0
10% is harmful to mechanical properties, so the lower the better, but considering product cost, P≦0.020%, S≦o
, oio% is acceptable.

上記組成の鋳鋼は850@〜1ooo℃のオーステナイ
ト化温度にて保持するがここに第1図にオーステナイト
化温度と引張強さとの関係を、焼入時の800℃〜40
0℃間にわたる平均冷却速度が30’C/min 、焼
戻温度580℃(1段焼入焼戻)に揃えた場合の結果を
示し、この図より 100に8f / xi以上の引張
強さを得るためには、850℃以上のオーステナイト化
温度が必要な一方、1000℃を越えても加熱のための
エネルギー消費の割には強度の増加が望めないことがわ
かる。従ってオーステナイト化温度で保持する温度範囲
を850℃〜1000℃に限定した。
Cast steel with the above composition is maintained at an austenitizing temperature of 850°C to 100°C. Figure 1 shows the relationship between the austenitizing temperature and tensile strength of 800°C to 40°C during quenching.
The results are shown when the average cooling rate over 0°C is 30'C/min and the tempering temperature is 580°C (1-stage quenching and tempering). From this figure, 100 has a tensile strength of 8f/xi or more. In order to obtain this, an austenitizing temperature of 850°C or higher is required, while it is clear that even if the temperature exceeds 1000°C, no increase in strength can be expected considering the energy consumption for heating. Therefore, the temperature range maintained at the austenitizing temperature was limited to 850°C to 1000°C.

一方第2図は、800℃〜400℃間の平均冷却速度と
引張強さとの関係を、焼入れ時のオーステナイト化温度
り50℃焼戻温度は580℃の1段焼入れ焼戻に揃えた
場合の結果である。
On the other hand, Figure 2 shows the relationship between the average cooling rate and tensile strength between 800°C and 400°C, when the austenitizing temperature during quenching is set to 50°C, and the tempering temperature is 580°C for one-stage quenching and tempering. This is the result.

図より、iookgf/Bイ以上の強度を得るためには
、20℃/min以上の平均冷却速度が必要である。
From the figure, in order to obtain a strength of iokgf/Bi or higher, an average cooling rate of 20° C./min or higher is required.

ざらに第3図は焼戻温度ど引張強さとの関係を、1段焼
入焼戻および2段焼入焼戻の場合について示したもので
ある。1段焼入時のオーステナイト化温度は950°C
12段焼入時のオーステナイト化温度は950℃、90
0℃であり、800℃〜400℃間の平均冷却速度は3
0℃7m1nである。
Figure 3 roughly shows the relationship between tempering temperature and tensile strength in the case of one-stage quenching and tempering and two-stage quenching and tempering. The austenitizing temperature during the first stage quenching is 950°C
The austenitizing temperature during 12-stage quenching is 950℃, 90
0℃, and the average cooling rate between 800℃ and 400℃ is 3
The temperature is 0°C and 7 ml.

図より、100kgf/−以上の引張強さを得るために
は、620℃以下の焼戻温度とすれば良いが、焼戻温度
を540℃未満とすると、鋳物の残留応力除去が不十分
となるので、540℃〜620°C(I)範囲とした。
From the figure, in order to obtain a tensile strength of 100 kgf/- or more, the tempering temperature should be 620°C or less, but if the tempering temperature is less than 540°C, the residual stress removal of the casting will be insufficient. Therefore, the range was set at 540°C to 620°C (I).

なJ5.2段焼入焼戻を行なうと、同一焼戻温度でも若
干強度を向上させることができる。
By performing J5. two-stage quenching and tempering, the strength can be slightly improved even at the same tempering temperature.

(実施例) 表1の試料番号1.2に示す組成の溶鋼を50聡高周波
誘導溶解炉にて溶製し、ダイカル砂型にて、早さ60m
m、 高さ170mm 、長さ 250mmのYブロッ
クを鋳込み、この鋳鋼材から厚さ25mm、高さ160
mm 。
(Example) Molten steel having the composition shown in sample number 1.2 in Table 1 was melted in a 50-meter high-frequency induction melting furnace, and melted at a speed of 60 m in a Daikal sand mold.
A Y block with a height of 170 mm and a length of 250 mm is cast, and from this cast steel material a Y block with a thickness of 25 mm and a height of 160 mm is cast.
mm.

長さ125mmの供蚕材を切り出し、1000℃x 1
0Hr→FCの拡散焼鈍後、表1中に示す熱処理条件で
熱処理を行なった。
Cut out silkworm material with a length of 125 mm and heat it at 1000℃ x 1
After diffusion annealing from 0 Hr to FC, heat treatment was performed under the heat treatment conditions shown in Table 1.

このよ・うな熱98理後、機械的性質を調査した結果を
同じく表1にまとめて示す。
After 98 such heat treatments, the mechanical properties were investigated and the results are summarized in Table 1.

比較鋳鋼の試料番号3,4は、成分がこの発明鋳鋼と異
なりまた熱処理条件が不適なので引張強ざ80i、gf
/−級に止まっている。
Comparative cast steel samples Nos. 3 and 4 have a tensile strength of 80i, gf because their composition is different from that of the invention cast steel and the heat treatment conditions are inappropriate.
It has stopped at /- grade.

また、これら80kgf / wイ級高張力鋳鋼とこの
発明の鋳鋼を比較した場合じん性はやや落ちるものの、
100kg f / vj以上の高張力を有する点こそ
が工業上優れた長所である。
In addition, when comparing these 80kgf/w class high tensile strength cast steels with the cast steel of this invention, although the toughness is slightly lower,
Its industrial advantage is that it has a high tensile strength of 100 kg f/vj or more.

この発明と成分系を揃えた比較鋳鋼、試料番号1−3.
2−3はオーステナイト化温度が低すぎ、同じく1−4
は800〜400゛の冷却速度が低すぎそして同じく1
−5は焼戻し温度が高すぎて、何れも引張強さ 100
kgf/−イを得ることができない。
Comparative cast steel with the same composition as this invention, sample number 1-3.
2-3 has too low austenitization temperature, same as 1-4
The cooling rate of 800~400゛ is too low and the same
-5 is because the tempering temperature is too high, and the tensile strength is 100
kgf/-i cannot be obtained.

一方訳料番号1−6.2−4は焼戻し温度が低すぎるの
で、引張り強さでは満足するにしても、吸収エネルギが
極端に劣化している。
On the other hand, the tempering temperature of materials No. 1-6.2-4 is too low, so even though the tensile strength is satisfactory, the absorbed energy is extremely degraded.

(発明の効果) 合金元素の添加を有利に抑mlJして、むしろ適切な熱
処理によってこの発明では、じん性の著しい劣化を伴わ
ずに引張り強さを100kg f / 114以上を確
保した高引張力鋳鋼が容易かつ安定に得られる。
(Effects of the Invention) By advantageously suppressing the addition of alloying elements and, rather, by appropriate heat treatment, the present invention has achieved a high tensile strength that secures a tensile strength of 100 kg f / 114 or more without significant deterioration of toughness. Cast steel can be easily and stably obtained.

それ故この発明による高張力鋳鋼は、 (1)大型l!8II車などに利用すれば、高張力のた
めうツ肉化できる。
Therefore, the high tensile strength cast steel according to this invention has the following characteristics: (1) Large size l! If used in 8II cars, etc., it can be made into carcasses due to its high tension.

(2)大きな引張り力のかかる船舶やガイドタワーなど
の撃留ブイに利用できる。
(2) Can be used for holding buoys such as ships and guide towers that are subject to large tensile forces.

(3)鋳物を軽薄短小化できる。(3) Castings can be made lighter, thinner, shorter and smaller.

などの諸点で有用である。It is useful in various points such as.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、オーステナイト化温度と引張り強さとの関係
図表、 第2図は平均冷却速度と引張強さとの関係図表であり、 第3図は、焼戻し温度と引張強さとの関係を示すグラフ
である。 第1図    第2図
Figure 1 is a graph showing the relationship between austenitizing temperature and tensile strength, Figure 2 is a graph showing the relationship between average cooling rate and tensile strength, and Figure 3 is a graph showing the relationship between tempering temperature and tensile strength. be. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、C:0.20〜0.50wt%、 Si:0.30〜0.60wt%、 Mn:0.50〜1.60wt%、 Cr:0.80〜1.50wt%、 Ni:1.50〜2.50wt%、 Mo:0.60〜1.00wt% Al:0.060wt%以下 を含有し、残部がFeおよび不可避的不純物からなる組
成の鋳鋼を 850℃〜1000℃のオーステナイト化温度に保持し
た後、 800℃〜400℃間の温度域を20℃/min以上の
平均冷却速度で冷却する焼入れまたは焼ならし処理を少
くとも1回施し、その後540℃〜620℃の温度範囲
内で焼戻す ことを特徴とする高張力鋳鋼の製造方法。
[Claims] 1. C: 0.20 to 0.50 wt%, Si: 0.30 to 0.60 wt%, Mn: 0.50 to 1.60 wt%, Cr: 0.80 to 1.50 wt% %, Ni: 1.50 to 2.50 wt%, Mo: 0.60 to 1.00 wt%, Al: 0.060 wt% or less, and the balance is Fe and unavoidable impurities. After being maintained at an austenitizing temperature of 1000°C, quenching or normalizing treatment is performed at least once in the temperature range of 800°C to 400°C at an average cooling rate of 20°C/min or more, and then the temperature is reduced to 540°C to A method for producing high-strength cast steel, characterized by tempering within a temperature range of 620°C.
JP16664485A 1985-07-30 1985-07-30 Manufacture of high tensile cast steel Pending JPS6227517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16664485A JPS6227517A (en) 1985-07-30 1985-07-30 Manufacture of high tensile cast steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16664485A JPS6227517A (en) 1985-07-30 1985-07-30 Manufacture of high tensile cast steel

Publications (1)

Publication Number Publication Date
JPS6227517A true JPS6227517A (en) 1987-02-05

Family

ID=15835090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16664485A Pending JPS6227517A (en) 1985-07-30 1985-07-30 Manufacture of high tensile cast steel

Country Status (1)

Country Link
JP (1) JPS6227517A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253511A (en) * 1990-02-28 1991-11-12 Kubota Corp Heat treatment of steel for structure purpose
KR20190036866A (en) * 2017-09-28 2019-04-05 공주대학교 산학협력단 METHOD FOR MANUFACTURING CAST Ni-Cr-Mo STEEL HAVING HIGH STRENGTHIMPACT RESISTANCE AT LOW TEMPERATURE AND CAST Ni-Cr-Mo STEEL METHOD THEREBY
WO2020238851A1 (en) * 2019-05-28 2020-12-03 宝山钢铁股份有限公司 Steel, wire rod and manufacturing method of wire rod

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253511A (en) * 1990-02-28 1991-11-12 Kubota Corp Heat treatment of steel for structure purpose
KR20190036866A (en) * 2017-09-28 2019-04-05 공주대학교 산학협력단 METHOD FOR MANUFACTURING CAST Ni-Cr-Mo STEEL HAVING HIGH STRENGTHIMPACT RESISTANCE AT LOW TEMPERATURE AND CAST Ni-Cr-Mo STEEL METHOD THEREBY
WO2020238851A1 (en) * 2019-05-28 2020-12-03 宝山钢铁股份有限公司 Steel, wire rod and manufacturing method of wire rod

Similar Documents

Publication Publication Date Title
CN109266966B (en) Non-quenched and tempered round steel for direct cutting and production method thereof
CN110358965A (en) 100 grades a kind of or more high-test chain wire rod and its manufacturing method
JPH10265846A (en) Production of thermally refined high tensile strength steel plate by continuous casting excellent in toughness
JPH05214484A (en) High strength spring steel and its production
JP2002167652A (en) Thin sheet material excellent in high strength-high fatigue resisting characteristic
JPS6227517A (en) Manufacture of high tensile cast steel
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
KR100209450B1 (en) High toughness cr-mo steel
CN109972024B (en) Steel for gear steel bar and preparation method thereof and preparation method of steel bar
JPH0643605B2 (en) Manufacturing method of non-heat treated steel for hot forging
US6019938A (en) High ductility very clean non-micro banded die casting steel
JPH05195156A (en) High-manganese ultrahigh tensile strength steel excellent in toughness in heat affected zone and its production
JP3543200B2 (en) Manufacturing method of steel sheet for metal saw substrate
JPH01234521A (en) Production of high-toughness low-yielding ratio steel material having excellent sulfide stress corrosion cracking resistance
JPS613871A (en) Very high tension cast steel having high toughness at very low temperature and its manufacture
JPH03249126A (en) Soaking treatment in production of high strength steel
JPS6092421A (en) Manufacture of superhigh tension cast steel
JP7530427B2 (en) Wire rod with excellent spheroidizing heat treatment properties and its manufacturing method
JPH0355539B2 (en)
KR100325713B1 (en) Method for manufacturing alloy steel wire rod and bar
JPH03260010A (en) Production of non-heattreated steel bar for hot forging and production of hot forged non-heattreated parts
CN114717484A (en) Novel high-manganese steel with high silicon and high chromium and preparation method thereof
KR100276312B1 (en) The manufacturing method of 80kg grade direct quenching type high strength steel sheet with excellent toughness
JPH06136452A (en) Production of hard steel wire
JPH06248389A (en) Maraging steel for die casting die