JPS62274215A - Surface resolver - Google Patents

Surface resolver

Info

Publication number
JPS62274215A
JPS62274215A JP11803086A JP11803086A JPS62274215A JP S62274215 A JPS62274215 A JP S62274215A JP 11803086 A JP11803086 A JP 11803086A JP 11803086 A JP11803086 A JP 11803086A JP S62274215 A JPS62274215 A JP S62274215A
Authority
JP
Japan
Prior art keywords
stator
magnetic
electromagnet
needle
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11803086A
Other languages
Japanese (ja)
Other versions
JPH0674983B2 (en
Inventor
Nagahiko Nagasaka
長坂 長彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP11803086A priority Critical patent/JPH0674983B2/en
Publication of JPS62274215A publication Critical patent/JPS62274215A/en
Publication of JPH0674983B2 publication Critical patent/JPH0674983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To reduce the cost and to improve the accuracy by exciting a needle electromagnet with a higher-hamonic exciting current, and producing magnetic flux whose number of pole pairs is equal to the pitch of lattice-shaped magnetic body projection parts and inducing an electromotive force. CONSTITUTION:Projections and recesses of magnetic bodies are formed at pitch lambda in a lattice shape on the surface of a stator 2 facing the needle 1. The needle 1 is supported movably opposite the surface of the stator 2 across a constant gap. The needle 1 is an electromagnet and has, for example, four magnetic poles to apply a magnetic field to the stator 2. Printed coils W11, W12, W21 and W22 are stuck as secondary detection winding on the magnetic pole surface. Those print coils are patterned so that magnetic flux produced by the projection parts 21 of the stator 2 is scooped. Therefore, the signal of the position of the needle is obtained from variation in the phase of a voltage induced across the detection winding consisting of the printed coils stuck on the opposite surface of the needle 1 of an electromagnet which is excited with a higher harmonic wave to the stator 2.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、二次元のX方向、y方向の位置を電圧の位相
に変換して検出するサーフェイスレゾルバに関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a surface resolver that converts and detects positions in two-dimensional X and Y directions into voltage phases.

(従来の技術) 従来例としての二次元の位置検出手段は、X方向、y方
向にリニヤスケールあるいはりニヤインダクトシンもし
くはりニヤレゾルバ等を設けて両方向を別々に検出する
のが鱈通である。
(Prior art) A conventional two-dimensional position detection means is to install linear scales, linear inductors, linear resolvers, etc. in the X direction and the y direction, and to detect both directions separately. .

(発明が解決しようとする問題点) このためX軸にはY方向ガイド、Y軸にはX方向ガイド
の精度が重要で、構造が複雑であった。
(Problems to be Solved by the Invention) Therefore, the accuracy of the Y-direction guide for the X-axis and the X-direction guide for the Y-axis is important, and the structure is complicated.

ここにおいて本発明は、従来例を克服し、X・Y両方向
を同時に検出しかつガイドが不要なサーフェイスレゾル
バを提供することを、その目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the conventional problems and provide a surface resolver that can simultaneously detect both the X and Y directions and does not require a guide.

(問題点を解決するための手段) 本発明tよ、次の手段から成るサーフェイスレゾルバで
ある。
(Means for Solving the Problems) The present invention is a surface resolver comprising the following means.

固定子は、格子状の磁性体凸起部を表面に設けてあり、
可動子は、この表面に一定の空隙を介して支持され、移
動できるようにしである。
The stator has a lattice-shaped magnetic protrusion on its surface.
The movable element is supported on this surface through a certain gap so that it can move.

可動子は電磁石で、このつくる磁束は、電磁石のr!1
極面から固定子に入り、固定子から電磁石の他のtif
!極面を通って戻るようになっている。
The mover is an electromagnet, and the magnetic flux it creates is r! of the electromagnet. 1
Enter the stator from the pole face, and from the stator to the other tif of the electromagnet
! It is designed to return through the polar plane.

電磁石の固定子に対向する磁極面には、固定子の格子状
磁性体凸起部と同じ極対ピッチで格子状の起磁力を形成
するようなプリントコイルが貼付けられている。
A printed coil that forms a lattice-shaped magnetomotive force with the same pole pair pitch as the lattice-shaped magnetic projections of the stator is attached to the magnetic pole surface of the electromagnet that faces the stator.

このプリン1−コイルは4相より成り、各相コイルは互
いに1/4格子ピッチずつ相差をもたけている。
This pudding 1-coil consists of four phases, and each phase coil has a phase difference of 1/4 lattice pitch from each other.

可動子電磁石を高調波動la電流で励磁すると、4相の
プリントコイルには、格子状磁性体凸起部によって、こ
のピッチを極対数とする磁束が生じて鎖交するため、4
相の位相差をb″)誘導起電力を生ずるので、これを検
出することによりx、Y方向の二次元の位置情報を得る
J:うにしである。
When the mover electromagnet is excited with a harmonic la current, magnetic flux with the pitch as the number of pole pairs is generated and interlinked in the four-phase printed coil by the lattice-like magnetic protrusions.
The phase difference between the phases b'') generates an induced electromotive force, and by detecting this, two-dimensional positional information in the x and Y directions can be obtained.J: sea urchin.

(作 用) 表面に磁性体の凹凸の格子をもつ固定子に対向して、高
調波で励磁される電磁石の可動子が固定子に磁界を加え
、可動子の固定子への対向面に貼付したプリントコイル
からなる検出巻線に誘導される電圧の位相の変化から、
可動子の位置の信号を(する。
(Operation) A movable element of an electromagnet excited by harmonics applies a magnetic field to the stator, facing a stator that has an uneven grid of magnetic material on its surface, and attaches the movable element to the surface facing the stator. From the change in the phase of the voltage induced in the detection winding consisting of a printed coil,
Sends a signal indicating the position of the mover.

(実施例) 本発明の一実施例におけるその構成を表わす斜視図を第
1図に示す。
(Embodiment) FIG. 1 is a perspective view showing the configuration of an embodiment of the present invention.

第2図は、その電磁石〔励磁(1次)巻線は省略し図示
していない〕の2次〈検出)巻線を形成するプリントコ
イルのパターンと配置を表わす図である。
FIG. 2 is a diagram showing the pattern and arrangement of printed coils forming the secondary (detection) winding of the electromagnet (the excitation (primary) winding is omitted and not shown).

固定子2の可動子1に対向する表面には、磁性体の凹凸
がそのピッチλで格子状に施されている。
On the surface of the stator 2 facing the movable element 1, concavities and convexities of a magnetic material are formed in a lattice shape at a pitch λ.

つまり、縦、横のピッチλで格子状凸起部21を配設す
ることにより、その窪みが凹部22となり、これらが固
定子2を形成する。
That is, by arranging the lattice-like protrusions 21 at pitches λ in the vertical and horizontal directions, the depressions become the recesses 22, and these form the stator 2.

可動子1は、固定子2の表面に一定の空隙を介して支持
され、移動できるようにしである。
The movable element 1 is supported on the surface of the stator 2 with a certain gap therebetween so as to be movable.

可動子1は電磁石で、例えば4個のIa極をもって、固
定子2に磁界を加えている。
The mover 1 is an electromagnet, and has, for example, four Ia poles, and applies a magnetic field to the stator 2.

このIi!IIfi表面には2次検出巻線としてプリン
トコイルW11.W12.W21.W22が貼付けられ
ている。このプリントコイルは固定子2の凸起部21の
つくる磁束を掬いとるように、パターンが形成されてい
る。
This Ii! On the surface of IIfi, there is a printed coil W11. as a secondary detection winding. W12. W21. W22 is attached. This printed coil has a pattern formed so as to absorb the magnetic flux generated by the protrusion 21 of the stator 2.

巻線W11.W12.W21.W22で4相を構成し、
各巻線の誘導電圧(emf)は、 e11=Ecos 0xxcosθy 6  =Esinθ x cos θy21     
     X e  =Ecosθ x sinθy 12          X e22−ESinOXxSinθy になるよう、互いに相差が与えられている。
Winding W11. W12. W21. Configure 4 phases with W22,
The induced voltage (emf) of each winding is: e11=Ecos 0xxcosθy 6 =Esinθ x cos θy21
A mutual difference is given so that Xe=Ecosθxsinθy12Xe22−ESinOXxSinθy.

ここに、 2π θ =    X 8  λ 2π θ =    y ゞ   λ Eは誘導電圧の波高値、 λは格子凸起部ピッチである。Here, 2π θ = X 8 λ 2π θ = y ゞ  λ E is the peak value of the induced voltage, λ is the grating protrusion pitch.

しかして、格子凸起部の歯形は、電磁石のつくる磁界B
の分布が B  +KB  cosθ −cosθyQ    Q
    X になるようにしである。
Therefore, the tooth profile of the lattice protrusion is caused by the magnetic field B created by the electromagnet.
The distribution of B +KB cosθ −cosθyQ Q
It is intended to be X.

なお、Boは一定磁束密度 には常数 である。Note that Bo is a constant magnetic flux density is a constant It is.

本発明の他の実施例における可動子と固定子の相対関係
を示す平面図を第3図に表わす。N、Sは電磁石磁極面
の極性である。
FIG. 3 is a plan view showing the relative relationship between the movable element and the stator in another embodiment of the present invention. N and S are the polarities of the electromagnet magnetic pole faces.

第4図はそのプリントコイル(2次巻線〉のパターンと
配置図である。
FIG. 4 shows the pattern and layout of the printed coil (secondary winding).

第5図は、本発明の別の実施例における可動子の構成を
示す平面図である。
FIG. 5 is a plan view showing the configuration of a movable element in another embodiment of the present invention.

51.52は先に述べたプリントコイル2次巻線を具え
る電磁石からなるレゾルバ、53.54はサフエーイス
パルスモータ、55,56,57゜58は2方向支承機
構で磁気浮上、空気圧(静圧)浮上で4箇所で固定子表
面上を自在に可動できるよう支持している。
51.52 is a resolver consisting of an electromagnet equipped with the aforementioned printed coil secondary winding, 53.54 is a Safei pulse motor, 55, 56, 57°58 is a two-way support mechanism that supports magnetic levitation, air pressure ( It is supported at four locations by floating (static pressure) so that it can move freely on the stator surface.

また、固定子2と可動子1の相対する空隙面にはテフロ
ンフィルム等が貼られていて、これで摩擦の少ないIF
J動潤滑を行なわせてもよい。
In addition, a Teflon film or the like is pasted on the opposing gap surfaces of the stator 2 and mover 1, which creates an IF with less friction.
J-dynamic lubrication may also be performed.

さらに、本発明の変形例・応用例として次の手段が考え
られる。
Furthermore, the following means can be considered as a modification/application example of the present invention.

1) 円筒面にもこのサーフェイスレゾルバは応用でき
る。
1) This surface resolver can also be applied to cylindrical surfaces.

2) プリントコイルを多層にして、空隙アンバランス
による位相誤差を低減することができる。
2) The printed coil can be multilayered to reduce phase errors due to air gap imbalance.

3) プリントコイルを励11巻線、電磁石コイルを検
出巻線とすることもできる。
3) It is also possible to use the printed coil as the excitation winding and the electromagnetic coil as the detection winding.

4) 可動子が固定子に垂直な軸のまわりに回転した時
(ヨーイング)、この回転角は、巻線W とW 1巻線
W12とW22から得られるθ8の差または巻線W11
とW129巻線W2.とW22から得られるθ、の差か
ら求められる。
4) When the mover rotates around an axis perpendicular to the stator (yawing), this rotation angle is the difference in θ8 obtained from windings W12 and W22 or winding W11.
and W129 winding W2. and θ obtained from W22.

〔発明の効果〕〔Effect of the invention〕

かくして本発明によれば、次に挙げる数多くの格段の効
果が得られる。
Thus, according to the present invention, many of the following remarkable effects can be obtained.

■ サーフェイスパルスモータの固定子(格子)を、レ
ゾルバの固定子として利用するので、経済的である。
■ It is economical because the stator (grid) of the surface pulse motor is used as the stator of the resolver.

■ プリントコイルは正確につくれるので、コストが低
く精度が高い。
■Printed coils can be made accurately, resulting in low cost and high precision.

■ ガイドが不要なので、構造が簡単である。■ The structure is simple because no guide is required.

■ ヨーイングを検出できる。■ Yawing can be detected.

■ プリントコイルの多層化により、精度の向上が可能
である。
■ Accuracy can be improved by using multiple layers of printed coils.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における構成を表わす斜視図
、M2図はその検出巻1(プリントコイル)のパターン
と配置図、第3図、第4図は本発明の他の実施例におけ
る可動子と固定子の相対関係を示す平面図、プリントコ
イルのパターンと配置図、第5図は本発明の別の実施例
における可動子平面図である。 1・・・可動子、11・・・プリントコイル(2次巻線
)、2・・・固定子、21・・・格子状凸起部(Il性
体)、22・・・四部、51.52・・・レゾルバ、5
3.54・・・サーフェイスモータ、55〜58・・・
2方向支承機構(la磁気浮上空気静圧浮上手段等)。 出願人代理人  佐  藤  −雄 第3図 第4図 第5図
Fig. 1 is a perspective view showing the configuration of one embodiment of the present invention, Fig. M2 is a pattern and arrangement of the detection winding 1 (printed coil), and Figs. FIG. 5 is a plan view showing the relative relationship between the mover and the stator, a pattern and arrangement of printed coils, and a plan view of the mover in another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Mover, 11... Printed coil (secondary winding), 2... Stator, 21... Grid-like convex part (Il-like body), 22... Four parts, 51. 52...Resolver, 5
3.54...Surface motor, 55-58...
Two-way support mechanism (LA magnetic levitation aerostatic levitation means, etc.). Applicant's agent Mr. Sato Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1、固定子は、 格子状の磁性体凸起部を可動子に対向する表面に設けて
あり、 可動子は、 固定子表面に一定の空隙を介して移動自在に支持される
手段と、 交流励磁される電磁石をなし、このつくる磁束は電磁石
の磁極面から固定子へ入り、固定子から電磁石の他の磁
極面を通って戻るようした手段と、固定子に対向する磁
極面には、固定子の格子状磁性体凸起部と同じ極対ピッ
チで、格子状の起磁力を形成するように貼付された4相
のプリントコイルと、 これら各相プリントコイルは互いに1/4格子状極対ピ
ッチずつの相差をもたせる手段と、を備えて成り、 可動子電磁石を高調波励磁電流で励磁し、格子状磁性体
凸起部によりこのピッチを極対数とする磁束を発生させ
、4相のプリントコイルにその磁束が鎖交し、4相の位
相差をもつ誘導起電力を生じさせ、これを検出し二次元
の位置情報を得ることを特徴とするサーフェイスレゾル
バ。
[Claims] 1. The stator is provided with a lattice-shaped magnetic protrusion on the surface facing the movable element, and the movable element is movably supported on the stator surface with a certain gap therebetween. means comprising an electromagnet excited by alternating current, such that the magnetic flux it creates enters the stator from a magnetic pole face of the electromagnet and returns from the stator through another magnetic pole face of the electromagnet; and means facing the stator; Four-phase printed coils are attached to the magnetic pole surface to form a grid-like magnetomotive force with the same pole pair pitch as the grid-like magnetic protrusions on the stator. means for providing a phase difference of 4/4 lattice-shaped pole pair pitch, which excites the mover electromagnet with a harmonic excitation current and generates magnetic flux with the lattice-shaped magnetic convex portion as the number of pole pairs. A surface resolver characterized in that the magnetic flux intersects with a four-phase printed coil to generate an induced electromotive force having a four-phase phase difference, and detects this to obtain two-dimensional position information.
JP11803086A 1986-05-22 1986-05-22 Surface resolver Expired - Lifetime JPH0674983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11803086A JPH0674983B2 (en) 1986-05-22 1986-05-22 Surface resolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11803086A JPH0674983B2 (en) 1986-05-22 1986-05-22 Surface resolver

Publications (2)

Publication Number Publication Date
JPS62274215A true JPS62274215A (en) 1987-11-28
JPH0674983B2 JPH0674983B2 (en) 1994-09-21

Family

ID=14726319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11803086A Expired - Lifetime JPH0674983B2 (en) 1986-05-22 1986-05-22 Surface resolver

Country Status (1)

Country Link
JP (1) JPH0674983B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049924B2 (en) 2004-06-30 2006-05-23 Okuma Corporation Electromagnetic induction type position sensor
JP2008039543A (en) * 2006-08-04 2008-02-21 Yokogawa Electric Corp Plane positioning apparatus
JP2012159495A (en) * 2011-01-10 2012-08-23 Aisan Ind Co Ltd Position sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049924B2 (en) 2004-06-30 2006-05-23 Okuma Corporation Electromagnetic induction type position sensor
DE102005030358B4 (en) * 2004-06-30 2015-05-28 Okuma Corporation Electromagnetic induction position sensor
DE102005030358B8 (en) * 2004-06-30 2015-08-13 Okuma Corporation Electromagnetic induction position sensor
JP2008039543A (en) * 2006-08-04 2008-02-21 Yokogawa Electric Corp Plane positioning apparatus
JP2012159495A (en) * 2011-01-10 2012-08-23 Aisan Ind Co Ltd Position sensor

Also Published As

Publication number Publication date
JPH0674983B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
USRE47723E1 (en) Angle detection apparatus
JP4476717B2 (en) Electromagnetic induction type position sensor
US5777402A (en) Two-axis motor with high density magnetic platen
JP3559225B2 (en) Dielectric type position detector
JP6873544B2 (en) Electromagnetic induction type absolute encoder
US10564007B2 (en) Inductive movement sensors
JP2008029069A (en) Angle detector
EP0530090A1 (en) Rotational position detection device
JP2017138171A (en) Electromagnetic induction type position detector
JPH0792361B2 (en) Radial displacement magnetic detection device for rotor
JPS62274215A (en) Surface resolver
JPH09308218A (en) Linear motor, stage system and exposure device using it
EP3120113B1 (en) Position sensing apparatus
JP5374739B2 (en) Linear sensor
JP3212801B2 (en) Linear motor
JP3097094B2 (en) Non-contact displacement detector
JP2009244124A (en) Position sensor apparatus for magnetic bearing and magnetic bearing apparatus
CN106197244A (en) Grating straight-line displacement sensor during a kind of double-row type two dimension
JP2004101423A (en) Print resolver
JPS61292014A (en) Position detector
JP5668211B2 (en) Linear sensor
JPS6365302A (en) Flat type angle position detector
CN106257231A (en) Grating straight-line displacement sensor during a kind of single-row double-row type two dimension
JPH0642174Y2 (en) Displacement converter
JPH0749245A (en) Magnetic scale device