JPS62273339A - Construction method for laminating box shaped concrete block - Google Patents

Construction method for laminating box shaped concrete block

Info

Publication number
JPS62273339A
JPS62273339A JP11476386A JP11476386A JPS62273339A JP S62273339 A JPS62273339 A JP S62273339A JP 11476386 A JP11476386 A JP 11476386A JP 11476386 A JP11476386 A JP 11476386A JP S62273339 A JPS62273339 A JP S62273339A
Authority
JP
Japan
Prior art keywords
construction method
unit
floor
box
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11476386A
Other languages
Japanese (ja)
Inventor
小畑 政雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP11476386A priority Critical patent/JPS62273339A/en
Publication of JPS62273339A publication Critical patent/JPS62273339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sewage (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 皇1よ公租■光国 本発明は壁構造鉄筋コンクリート建築物のプレハブ工法
に関し、ことに、構築用の単位体を立体的なブロック体
に構成し、これらを上下、左右に一つおきに組み立てて
、立面視で市松模様となるような構築工法に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention The present invention relates to a prefabricated construction method for wall structure reinforced concrete buildings, and particularly relates to a construction method in which a construction unit is formed into a three-dimensional block. It also relates to a construction method in which these are assembled vertically, every other side, and in a checkerboard pattern when viewed from an elevation.

災来見技玉 建築物のプレハブ工法において、鉄筋コンクリート造ま
たは鉄骨造の単位部材をスパン、階高に対応する大きさ
のものとし、これを組合わせてプレハブ工法によって建
築物を構築することが知られている。そのようなものの
1つに、f対の側壁を1枚のスラブで結合して断面門形
の角トンネル状の単位体を構成したものがある。これら
を使用する工法は第7図(1)のように門形の単位体1
を直上方に積層し、間隔をおいて隣位に配置される積層
体との間に補助のスラブ2を補足する形式のもの、また
は、同(2)図のように単位体1をスパン方向、階高方
向に左右、上下に1つおきに架けわたして構築し、補足
のスラブ2を補足するものであった。これらの建築物に
は必然的に外百部に生ずる空間部分に、]形の部分単位
体3をも併用し、床スラブ4をも加えである。]形単位
体はスラブ2と壁体5としてもよい。
It is known that in the prefabricated method of building buildings, reinforced concrete or steel unit members are sized to correspond to the span and floor height, and the building is assembled using the prefabricated method. It is being One such device is one in which f pairs of side walls are connected by one slab to form a rectangular tunnel-shaped unit with a gate-shaped cross section. The construction method using these is as shown in Figure 7 (1).
A type in which the auxiliary slabs 2 are stacked directly above the laminates and an auxiliary slab 2 is added between the laminates arranged adjacent to each other at intervals, or as shown in the same figure (2), the unit 1 is stacked in the span direction. , was constructed by spanning every other slab horizontally and vertically in the height direction, and was intended to supplement the supplementary slab 2. ]-shaped partial unit bodies 3 are also used in the spaces that inevitably occur on the outside of these buildings, and floor slabs 4 are also added. ] The shaped units may be a slab 2 and a wall 5.

一方、上記の門形単位体の下部にさらにスラブを加えた
横向き箱形のプレハブ単位体も知られている。トンネル
やカルバート用のセグメントや沈埋函などはその例であ
る。これらのプレハブ構造体は管軸方向に接続されるも
のであって積層することは対象とされない。また、これ
をプレハブ建築用に応用すれば、基礎上に設置され、下
方スラブを床とし上方スラブを屋根とすることまでは考
えられるが、このようなプレハブ単位体では多層建築物
に用いられることはない。
On the other hand, a horizontal box-shaped prefabricated unit is also known, in which a slab is further added to the lower part of the above-mentioned portal unit. Examples include segments for tunnels and culverts, and immersed boxes. These prefabricated structures are connected in the tube axis direction and are not intended to be stacked. Furthermore, if this were applied to prefabricated buildings, it would be possible to install it on the foundation, with the lower slab serving as the floor and the upper slab serving as the roof, but such prefabricated units could not be used in multi-story buildings. There isn't.

、0力く”ンしようとする− 占 従来例のような壁構造の多層建築物をプレハブ単位体を
使用して構築する場合に問題点としてあげられるのは第
1に壁構造としてプレハブ単位体の断面方向の架構強度
である。例えば前例の第7図(1)の架構では、断面方
向の接続は補助材のスラブ2のみであり、各積層体は独
立の壁架構の強度を有するけれども隣位の積層体との関
連ではほとんど架構体を構成しない。第2に門形の単位
体lの強度であるが、門形のラーメンは壁厚とスラブ厚
の通常の範囲内では柱、梁が構成するような通常のラー
メン構造には及ばず、どうしても断面方向の壁体の実長
を必要とし、両端面か中間部に扶壁効果をもつ直交壁を
設けることになり、プレハブ用の型枠とその組立、解体
を複雑にさせ、両端部の開放を減殺し、内部の利用空間
に制限をもたらす。第3の問題は標準単位体lの積層を
連続させたときに、建築部の端部に必然的に発生する非
繰返し部に必要となる補助部材が多くなることである。
The first problem that can be raised when constructing a multi-story building with a wall structure like the conventional example using prefabricated units is that the prefabricated units are used as the wall structure. For example, in the previous example of the frame shown in Figure 7 (1), the only connection in the cross section is the auxiliary material slab 2, and each laminate has the strength of an independent wall frame, but The second problem is the strength of the gate-shaped unit l, but within the normal range of wall thickness and slab thickness, the columns and beams of the gate-shaped rigid frame are weak. This is not as good as a normal rigid frame structure, and it requires the actual length of the wall in the cross-sectional direction, and orthogonal walls with a butt wall effect are installed on both end faces or in the middle, and the formwork for prefabrication is required. This complicates assembly and disassembly, reduces the opening of both ends, and limits the usable space inside.The third problem is that when standard unit units are stacked one after the other, the ends of the building part The problem is that a large number of auxiliary members are required for the non-repetitive parts that inevitably occur.

また第7図(1)、(2)のいずれの例においても補助
の単純スラブ2.4を多く必要とする。従って、これら
の補助部材と標準単位体及び補助部材の単位体同志の接
合個所が多くなり、プレハブ工法のメリットを損う点を
挙げなければならない。
Further, in both the examples shown in FIGS. 7(1) and 7(2), many auxiliary simple slabs 2.4 are required. Therefore, the number of joints between these auxiliary members, the standard unit body, and the auxiliary member units increases, which detracts from the advantages of the prefabricated construction method.

次に、問題点として挙げるまでもなく、箱形のプレハブ
単位体を連設ないしは積層して多層建築物を構築するこ
とは、側壁ならびにスラブがすべて重複されることにな
り、材料が倍加されるから問題外であり、そのような場
合の建設工法も未だ開発されていない。
Next, it goes without saying that building a multi-story building by connecting or stacking box-shaped prefabricated units means that all the side walls and slabs will be duplicated, and the materials will be doubled. Therefore, this is out of the question, and construction methods for such cases have not yet been developed.

l 占を”′するための 戸 本発明は壁構造の鉄筋コンクリート造多層建築物を構築
するときのプレハブ工法の諸問題点を排除することを目
的として開発されたものである。
The present invention was developed for the purpose of eliminating the problems of prefabricated construction methods when constructing reinforced concrete multi-story buildings with wall structures.

即ち、本発明では、プレキャスト・コンクリート製の単
位体を横向き箱形に構成し、この箱形単位体を左右、上
下方向に1つおきに積層して多層建築物を構築する工法
であり、公知の「市松模様」の構成とするものでありな
がら、それら単位体同志の接合手段を箱形単位体に適す
るように構成したことを要旨としている。そして、この
ような工法にあっては、箱形単位体のすべての隅角部が
接合部となることから、ここに上下関係の凹凸嵌合の係
合手段を設けるとともにこの保合部において相互の結合
手段を設けて、標準積層工程では箱形単位体の接合のみ
をもって多層建築物を構築することを特徴とする工法を
開発したものである。
That is, the present invention is a method of constructing a multi-story building by structuring precast concrete units in a horizontal box shape, and stacking the box-shaped units every other time in the horizontal and vertical directions. Although it has a "checkered pattern" structure, the gist is that the means for joining these units is configured to be suitable for box-shaped units. In such a construction method, since all the corners of the box-shaped unit become joints, an engaging means for vertically-related concave-convex fitting is provided here, as well as mutual connection at this retaining part. A construction method has been developed which is characterized in that a multi-story building is constructed by only joining box-shaped units in the standard lamination process.

尖隻± 本発明を図面に示す多層建築物の実施例に基づいて説明
する。第1図は本発明の主要構成要素となる箱形ブロッ
ク体の斜視図であり、第2図は上記箱形ブロック体を積
層して構築する壁構造の鉄筋コンクリート造多層建築物
の立面図、第3図(1)は標準のn階の平面図、同(2
)図はその直上または直下のn+1階の平面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described based on an example of a multi-story building shown in the drawings. FIG. 1 is a perspective view of a box-shaped block body which is a main component of the present invention, and FIG. 2 is an elevation view of a reinforced concrete multi-story building with a wall structure constructed by laminating the box-shaped block bodies. Figure 3 (1) is a standard plan view of the nth floor;
) is a plan view of the n+1 floor directly above or below.

第1図において箱形ブロック体10は、対向する1対の
側壁11.11の上下を上スラブ12と下スラブ13と
を一体に立体的に結合して横向き箱形に形成し、残りの
対向する1対の側面14.14には壁体を設けず開放と
しである。その断面の大きさは通常の階高2.5m内外
、スラブスパンは4〜6mである。
In FIG. 1, the box-shaped block body 10 is formed by three-dimensionally connecting an upper slab 12 and a lower slab 13 at the top and bottom of a pair of opposing side walls 11. A pair of side surfaces 14 and 14 are not provided with walls and are left open. Its cross-sectional size is around the normal floor height of 2.5 m, and the slab span is 4 to 6 m.

このような箱形ブロック体10を構築の単位体とし、第
2図に示すように積層して多層建築物とする。この積層
は第3図(1)のように、標準のn階ではスパン1つお
きごとに単位体10を平行に端面14を揃えて配置し、
この階の2個の単位体 10の隅角部上に、第3図(2
)のようにn+1階の単位体10を跨がらせて組付ける
。従って第3図(2)をn−1階、とするとき、その上
階n階との関係も同様となり、単位体10の積層は第7
図(2)における単位体lの積層と同様であって、各単
位体 10は1スパン、1階おきに左右、上下方向に、
立面視で市松模様を形成する。
Such a box-shaped block body 10 is used as a construction unit and is stacked to form a multi-story building as shown in FIG. As shown in Fig. 3 (1), this stacking is done by arranging unit bodies 10 in parallel every other span with their end faces 14 aligned on a standard nth floor.
On the corner of the two units 10 on this floor,
), the unit bodies 10 on the n+1 floor are straddled and assembled. Therefore, when Fig. 3 (2) is set to the n-1 floor, the relationship with the nth floor above is also the same, and the stacking of the unit bodies 10 is the 7th floor.
It is similar to the stacking of unit bodies 1 in Figure (2), and each unit body 10 has one span, and every other floor is stacked horizontally and vertically.
Forms a checkered pattern in elevation.

第2図の8スパン5層の建築物では補助の壁体5と最上
階の部分単位体3が併用されて組立てられている。
In the 8-span, 5-story building shown in FIG. 2, the auxiliary wall 5 and the partial unit 3 on the top floor are used together for assembly.

第1図に戻って、単位体lOの構成をさらに詳細に説明
する。単位体IOの側壁11には、上下のスラブ12.
13との接合線に沿って凹凸の係合手段15が設けであ
る。即ち、凹部16を等間隔に壁厚分の幅に切欠きし、
その中間に凸部17として残される部分と同形に形成す
る。この係合手段15は、側壁11の上下縁に関しては
凹凸の順序を逆順に設け、第1図中央矢印で示されるよ
うに、上階の単位体10の凸部17が下階の単位体の凹
部16に嵌合するようにし、上階の凹部16は下階の凸
部17を受は入れる。従って、側壁11が上下に同一面
に接続し、下階の上スラブ12が上階の下スラブ13と
同一面に接続するには、凹部16と凸部17の各断面は
側壁11とスラブ12.13の厚さと実質上同一寸法に
設計されるが、敷きモルタルや詰めモルタルの施工上の
要求寸法は凸部17の方で逃げをとるのがよい。
Returning to FIG. 1, the configuration of the unit IO will be explained in more detail. The side wall 11 of the unit IO has upper and lower slabs 12.
Along the joining line with 13, an uneven engagement means 15 is provided. That is, the recesses 16 are cut out at equal intervals to a width equal to the wall thickness,
It is formed in the same shape as the portion left as the convex portion 17 in the middle. This engagement means 15 is arranged such that the order of the concave and convex portions on the upper and lower edges of the side wall 11 is reversed, so that the convex portion 17 of the unit body 10 on the upper floor is connected to the convex portion 17 on the unit body on the lower floor, as shown by the arrow in the center of FIG. The concave portion 16 on the upper floor receives the convex portion 17 on the lower floor. Therefore, in order for the side walls 11 to be connected vertically on the same plane and the upper slab 12 on the lower floor to be connected on the same plane as the lower slab 13 on the upper floor, each cross section of the recess 16 and the protrusion 17 should be Although it is designed to have substantially the same dimensions as the thickness of .13, it is preferable to provide relief at the convex portion 17 for the dimensions required for construction of laying mortar and filling mortar.

このような係合手段15のために、側壁とスラブとの接
合部に形成される内方の入隅に沿って面取18による厚
肉部を設けることが有効である。
For such engagement means 15, it is effective to provide a thick walled portion with a chamfer 18 along the inner corner formed at the joint between the side wall and the slab.

箱形ブロック体10は通常の建築物のスパン方向には第
3図に示すようにスパン全長にわたる長さとする。多ス
パンの建築物にあっては第3図(1)を連設してもよく
、第3図(1)と(2)のものを連設してもよい。ただ
し、°上下階の関係は常に第2図の積層方法を市松模様
に繰返す。
The box-shaped block 10 has a length spanning the entire span of a typical building in the span direction, as shown in FIG. In the case of a multi-span building, the structure shown in FIG. 3 (1) may be installed consecutively, or the devices shown in FIGS. 3 (1) and (2) may be installed consecutively. However, for the relationship between upper and lower floors, the stacking method shown in Figure 2 is always repeated in a checkered pattern.

箱形ブロックの単位体10は鉄筋コンクリート造でプレ
ハブによって単位体ごとに製作し、全体には大型クレー
ンの容量内とする。プレハブは鋼製型枠を使用して精度
よく製作し、通常水平に設置した型枠で行う。
The box-shaped block unit 10 is made of reinforced concrete and manufactured individually by prefabrication, and the total capacity is within the capacity of a large crane. Prefabrication is manufactured with precision using steel formwork, and is usually carried out in horizontal formwork.

第4図には単位体10のための配筋例を示す。FIG. 4 shows an example of reinforcement for the unit body 10.

(1)図は上面の平面図、(2)図は立面図、(3)、
(4)図はそれぞれ(2)図のA、Bの位置で示す断面
図である。
(1) The figure is a top plan view, (2) the figure is an elevation view, (3),
(4) Figures are cross-sectional views shown at positions A and B in Figure (2), respectively.

第4図の各図では上述の係合手段のための凹部16にお
ける配筋20の欠如の様子を示し、(3)図の上スラブ
の鉄筋21は四部16で遊離し、(4)図の下スラブと
ともに配力筋となっている。単位体10の内面人隅部に
肉厚の面取18を設けるときには、凹部16における鉄
筋もボックスラーメンの環状の主筋とすることができる
Each of the figures in Fig. 4 shows the lack of reinforcement 20 in the recess 16 for the above-mentioned engagement means, (3) the reinforcing bars 21 in the upper slab in the figure are loose at the four parts 16, and (4) in the figure Together with the lower slab, it serves as a distribution bar. When a thick chamfer 18 is provided at the inner corner of the unit body 10, the reinforcing bar in the recess 16 can also be an annular main bar of a box rigid frame.

第5図及び第6図は、上下の単位体10の係合手段15
の凹部16、凸部17が嵌合される部分における単位体
10同志の接合手段30を示す要部の詳細図である。
5 and 6 show the engagement means 15 of the upper and lower unit bodies 10.
FIG. 3 is a detailed view of a main part showing the joining means 30 of the unit body 10 in a part where the recessed part 16 and the convex part 17 are fitted.

第5図では接合手段30は溶接タイプで示されている。In FIG. 5 the joining means 30 are shown of the welding type.

第5図(1)の31は単位体10の凸部17の上面に設
けた接合用プレートであって、下面に設けたアンカーボ
ルト32によって、スラブ12上面に埋込み固定されて
いる。他方33は上方の側壁11の下辺の凹部16に臨
む下端外面に設けた接合用プレートであって、背面に設
けたアンカーボルト34によって、凹部16に面して設
けた切欠き35の奥面に埋込み固定されている。
Reference numeral 31 in FIG. 5(1) is a joining plate provided on the upper surface of the convex portion 17 of the unit body 10, and is embedded and fixed in the upper surface of the slab 12 by an anchor bolt 32 provided on the lower surface. The other side 33 is a joining plate provided on the outer surface of the lower end facing the recess 16 on the lower side of the upper side wall 11, and is connected to the inner surface of the notch 35 provided facing the recess 16 by an anchor bolt 34 provided on the back side. Recessed and fixed.

第5図(2)は接合手段30の接合後の構造を示し、上
下の単位体がスラブ12と側壁11が凹凸部で嵌合され
たのち、上下の接合用プレート33と31にわ°たって
垂直の溶接プレート36を溶接して固着接合されている
。溶接プレート36を両接合プレート31.33に溶接
後、切欠き35にはモルタル37を充填し、上下の単位
体10の全接合近に沿って結合を完了することができる
FIG. 5(2) shows the structure of the joining means 30 after joining, in which the upper and lower unit bodies are connected to the upper and lower joining plates 33 and 31 after the slab 12 and side wall 11 are fitted at the uneven parts. They are fixedly joined by welding a vertical welding plate 36. After welding the welding plate 36 to both joining plates 31, 33, the notch 35 is filled with mortar 37, and the joining can be completed along the entire joint vicinity of the upper and lower units 10.

第6図では接合手段30はスリーブタイプを示している
。第6図(1)において、下方の単位体の凸部17には
適宜に鉄筋に支持させて内径35龍のスリーブ41が埋
設しである。上方の単位体の凹部16には隣接する凸部
17 (点線)に埋設したスリーブ41の端面開口42
が臨んでいる。
In FIG. 6, the joining means 30 is of a sleeve type. In FIG. 6(1), a sleeve 41 having an inner diameter of 35 mm is embedded in the convex portion 17 of the lower unit, supported by reinforcing bars as appropriate. The recess 16 of the upper unit has an end opening 42 of a sleeve 41 embedded in the adjacent protrusion 17 (dotted line).
is coming.

これらのスリーブ41は、例えば凸部17の断面中心に
位置し、相互に開放端を接するように正確に埋設してお
く。そして(2)図のように百単位体の凹部凸部が嵌合
されたのち、単位体10の一方の小口から鋼棒43を挿
通し、スリーブ41内の空間にグラウト44を注入する
。これによって接合手段30はスリーブ41と通し鉄筋
43とによって上下の単位体10.10を結合する。鋼
棒43としては22龍の異形筋を使用する。
These sleeves 41 are located, for example, at the center of the cross section of the convex portion 17, and are accurately buried so that their open ends touch each other. (2) After the recesses and protrusions of the 100-unit unit are fitted together as shown in the figure, the steel rod 43 is inserted through one end of the unit 10, and grout 44 is injected into the space within the sleeve 41. As a result, the joining means 30 connects the upper and lower units 10.10 by means of the sleeve 41 and the reinforcing bar 43. As the steel rod 43, 22 dragon deformed bars are used.

詐−里 本工法発明の作用は箱形ブロックの単位体10を用いた
多層建築物の工程に基づいて理解することができる。
The operation of the Inorimoto construction method invention can be understood based on the process of constructing a multi-story building using box-shaped block units 10.

単位体10は同形のものを所要数鉄筋コンクリートで製
作する。第2図の建築物の場合8スパン5層の建築物の
各階の区分空間40個に対して20個必要であり、約半
数によって1つおきの残りの空間が建築物を構成し、各
単位体内の室内寸法は隣接空間と同一寸法となる。図で
明らかなように最下層では床スラブ4を1スパンおきに
敷設し、端部のスパンでは補足の壁体5を使用し、この
スパンの上方では単位体10と壁体5の上方に単位体1
0を架けわたす。最上層では単位体10の間にスラブ2
を架けわたし、最端部では]型の部分単位体3を使用す
ることがわかる。
The required number of units 10 of the same shape are manufactured from reinforced concrete. In the case of the building shown in Figure 2, 20 compartments are required for the 40 compartmented spaces on each floor of an 8-span, 5-story building. The interior dimensions of the body are the same as the adjacent space. As can be seen in the figure, in the lowest level floor slabs 4 are laid every other span, in the end spans supplementary walls 5 are used, and above this span there are unit units 10 and units above the walls 5. body 1
Cross over 0. In the top layer, slab 2 is placed between unit bodies 10.
It can be seen that the partial unit 3 of type ] is used at the extreme end.

各単位体10は標準の接続部では順次に下方の2個の単
位体10にまたがって順次に積層され係合手段15の凹
凸部が嵌合され、次に接合手段30として溶接タイプま
たはスリーブタイプを使用して保合単位体ごとに結合す
る。これらの結合は第5図、第6図に基いて説明した接
合手段30の結合によって行われる。
In a standard connection part, each unit body 10 is sequentially stacked over the lower two unit bodies 10, and the concave and convex portions of the engagement means 15 are fitted, and then the joining means 30 is a welding type or sleeve type. Use to combine each retention unit. These connections are made by the joining means 30 described with reference to FIGS. 5 and 6.

このような積層建築物はボックスラーメンの結合によっ
て図の桁行方向については十分に剛性のある壁構造の架
構の形成する。スパン方向にあっても各単位体10の側
壁11が上下に同一面で連続し十分なスパン方向の壁構
造を構成し、必要に応じて側壁11の一部に開口が設け
られても壁構造として余裕があり、隣接空間にまたがっ
た居住単位を配置することができる。また、上下のスラ
ブ12.13にも通常の補強を施こして開口を設けるこ
とができ、階段室の設置も可能である。階段室は別途の
独立架構体によることとしてもよい。
In such a laminated building, a frame of a wall structure that is sufficiently rigid in the column direction in the figure is formed by connecting box frames. Even in the span direction, the side walls 11 of each unit body 10 are continuous vertically on the same plane to constitute a sufficient wall structure in the span direction, and even if an opening is provided in a part of the side wall 11 as necessary, the wall structure will not be affected. There is plenty of room for housing units to be placed across adjacent spaces. Furthermore, the upper and lower slabs 12, 13 can also be reinforced in the usual way and provided with openings, making it possible to install a staircase. The staircase may be constructed as a separate independent frame structure.

各単位体10の開放の側面14には出入口、窓などのサ
ツシュ部材を設置する。そしてその外方には上下スラブ
を片持ちで延長スラブを設けることができ、廊下やバル
コニイを形成する設計も採用できる。
Sash members such as doorways and windows are installed on the open side surface 14 of each unit body 10. Extending slabs can be installed on the outside of the building by cantilevering the upper and lower slabs, and a design can be adopted to form a hallway or balcony.

主班■訪米 本発明は箱形ブロックの単位体を使用し、これを左右、
上下に1スパン、1階おきに積層するにあたって、単位
体の各側壁、スラブの接合部分で嵌合係合させ、その部
分で結合するようにしたから、単位体と空間部とを交互
に配置して約半数の単位体によって多層建築物の架構を
形成することができ、単位部材間に重複部材の無駄がな
く、しかも補足の部材の必要数が削減できる。しかも、
単位体自体がボックスラーメンで構成され、接合手段が
結合度にすぐれているため、プレハブの単位体を積層す
るものでありながら、壁構造の建築物として単位体の断
面方向にも長手方向にも耐震性にすぐれた架構を得るこ
とができる。
Main team ■Visit to the United States The present invention uses a box-shaped block unit, which can be connected to the left and right sides.
When stacking one span vertically and every other floor, each side wall of the unit body and the slab are fitted and engaged at the joint part, and the unit body and the space are arranged alternately. Thus, the frame of a multi-story building can be formed using about half of the units, and there is no waste of overlapping members between unit members, and the number of supplementary members required can be reduced. Moreover,
The unit itself is composed of box rigid frames, and the joining means has an excellent degree of bonding, so even though prefabricated units are laminated, it can be used as a building with a wall structure in both the cross-sectional and longitudinal directions of the unit. A frame with excellent earthquake resistance can be obtained.

また、熟練した技術を要することなく手順通りの施工で
所期の精度が確保でき全体の工期が短縮できて施工費の
低廉化がはかれる。
In addition, the desired accuracy can be ensured by following the construction procedure without the need for skilled techniques, and the overall construction period can be shortened, leading to lower construction costs.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明工法を実施するに必要な構成部材の実施例
を示すものであり、第1図は箱形ブロック体とその上下
の係合を説明するための斜視図、第2図は本発明に従っ
て構築される多層建築物の立面図、第3図は第2図の建
築物の標準階と直上、直下階の平面図、第4図は箱形ブ
ロック単位体の配筋構成説明図、第5図は単位体の接合
手段の説明図、第6図は他の接合手段の説明図、第7図
は従来の門形単位体による架構の説明図である。 10・・・単位体、箱形ブロック体 11・・・側壁、  12.13・・・スラブ、14・
・・開放面、   15・・・係合手段、16・・・凹
部、     17・・・凸部、20・・・鉄筋、  
  30・・・接合手段、31.33・・・接合用プレ
ート、 36・・・?容接ブレート、41・・・スリーフ゛、4
3・・・鋼棒、     44・・・グラウト。
The drawings show examples of the structural members necessary to carry out the construction method of the present invention, and FIG. 1 is a perspective view for explaining a box-shaped block body and its upper and lower engagements, and FIG. 2 is a perspective view of the construction method of the present invention. Figure 3 is a plan view of the standard floor of the building shown in Figure 2, as well as the floors directly above and directly below it; Figure 4 is an explanatory diagram of the reinforcement configuration of the box-shaped block unit; FIG. 5 is an explanatory diagram of a unit joining means, FIG. 6 is an explanatory diagram of another joining means, and FIG. 7 is an explanatory diagram of a frame using a conventional portal unit. 10...Unit body, box-shaped block body 11...Side wall, 12.13...Slab, 14.
... open surface, 15 ... engagement means, 16 ... recess, 17 ... protrusion, 20 ... reinforcing bar,
30...Joining means, 31.33...Joining plate, 36...? Receptive plate, 41...three, 4
3... Steel rod, 44... Grout.

Claims (3)

【特許請求の範囲】[Claims] (1)建築物の縦横の架構スパンと階高とに対応する大
きさのプレキャスト・コンクリート製単位体を積層して
、壁構造の鉄筋コンクリート造多層建築物を構築するプ
レハブ工法において、 上記単位体は、上下のスラブと対向する一対の側壁とを
断面4角形に接合し、他の一対の側壁は開放とした横向
き箱形のブロック体であり、該ブロック体にはスラブと
側壁との4隅の接合部にそつて、側壁の厚さを有する幅
の連続的な凹凸部を形成した係合手段を設けてあり、こ
の凹凸部は各側壁の上下において凹凸関係を逆に配置す
るとともに相互に嵌合して接合手段によつて組合わされ
るように形成してあり、このような箱形ブロック体を1
つの階において1スパンおきに設置し、その上階にあつ
ては下階の2つの箱形ブロック体に跨がつてブロック体
を配置するとともに、各凹凸部を嵌合させ、上記接合手
段を相互に結合し、建築物全体として立面視で市松模様
を形成し、外画部の空所には補助ブロック体を補足しな
がら積層することを特徴とする建築物の積層工法。
(1) In the prefabricated construction method in which a reinforced concrete multi-story building with a wall structure is constructed by stacking precast concrete units of a size corresponding to the vertical and horizontal frame spans and floor heights of the building, the above units are , is a horizontal box-shaped block in which the upper and lower slabs and a pair of opposing side walls are joined to have a rectangular cross section, and the other pair of side walls are open. Along the joint part, an engaging means is provided in which a continuous uneven portion having a width equal to the thickness of the side wall is formed. These box-shaped blocks are combined into one
On the upper floor, a block body is placed astride the two box-shaped block bodies on the lower floor, and the concave and convex portions are fitted, and the above-mentioned joining means are connected to each other. A layered construction method for buildings, which is characterized in that the building as a whole is combined to form a checkerboard pattern when viewed from the elevation, and is layered while supplementing auxiliary blocks in the empty space of the exterior painting area.
(2)接合手段は側壁下部外面とスラブ上面とにブロッ
ク体に固定して設けた鋼材であり、これらの鋼材を溶接
して結合する特許請求の範囲第1項に記載の積層工法。
(2) The layered construction method according to claim 1, wherein the joining means is a steel material fixed to the block body on the outer surface of the lower part of the side wall and the upper surface of the slab, and these steel materials are joined by welding.
(3)接合手段は側壁の上下の凸部に凹部に向けて開口
するスリーブを埋設し、凹凸部が嵌合したときに連通す
るようにした貫通孔であり、この貫通孔に鋼棒を挿通し
たのちにモルタルをグラウトして結合する特許請求の範
囲第1項に記載の積層工法。
(3) The joining means is a through hole in which a sleeve opening toward the recess is embedded in the upper and lower convex portions of the side wall so that they communicate when the convex and convex portions are fitted, and a steel rod is inserted into this through hole. The laminated construction method according to claim 1, wherein the laminated construction method is then bonded by grouting with mortar.
JP11476386A 1986-05-21 1986-05-21 Construction method for laminating box shaped concrete block Pending JPS62273339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11476386A JPS62273339A (en) 1986-05-21 1986-05-21 Construction method for laminating box shaped concrete block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11476386A JPS62273339A (en) 1986-05-21 1986-05-21 Construction method for laminating box shaped concrete block

Publications (1)

Publication Number Publication Date
JPS62273339A true JPS62273339A (en) 1987-11-27

Family

ID=14646073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11476386A Pending JPS62273339A (en) 1986-05-21 1986-05-21 Construction method for laminating box shaped concrete block

Country Status (1)

Country Link
JP (1) JPS62273339A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132536A (en) * 1989-10-19 1991-06-05 Misawa Homes Co Ltd Construction of unit housing
JP2001207681A (en) * 2000-01-24 2001-08-03 Takenaka Komuten Co Ltd Seismic isolation structure by precast concrete member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514330A (en) * 1974-07-01 1976-01-14 Unitika Ltd Ryumenkino ochimonojokyohoho oyobi sochi

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514330A (en) * 1974-07-01 1976-01-14 Unitika Ltd Ryumenkino ochimonojokyohoho oyobi sochi

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132536A (en) * 1989-10-19 1991-06-05 Misawa Homes Co Ltd Construction of unit housing
JP2001207681A (en) * 2000-01-24 2001-08-03 Takenaka Komuten Co Ltd Seismic isolation structure by precast concrete member

Similar Documents

Publication Publication Date Title
CN107542190B (en) Composite structural wall and method of construction thereof
US4688362A (en) Set of modular building construction elements
US1516074A (en) Concrete building construction
US3772835A (en) Housing
CA2297972C (en) Building panels for use in the construction of buildings
KR19980068760A (en) Connection structure between PC wall and PC slab of building and construction method
JP2016108911A (en) Earthquake resistant wall structure
JPS62273339A (en) Construction method for laminating box shaped concrete block
US3530632A (en) Precast masonry wall panel and method of precasting same
US20140196398A1 (en) Masonry building and method for constructing masonry building
US3983673A (en) Volumic construction element of generally rectangular parallelepiped shape
JPH10317503A (en) Constructing method for wall type ferro-concrete structure
CN220377959U (en) Assembled rib lattice parking garage and building
CN220433898U (en) Assembled rib lattice building structure and building
CN214696226U (en) Low-energy-consumption prefabricated bearing wallboard and bearing wall body built by adopting prefabricated wallboard
CN219343714U (en) Building structure using hollow slab
CN220522154U (en) Assembled rib lattice parking garage and building
CN210685045U (en) Laminated wall
JP7133935B2 (en) JOINT STRUCTURE OF INTERSECTIONS OF PARTITION WALLS, COMPARTMENT STRUCTURE AND CONSTRUCTION METHOD THEREOF
CN212506408U (en) Underground combined structure of tenon connection assembled upper-lower layer multi-layer large-scale prefabricated part
CN215055686U (en) Basic module for building and low and multi-storey modular building structure system
CN220686894U (en) Assembled cavity structure parking garage and building
CN216740879U (en) Underground prefabricated assembly type stereo parking garage
JPH08270102A (en) Glued laminated wood wall panel construction method
CN106121077A (en) The antidetonation attachment structure of a kind of prestressed concrete double T plate and construction method thereof