JPS6227342A - Production of optical fiber - Google Patents

Production of optical fiber

Info

Publication number
JPS6227342A
JPS6227342A JP16731185A JP16731185A JPS6227342A JP S6227342 A JPS6227342 A JP S6227342A JP 16731185 A JP16731185 A JP 16731185A JP 16731185 A JP16731185 A JP 16731185A JP S6227342 A JPS6227342 A JP S6227342A
Authority
JP
Japan
Prior art keywords
fluorine
tube
base material
sintering
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16731185A
Other languages
Japanese (ja)
Inventor
Suehiro Miyamoto
宮本 末広
Toshiaki Uehara
上原 敏明
Ryozo Yamauchi
良三 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP16731185A priority Critical patent/JPS6227342A/en
Publication of JPS6227342A publication Critical patent/JPS6227342A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To efficiently produce fluorine-contg. quartz glass having high purity and high concn. by sintering porous glass obtd. by a CVD method or outside vapor-phase deposition method under pressurization in a mixed atmosphere composed of He and gaseous fluorine thereby forming transparent glass. CONSTITUTION:A sintering furnace 11 consists of a furnace core tube 12, a heater 13 and an alumina or carbon plate 14 and a porous glass base material 15 is disposed in the tube 12. The deformation of the tube 12 is prevented by the plate 14. The base material 15 is formed by an ordinary CVD method, etc. at the top end of a target 16 which is airtightly held by an O-ring 17. The gaseous fluoring such as SF6, CF4 or CCl2F2 is filled together with He in the tube 12 and a gaseous mixture of the He and gaseous fluorine is controlled by a regulator 18 to about 0-20,000mmH2O pressure. The tube is heated by a heater 13 to the sintering initiation temp. and the material 15 is sintered when said material passes the high-temp. part thereof, by which the material is formed into the transparent glass; at the same time, the fluorine is doped therein. The fluorine-contg. transparent glass base material 19 is thus formed from the top end part of the material 15.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、光ファイバの製造方法に関し、特に光ファ
イバのIfj材となるフッ素含有石芙ガラスの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing an optical fiber, and more particularly to a method for manufacturing fluorine-containing quartz glass, which is an Ifj material for an optical fiber.

従来の技術 フン東含有石英ガラスは、従来、プラズマ法、CVD法
、焼結法で作られている。プラズマ法では、第4図に示
すように、RFコイル41中に形成されたプラズマ炎の
中にガラスの主成分となる5iC14,SiF*などと
CFa 、SFa 。
BACKGROUND OF THE INVENTION Silica glass containing Hungtung has conventionally been produced by a plasma method, a CVD method, or a sintering method. In the plasma method, as shown in FIG. 4, a plasma flame formed in an RF coil 41 contains 5iC14, SiF*, etc., which are the main components of glass, as well as CFa and SFa.

CCl 2 F2などのフッ素ガスとを共に送り込み、
直接フッ素含有石英ガラス母材42を作る。
Injecting fluorine gas such as CCl2F2 together,
A fluorine-containing quartz glass base material 42 is directly produced.

この方法による場合のフッ素ドープ量は比屈折率にして
Δ=−1,2%に相当する程度まで可能である。
In this method, the amount of fluorine doped can be up to a relative refractive index of Δ=-1.2%.

次に、CVD法では、第5図に示すように、出発石英管
51中に02.5iC1* 、5iFn 。
Next, in the CVD method, as shown in FIG. 5, 02.5iC1* and 5iFn are placed in the starting quartz tube 51.

S F * 、CCl 2 F zなどのガスを送り込
み、この石英管51の外側からバーナ52で熱して、石
英管51の内壁にガラス層53を14vJItさせる。
A gas such as S F * or CCl 2 F z is fed into the quartz tube 51 and heated with a burner 52 from the outside to form a glass layer 53 on the inner wall of the quartz tube 51 to a temperature of 14 vJIt.

−焼結法の場合は、まず、第6図のように通常のVAD
法ニヨリバー+ 6 L L: H2、02、S i 
C14などのガスを送って火炎中でガラス微粉末を形成
し、これを堆積して多孔質ガラス母材62を作る。ある
いは外付CVD法で作ってもよい、そして、この多孔質
ガラス母材62を第7図のように焼結炉63内に入れ、
ヘリウムとCF4.SF、、CCl2F2等のフッ素ガ
ス雰囲気中で焼結し透明ガラス母材64を作る。この焼
結プロセスでフッ素がドープされる。この焼結法では多
孔質ガラス母材62の合成をフッ素ガス雰囲気中で行な
わないため、合成速度を3〜5g/分と速くすることが
できる。
- In the case of the sintering method, first, as shown in Figure 6, the normal VAD
Hōniyo River + 6 L L: H2, 02, S i
A gas such as C14 is sent to form glass fine powder in a flame, and this is deposited to form a porous glass base material 62. Alternatively, it may be made by an external CVD method, and this porous glass base material 62 is placed in a sintering furnace 63 as shown in FIG.
Helium and CF4. A transparent glass base material 64 is produced by sintering in a fluorine gas atmosphere such as SF, CCl2F2, etc. Fluorine is doped during this sintering process. Since this sintering method does not synthesize the porous glass base material 62 in a fluorine gas atmosphere, the synthesis rate can be as high as 3 to 5 g/min.

発明が解決しようとする問題点 しかしながら、上記従来の製造法ではいずれも難点があ
る。まず、プラズマ法では、合成速度が0.1g/分以
下と相当に低いという問題がある。これは、プラズマ法
が直接ガラスを堆積する方法であるのと、この堆積プロ
セス中におけるフッ素ガスのエツチング作用も効いてく
るためである。
Problems to be Solved by the Invention However, all of the above conventional manufacturing methods have drawbacks. First, the plasma method has a problem in that the synthesis rate is quite low at 0.1 g/min or less. This is because the plasma method is a method for directly depositing glass, and the etching effect of fluorine gas also becomes effective during this deposition process.

またCVD法では、石英管を介して熱を加えるために反
応温度がプラズマ炎に比べて低く、得られる最大の比屈
折率差はΔ=−0,4%程度である。加えて、石英管の
内側に堆積させるため、得られるガラスの量も少なく、
形状的にも加工しにくいものとなる。さらに堆積速度も
0.05g/分と低い。
Furthermore, in the CVD method, since heat is applied through a quartz tube, the reaction temperature is lower than that of a plasma flame, and the maximum relative refractive index difference that can be obtained is about Δ=-0.4%. In addition, since the glass is deposited inside the quartz tube, the amount of glass obtained is small.
The shape is also difficult to process. Furthermore, the deposition rate is as low as 0.05 g/min.

焼結法の場合は、焼結炉内のフッ素ガス濃度を100%
にしても得られるフッ素含有石英ガラスの比屈折率差は
最大0.7%であり、フッ素の含有量が制限されるとい
う問題がある。
In the case of the sintering method, the fluorine gas concentration in the sintering furnace is set to 100%.
However, the relative refractive index difference of the obtained fluorine-containing quartz glass is 0.7% at most, and there is a problem that the fluorine content is limited.

この発明は、上記の従来の製造法での問題点を解決し、
高純度で高濃度のフッ素含有石英ガラスを効率良く製造
する方法を提供することを目的とする。
This invention solves the problems with the above conventional manufacturing method,
It is an object of the present invention to provide a method for efficiently manufacturing fluorine-containing quartz glass with high purity and high concentration.

問題点を解決するための手段 この発明の光ファイバの製造方法は、基本的には焼結法
に属し、VAD法や外付法で得た多孔質ガラスをヘリウ
ムとフッ素ガスとの混合雰囲気中で、加圧下において焼
結し透明ガラス化することを特徴とする。
Means for Solving the Problems The optical fiber manufacturing method of the present invention basically belongs to the sintering method, in which porous glass obtained by the VAD method or the external deposition method is placed in a mixed atmosphere of helium and fluorine gas. It is characterized by being sintered under pressure and turned into transparent glass.

作  用 多孔質ガラスをヘリウムとフッ素ガスとの混合雰囲気中
で焼結し透明ガラス化する際、ツー2素がドープされる
が、本発明は、この石英ガラス中のフッ素濃度は焼結炉
内の圧力に依存していることに着目することによってな
されたものである。すなわち、高い圧力をかけた状態に
おいて焼結し透明ガラス化すると、フッ素を高濃度に含
む石英ガラスが得られる。
Function: When porous glass is sintered in a mixed atmosphere of helium and fluorine gas to form transparent glass, it is doped with 2 elements, but in the present invention, the fluorine concentration in this quartz glass can be reduced within the sintering furnace. This was done by focusing on the fact that it depends on the pressure of That is, when sintered and made into transparent glass under high pressure, quartz glass containing a high concentration of fluorine can be obtained.

実施例 第1図において、焼結炉11は炉心管12とヒータ13
とアルミナまたはカーボン板14とからなり、この炉心
管12内に多孔質ガラスIiI材15が配置される。ア
ルミナまたはカーボン板14は炉心管12の変形を防ぐ
ために用いられている。この多孔質ガラス母材15は、
通常のVAD法などによりターゲット16の先端に形成
されたもので、このターゲラ)16が0リング17によ
って気密に保持される。炉心管12内には、ヘリウムと
ともにCF 4 、 S F @ 、 CCl 2 F
 gなどのフッ素力′スが満たされているが、レキュレ
ータ18により、このヘリウムとフッ素ガスとの混合ガ
スが炉心管12内で圧力O〜2000mmH,Oとなる
よう制御されている。
Embodiment In FIG. 1, a sintering furnace 11 has a furnace core tube 12 and a heater 13.
and an alumina or carbon plate 14, and a porous glass IiI material 15 is disposed within this furnace core tube 12. Alumina or carbon plate 14 is used to prevent deformation of furnace tube 12. This porous glass base material 15 is
It is formed at the tip of the target 16 by a normal VAD method, and the target layer 16 is held airtight by an O-ring 17. Inside the reactor core tube 12, along with helium, CF 4 , SF@, CCl 2 F
Although the fluorine gas is filled with fluorine gas such as g, the pressure of the mixed gas of helium and fluorine gas in the core tube 12 is controlled by the regulator 18 to be at a pressure of O to 2000 mmH,O.

ヒータ13により加熱昇温され、焼結が始まる温度まで
上昇させられる。多孔質ガラス母材15がその高温部分
を通過する時に焼結されて透明ガラス化され、同時にフ
ッ素がドープされる。こうして、多孔質ガラス母材15
の先端部分から、フッ素を含有した透明ガラス母材19
が形成されていく。
The temperature is raised by the heater 13 to a temperature at which sintering begins. When the porous glass base material 15 passes through the high-temperature portion, it is sintered and becomes transparent vitrified, and at the same time it is doped with fluorine. In this way, the porous glass base material 15
From the tip of the fluorine-containing transparent glass base material 19
is being formed.

このようにし十作製したフッ素ドープ石英ガラスの、炉
内フッ素ガス濃度依存性と炉内雰囲気圧力の依存性とを
調べてみたところ、第2図のような結果が得られた。こ
の第2図から明らかなように、炉内圧力が500mm1
(,0では最大比屈折率差−1,2%のフッ素ドープ石
英ガラスが得られ、1000m100Oでは最大比屈折
率差−1,5%のフッ素ドープ石英ガラスが得られた。
When the dependence of the fluorine-doped quartz glass produced in this manner on the fluorine gas concentration in the furnace and the dependence on the atmospheric pressure in the furnace was investigated, the results shown in FIG. 2 were obtained. As is clear from this Figure 2, the pressure inside the furnace is 500mm1
(, 0, a fluorine-doped quartz glass with a maximum relative refractive index difference of -1.2% was obtained, and at 1000 m 100O, a fluorine-doped quartz glass with a maximum relative refractive index difference of -1.5% was obtained.

さらに、炉内フッ素ガス濃度を一定としたときの、フッ
素ドープ量の炉内雰囲気圧力依存性を調ベてみると、第
3図のようなデータが得られた。
Furthermore, when the dependence of the amount of fluorine doped on the atmospheric pressure in the furnace was investigated when the fluorine gas concentration in the furnace was kept constant, data as shown in FIG. 3 was obtained.

なお、炉心管内の圧力は圧力ゲージを用いて1111定
し、フッ素ドープ石英ガラスの屈折率はプリフォームア
ナライザおよび干渉顕微鏡によって測定した。
Note that the pressure inside the furnace tube was kept constant at 1111 using a pressure gauge, and the refractive index of the fluorine-doped quartz glass was measured using a preform analyzer and an interference microscope.

発明の効果 この発明は基本的に焼結法に依拠しているため、他のプ
ラスマ法やCVD法などに比べて本質的に合成速度が大
きく量産性に富んでいる。しかも、焼結炉内の圧力を高
めるようにしているので、従来の焼結法では得られなか
った高い濃度のフッ素ドープ石英ガラスを作ることがで
きる。
Effects of the Invention Since the present invention basically relies on a sintering method, the synthesis rate is essentially higher than other plasma methods, CVD methods, etc., and it is highly suitable for mass production. Furthermore, since the pressure inside the sintering furnace is increased, fluorine-doped quartz glass with a high concentration that could not be obtained by conventional sintering methods can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を説明するための模式図、
第2図および茅3図は得られたデータを示すグラフ、第
4図、第5図、第6図および第7図は従来例の模式図で
ある。 11.63・・・焼結炉  12・・・炉心管13・・
・ヒータ 14・・・アルミナまたはカーボン板 15.62・・・多孔質ガラス母材 16・・・データ・ント    17・・・0リング1
8・・・レギュレータ 19.64・・・透明ガラス母材 41・・・RFコイル   4z・・・ガラス母材51
・・・出発石英管   52.61・・・バーナ53・
・・ガラス層
FIG. 1 is a schematic diagram for explaining one embodiment of the present invention,
FIGS. 2 and 3 are graphs showing the obtained data, and FIGS. 4, 5, 6, and 7 are schematic diagrams of conventional examples. 11.63...Sintering furnace 12...Furnace core tube 13...
・Heater 14...Alumina or carbon plate 15.62...Porous glass base material 16...Data tip 17...0 ring 1
8...Regulator 19.64...Transparent glass base material 41...RF coil 4z...Glass base material 51
... Starting quartz tube 52.61 ... Burner 53.
・Glass layer

Claims (1)

【特許請求の範囲】[Claims] (1)多孔質ガラスをヘリウムとフッ素ガスとの混合雰
囲気中で、加圧下において焼結し透明ガラス化すること
を特徴とする光ファイバの製造方法。
(1) A method for manufacturing an optical fiber, which comprises sintering porous glass under pressure in a mixed atmosphere of helium and fluorine gas to form transparent glass.
JP16731185A 1985-07-29 1985-07-29 Production of optical fiber Pending JPS6227342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16731185A JPS6227342A (en) 1985-07-29 1985-07-29 Production of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16731185A JPS6227342A (en) 1985-07-29 1985-07-29 Production of optical fiber

Publications (1)

Publication Number Publication Date
JPS6227342A true JPS6227342A (en) 1987-02-05

Family

ID=15847394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16731185A Pending JPS6227342A (en) 1985-07-29 1985-07-29 Production of optical fiber

Country Status (1)

Country Link
JP (1) JPS6227342A (en)

Similar Documents

Publication Publication Date Title
US4090055A (en) Apparatus for manufacturing an optical fibre with plasma activated deposition in a tube
US4162908A (en) Method of producing synthetic quartz glass, apparatus for the practice of the method, and use of the synthetic quartz glass
USRE30883E (en) Method of producing synthetic quartz glass
US4125389A (en) Method for manufacturing an optical fibre with plasma activated deposition in a tube
CA1260684A (en) Optical waveguide manufacture
US4734117A (en) Optical waveguide manufacture
EP0228082A1 (en) Method of making optical glass article
JP4879019B2 (en) Method of manufacturing optical fiber and its preform
US4592924A (en) Method of manufacturing a reaction vessel for crystal growth purposes
US4564378A (en) Method for producing a preform for light waveguides
CN114057387B (en) Method for producing fluorided quartz glass
EP0164127A2 (en) Method for producing glass preform for optical fibers
JP2004002106A (en) Low loss optical fiber preform and its manufacturing method
JPS6227342A (en) Production of optical fiber
JPS62108744A (en) Transparent vitrification method of porous glass base material
JPS6117433A (en) Manufacture of optical fiber preform
JPS59162143A (en) Production of synthetic quartz
JPS63248733A (en) Production of single-mode optical fiber base material
JPH09221335A (en) Production of precursor of optical fiber glass preform
JPS59137333A (en) Manufacture of base material for optical fiber
JPS63123829A (en) Production of preform for optical fiber
JPS6042242A (en) Manufacture of glass for optical fiber
JPH06321553A (en) Production of fluorine-doped quartz glass
JPH06127960A (en) Production of optical fiber preform
JPS60239339A (en) Preparation of parent material for optical fiber