JPS6227318B2 - - Google Patents

Info

Publication number
JPS6227318B2
JPS6227318B2 JP6570482A JP6570482A JPS6227318B2 JP S6227318 B2 JPS6227318 B2 JP S6227318B2 JP 6570482 A JP6570482 A JP 6570482A JP 6570482 A JP6570482 A JP 6570482A JP S6227318 B2 JPS6227318 B2 JP S6227318B2
Authority
JP
Japan
Prior art keywords
temperature
low
gas
liquefied gas
temperature liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6570482A
Other languages
Japanese (ja)
Other versions
JPS58184398A (en
Inventor
Shigeo Tomura
Yasushi Hasegawa
Hiroshi Nishio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP57065704A priority Critical patent/JPS58184398A/en
Publication of JPS58184398A publication Critical patent/JPS58184398A/en
Publication of JPS6227318B2 publication Critical patent/JPS6227318B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は低温液化ガス貯蔵設備における発生ガ
スを再液化する方法に関する。 [従来の技術] 低温液化ガス貯蔵設備においては、特に低温液
化ガスの受入れ時に多量に発生するガスを液化し
て回収するために、一般に前記発生ガスを圧縮
し、更に海水等を用いて冷却、凝縮させることに
より再液化してタンク等に戻すようにしている
が、前記再液化させるための設備等が非常に大掛
りとなる問題を有していた。 また、低温液化ガス貯蔵設備において低温液化
ガスを常温出荷する場合には、低温液化ガスを海
水等を用いて常温まで加熱するようにしている
が、この加熱方法では、前記低温液化ガスの冷熱
が単に海水等に無駄に捨てられていた。 [発明が解決しようとする問題点] このため、前記常温出荷時に無駄に捨てられて
いる冷熱を、前記発生ガス再液化のための冷却に
利用することが考えられるが、低温液化ガスの出
荷と低温液化ガスの受入れとに同時性がないため
に、常温出荷用低温液化ガスのもつ冷熱を有効に
利用することが困難であつた。 [問題点を解決するための手段] 本発明は、こうした点に鑑みなしたもので、常
温液化ガス出荷時に、常温出荷用低温液化ガス
を、金属水素化物を生成する金属を収容し且つ生
成に必要な水素ガスを供給できる容器内に、流路
を介して導くことにより熱交換させ、金属水素化
物が生成する際の反応熱を前記常温出荷用低温液
化ガスの冷熱によつて冷却して生成発熱反応を促
進させた後、前記水素ガスの流出を遮断すること
により、前記常温出荷用低温液化ガスの冷熱を回
収して貯蔵し、低温液化ガス貯蔵設備からの再液
化を要する発生ガスを、前記容器に導いて前記金
属水素化物と熱交換させ、該金属水素化物を分解
吸熱反応させて発生する水素ガスを容器外に流出
させることにより、前記発生ガスを冷却して再液
化するようにしたものであり、常温出荷用低温液
化ガスの冷熱の有効な利用と、発生ガス再液化の
ための充分な冷熱の確保を可能とし、且つ実施に
おける設備装置の著しい簡略化を可能とするもの
である。 [作用] 常温出荷用低温液化ガスの冷熱にて金属水素化
物の生成を促進させることにより冷熱を貯蔵した
後、該貯蔵した冷熱により再液化を要する発生ガ
スの冷却、再液化を行う。 [実施例] 以下本発明の実施例を図面を参照して説明す
る。 第1図は本発明を実施する装置の一例を示すも
ので、2個の蓄冷器1,2を設け、一方の蓄冷器
1には常温出荷用低温液化ガス3及び発生ガス4
を切換えて循環させるようにした流路5を設け、
他方の蓄冷器2には海水等の常温媒体6を循環さ
せる媒体流路7を設ける。更に前記蓄冷器1には
第2図に曲線aで示すような平衡特性をもつ金属
水素化物Aを装入し、また蓄冷器2には曲線bで
示すような平衡特性をもつ金属水素化物Bを装入
し、且つ前記蓄冷器1,2相互間を弁8を備えた
水素ガス流路9にて接続する。 前記金属水素化物A,Bは次のような反応を示
す。
[Industrial Application Field] The present invention relates to a method for reliquefying generated gas in a low-temperature liquefied gas storage facility. [Prior Art] In low-temperature liquefied gas storage equipment, in order to liquefy and recover the gas that is generated in large quantities especially when receiving low-temperature liquefied gas, the generated gas is generally compressed, and then cooled using seawater or the like. Although it is attempted to re-liquefy it by condensing it and return it to a tank or the like, there is a problem in that the equipment for the re-liquefaction is very large-scale. Furthermore, when shipping low-temperature liquefied gas at room temperature in a low-temperature liquefied gas storage facility, the low-temperature liquefied gas is heated to room temperature using seawater, etc., but with this heating method, the cold heat of the low-temperature liquefied gas is It was simply wasted away in seawater. [Problems to be Solved by the Invention] For this reason, it is conceivable to use the cold energy that is wasted during normal-temperature shipping for cooling for re-liquefying the generated gas. Since the low-temperature liquefied gas is not received simultaneously, it has been difficult to effectively utilize the cold energy of the low-temperature liquefied gas for room-temperature shipping. [Means for Solving the Problems] The present invention has been made in view of these points. When shipping the room temperature liquefied gas, the low temperature liquefied gas for room temperature shipping is used to accommodate metals that produce metal hydrides and to produce metal hydrides. Heat is exchanged by guiding the necessary hydrogen gas through a flow path into a container that can supply it, and the reaction heat generated when metal hydride is generated is cooled by the cold heat of the low-temperature liquefied gas for normal-temperature shipping. After promoting the exothermic reaction, by blocking the outflow of the hydrogen gas, the cold heat of the low-temperature liquefied gas for normal temperature shipping is recovered and stored, and the generated gas that requires re-liquefaction from the low-temperature liquefied gas storage equipment is The generated gas is cooled and reliquefied by introducing it into the container and exchanging heat with the metal hydride, causing the metal hydride to decompose and undergo an endothermic reaction, and causing the generated hydrogen gas to flow out of the container. This method makes it possible to effectively utilize the cold energy of low-temperature liquefied gas for normal-temperature shipping, secure sufficient cold energy for reliquefying the generated gas, and significantly simplify the equipment used in implementation. . [Operation] After storing the cold energy by accelerating the production of metal hydrides using the cold energy of the low-temperature liquefied gas for normal temperature shipping, the generated gas that requires reliquefaction is cooled and reliquefied using the stored cold energy. [Examples] Examples of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of an apparatus for carrying out the present invention, in which two regenerators 1 and 2 are provided.
A flow path 5 is provided in which the flow is switched and circulated,
The other regenerator 2 is provided with a medium flow path 7 for circulating a normal temperature medium 6 such as seawater. Furthermore, the regenerator 1 is charged with metal hydride A having equilibrium characteristics as shown by curve a in FIG. 2, and the regenerator 2 is charged with metal hydride B having equilibrium characteristics as shown by curve b. The regenerators 1 and 2 are connected to each other by a hydrogen gas passage 9 equipped with a valve 8. The metal hydrides A and B exhibit the following reaction.

【表】 本発明は上記金属水素化物の反応時における温
度変化を利用するものであり、以下にその方法の
一例を示す。 表1及び2に、蓄冷器1,2に充填する金属、
及び冷熱の回収・貯蔵時と、貯蔵された冷熱によ
る発生ガスの冷却・再液化時における蓄冷器1,
2の作用例を示す。
[Table] The present invention utilizes the temperature change during the reaction of the metal hydride, and an example of the method is shown below. Tables 1 and 2 show the metals to be filled in regenerators 1 and 2,
and a regenerator 1 during the recovery and storage of cold energy and during the cooling and reliquefaction of generated gas by the stored cold energy;
An example of the effect of No. 2 is shown below.

【表】【table】

【表】 まず、常温出荷用低温液化ガスを加熱し且つそ
の冷熱を回収するために、前記第1図の流路5
に、第3図に示す如く常温出荷用低温液化ガス3
を通すと共に、蓄冷器2の媒体流路7に海水等の
常温媒体6を通す。すると蓄冷器1においては
〔Me〕+〔H〕−Q→〔MeH〕の反応が、また蓄冷
器2においては〔MeH〕+Q→〔Me〕+〔H〕の
反応が行われることになる。即ち、蓄冷器1にお
いては〔H〕を必要とし、また蓄冷器2において
は分解によつて〔H〕が生成され、且つ蓄冷器1
より2の方が圧力が高くなるために、〔H〕が水
素ガス流路9を矢印方向に流れることになり、よ
つて蓄冷器2においては常温媒体6から熱Qを受
けると共に〔H〕のスムーズな流出が行われて前
記分解反応が促進され、また蓄冷器1においては
導入されて来る前記〔H〕と前記発熱反応におけ
る反応熱Qが低温液化ガスによつて除去されるこ
とにより金属水素化物の生成が促進されて冷熱が
貯蔵される。このとき、前記低温液化ガス3は加
熱昇温されて常温出荷される。前記冷熱を貯蔵し
た状態で弁8を閉じて水素ガス流路9における
〔H〕の移動を遮断し、冷熱を保持させる。 次に前記蓄冷器1の冷熱を用いて発生ガスを冷
却し再液化させるには、前記第3図の状態から第
4図に示すように流路5に発生ガス4を流すよう
に切換え、且つ弁8を開く。すると蓄冷器1にお
いては〔MeH〕+Q→〔Me〕+〔H〕の反応が、
また蓄冷器2においては〔Me〕+〔H〕−Q→
〔MeH〕の反応が行われることになる。即ち蓄冷
器1内の金属水素化物が発生ガス4から熱Qを受
けて分解することにより〔H〕を生成し、また蓄
冷器2においては〔H〕を必要とし、且つ蓄冷器
2より1の方が圧力が高くなるために、〔H〕が
水素ガス流路9を矢印方向に流れることになり、
よつて蓄冷器1においては発生ガス4から熱Qを
受けると共に〔H〕のスムーズな流出が行われて
前記分解反応が促進され、また蓄冷器2において
は導入されて来る前記〔H〕と前記発熱反応にお
ける反応熱Qが常温媒体6によつて除去されるこ
とにより金属水素化物の生成が促進される。この
とき、前記発生ガス4は冷却により凝縮されて再
液化される。 上記により発生ガスの再液化温度を季節に関係
なく低温に保持でき、且つ該貯蔵設備では、発生
ガスの再液化に要する熱量に比較し、出荷液の有
する冷熱量は一般的に少ないので再液化に必要な
冷熱を確保することができる。 尚、前記実施例においては冷熱の回収貯蔵と発
生ガスの凝縮再液化を、流路5に対する切換操作
にて行うようにしているが、第5図に示すように
蓄冷器1に夫々の独立した流路5を設けるように
すれば、前記したような切換操作を無くすことが
でき、更に前記常温液化ガスの出荷と低温液化ガ
ス受入れによる発生ガスの凝縮再液化の必要が同
時に生じた場合にも作用させることができる。ま
た金属水素化物にはその平衡特性から任意のもの
を選定し得ること、その他本発明の要旨を逸脱し
ない範囲内において種々変更を加えることができ
る。 [発明の効果] 上述した本発明の低温液化ガス貯蔵設備におけ
る発生ガスの再液化方法によれば、金属水素化物
の生成反応により常温出荷用低温液化ガスの冷熱
を回収して貯蔵し、また前記金属水素化物の分解
反応により発生ガスを凝縮して再液化するように
しているので、常温出荷用低温液化ガスの冷熱を
利用して発生ガスを効果的に再液化させて同時性
の問題を解決することができ、且つ実施に当り簡
単な設備と比較的狭い設置面積で安価に実施する
ことができる、等の優れた効果を奏し得る。
[Table] First, in order to heat the low-temperature liquefied gas for normal-temperature shipping and recover the cold energy, the flow path 5 in FIG.
As shown in Fig. 3, the low temperature liquefied gas 3 for normal temperature shipping is
At the same time, a normal temperature medium 6 such as seawater is passed through the medium flow path 7 of the regenerator 2. Then, in the regenerator 1, the reaction [Me]+[H]-Q→[MeH] takes place, and in the regenerator 2, the reaction [MeH]+Q→[Me]+[H] takes place. That is, the regenerator 1 requires [H], and the regenerator 2 generates [H] through decomposition, and the regenerator 1 requires [H].
Since the pressure is higher in case 2, [H] flows in the direction of the arrow in the hydrogen gas flow path 9, and therefore, in the regenerator 2, it receives heat Q from the normal temperature medium 6, and the [H] also flows in the direction of the arrow. Smooth outflow occurs to promote the decomposition reaction, and in the regenerator 1, the introduced [H] and the reaction heat Q of the exothermic reaction are removed by the low-temperature liquefied gas, so that metallic hydrogen is The formation of chemical compounds is promoted and cold energy is stored. At this time, the low temperature liquefied gas 3 is heated and shipped at room temperature. With the cold heat stored, the valve 8 is closed to block the movement of [H] in the hydrogen gas flow path 9, thereby retaining the cold heat. Next, in order to cool and reliquefy the generated gas using the cold heat of the regenerator 1, the state shown in FIG. 3 is switched to flow the generated gas 4 through the flow path 5 as shown in FIG. Open valve 8. Then, in regenerator 1, the reaction of [MeH] + Q → [Me] + [H] is
In addition, in regenerator 2, [Me] + [H] - Q →
[MeH] reaction will take place. That is, the metal hydride in the regenerator 1 receives heat Q from the generated gas 4 and decomposes to generate [H], and the regenerator 2 requires [H], and Since the pressure is higher in the hydrogen gas flow path 9, [H] flows in the direction of the arrow,
Therefore, in the regenerator 1, the heat Q is received from the generated gas 4, and [H] flows out smoothly to promote the decomposition reaction, and in the regenerator 2, the introduced [H] and the The reaction heat Q in the exothermic reaction is removed by the normal temperature medium 6, thereby promoting the production of metal hydrides. At this time, the generated gas 4 is condensed and reliquefied by cooling. As a result of the above, the reliquefaction temperature of the generated gas can be maintained at a low temperature regardless of the season, and since the amount of cooling energy of the shipped liquid is generally small compared to the amount of heat required to reliquefy the generated gas in the storage facility, reliquefaction is possible. It is possible to secure the necessary cooling and heat. In the above embodiment, the recovery and storage of cold energy and the condensation and reliquefaction of the generated gas are performed by switching the flow path 5, but as shown in FIG. By providing the flow path 5, the switching operation as described above can be eliminated, and furthermore, even when it is necessary to simultaneously ship the room-temperature liquefied gas and condense and re-liquefy the generated gas by receiving the low-temperature liquefied gas. It can be made to work. Moreover, any metal hydride can be selected from the standpoint of its equilibrium characteristics, and various other changes can be made without departing from the gist of the present invention. [Effects of the Invention] According to the above-described method for reliquefying generated gas in the low-temperature liquefied gas storage equipment of the present invention, the cold energy of the low-temperature liquefied gas for room-temperature shipping is recovered and stored by the metal hydride production reaction, and the Since the generated gas is condensed and re-liquefied through the decomposition reaction of the metal hydride, the cold heat of the low-temperature liquefied gas for room-temperature shipping is used to effectively re-liquefy the generated gas and solve the simultaneity problem. It is possible to achieve excellent effects such as being able to be implemented at low cost with simple equipment and a relatively small installation area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す説明図、第2
図は金属水素化物の平衡圧力と平衡温度の関係を
示すグラフ、第3図は冷熱の回収貯蔵状態を示す
説明図、第4図は発生ガスの凝縮再液化状態を示
す説明図、第5図は本発明の別の実施例を示す説
明図である。 1,2は蓄冷器、3は常温出荷用低温液化ガ
ス、4は発生ガス、5は流路、6は常温媒体、7
は媒体流路、8は弁、9は水素ガス流路を示す。
FIG. 1 is an explanatory diagram showing one embodiment of the present invention, and FIG.
The figure is a graph showing the relationship between equilibrium pressure and equilibrium temperature of metal hydrides, Figure 3 is an explanatory diagram showing the recovery and storage state of cold energy, Figure 4 is an explanatory diagram showing the condensation and reliquefaction state of generated gas, and Figure 5 FIG. 2 is an explanatory diagram showing another embodiment of the present invention. 1 and 2 are regenerators, 3 is low temperature liquefied gas for normal temperature shipping, 4 is generated gas, 5 is a flow path, 6 is a normal temperature medium, 7
8 is a medium flow path, 8 is a valve, and 9 is a hydrogen gas flow path.

Claims (1)

【特許請求の範囲】[Claims] 1 常温液化ガス出荷時に、常温出荷用低温液化
ガスを、金属水素化物を生成する金属を収容し且
つ生成に必要な水素ガスを供給できる容器内に、
流路を介して導くことにより熱交換させ、金属水
素化物が生成する際の反応熱を前記常温出荷用低
温液化ガスの冷熱によつて冷却して生成発熱反応
を促進させた後、前記水素ガスの流出を遮断する
ことにより、前記常温出荷用低温液化ガスの冷熱
を回収して貯蔵し、低温液化ガス貯蔵設備からの
再液化を要する発生ガスを、前記容器に導いて前
記金属水素化物と熱交換させ、該金属水素化物を
分解吸熱反応させて発生する水素ガスを容器外に
流出させることにより、前記発生ガスを冷却して
再液化することを特徴とする低温液化ガス貯蔵設
備における発生ガスの再液化方法。
1. When shipping room-temperature liquefied gas, place the low-temperature liquefied gas for room-temperature shipping into a container that can accommodate the metal that will generate the metal hydride and can supply the hydrogen gas necessary for the generation.
After exchanging heat by guiding the hydrogen gas through a flow path and cooling the reaction heat when the metal hydride is generated by the cold heat of the low-temperature liquefied gas for normal-temperature shipping to promote the generated exothermic reaction, the hydrogen gas By blocking the outflow of the low-temperature liquefied gas for normal-temperature shipping, the cold energy of the low-temperature liquefied gas for normal-temperature shipping is recovered and stored, and the gas generated from the low-temperature liquefied gas storage equipment that requires reliquefaction is guided into the container to combine with the metal hydride and heat. In a low-temperature liquefied gas storage facility, the generated gas is cooled and reliquefied by exchanging the metal hydride and causing an endothermic decomposition reaction to cause the generated hydrogen gas to flow out of the container. Reliquefaction method.
JP57065704A 1982-04-20 1982-04-20 Reliquefaction of gas evaporated in low-temperature liquefied-gas storage equipment Granted JPS58184398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57065704A JPS58184398A (en) 1982-04-20 1982-04-20 Reliquefaction of gas evaporated in low-temperature liquefied-gas storage equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57065704A JPS58184398A (en) 1982-04-20 1982-04-20 Reliquefaction of gas evaporated in low-temperature liquefied-gas storage equipment

Publications (2)

Publication Number Publication Date
JPS58184398A JPS58184398A (en) 1983-10-27
JPS6227318B2 true JPS6227318B2 (en) 1987-06-13

Family

ID=13294668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57065704A Granted JPS58184398A (en) 1982-04-20 1982-04-20 Reliquefaction of gas evaporated in low-temperature liquefied-gas storage equipment

Country Status (1)

Country Link
JP (1) JPS58184398A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8884788B2 (en) 1998-04-08 2014-11-11 Donnelly Corporation Automotive communication system
US10616507B2 (en) 2007-10-04 2020-04-07 Magna Electronics Inc. Imaging system for vehicle
US10611306B2 (en) 2001-07-31 2020-04-07 Magna Electronics Inc. Video processor module for vehicle
US10623704B2 (en) 2004-09-30 2020-04-14 Donnelly Corporation Driver assistance system for vehicle
US10654423B2 (en) 2011-04-25 2020-05-19 Magna Electronics Inc. Method and system for dynamically ascertaining alignment of vehicular cameras
US10710504B2 (en) 2013-03-28 2020-07-14 Aisin Seiki Kabushiki Kaisha Surroundings-monitoring device and computer program product
US10726578B2 (en) 2007-08-17 2020-07-28 Magna Electronics Inc. Vehicular imaging system with blockage determination and misalignment correction
US10787116B2 (en) 2006-08-11 2020-09-29 Magna Electronics Inc. Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera
US10793067B2 (en) 2011-07-26 2020-10-06 Magna Electronics Inc. Imaging system for vehicle
US10807515B2 (en) 2007-07-12 2020-10-20 Magna Electronics Inc. Vehicular adaptive headlighting system
US10839233B2 (en) 2009-02-27 2020-11-17 Magna Electronics Inc. Vehicular control system
US10858042B2 (en) 2011-01-26 2020-12-08 Magna Electronics Inc. Trailering assist system with trailer angle detection
US10868974B2 (en) 2010-12-01 2020-12-15 Magna Electronics Inc. Method for determining alignment of vehicular cameras
US10875526B2 (en) 2009-07-27 2020-12-29 Magna Electronics Inc. Vehicular vision system
US10946799B2 (en) 2015-04-21 2021-03-16 Magna Electronics Inc. Vehicle vision system with overlay calibration
US11007937B2 (en) 2012-02-22 2021-05-18 Magna Electronics Inc. Vehicular display system with multi-paned image display
US11279343B2 (en) 2011-10-27 2022-03-22 Magna Electronics Inc. Vehicular control system with image processing and wireless communication

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112797U (en) * 1983-12-29 1985-07-30 石川島播磨重工業株式会社 Evaporated gas reliquefaction equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380372A (en) * 1976-12-27 1978-07-15 Agency Of Ind Science & Technol Method and apparatus for acquiring heat energy by hydrogenation reaction of metal
JPS5589691A (en) * 1978-12-26 1980-07-07 Mitsubishi Heavy Ind Ltd Method for accumulating and taking out heat

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380372A (en) * 1976-12-27 1978-07-15 Agency Of Ind Science & Technol Method and apparatus for acquiring heat energy by hydrogenation reaction of metal
JPS5589691A (en) * 1978-12-26 1980-07-07 Mitsubishi Heavy Ind Ltd Method for accumulating and taking out heat

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8884788B2 (en) 1998-04-08 2014-11-11 Donnelly Corporation Automotive communication system
US10611306B2 (en) 2001-07-31 2020-04-07 Magna Electronics Inc. Video processor module for vehicle
US10623704B2 (en) 2004-09-30 2020-04-14 Donnelly Corporation Driver assistance system for vehicle
US10787116B2 (en) 2006-08-11 2020-09-29 Magna Electronics Inc. Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera
US10807515B2 (en) 2007-07-12 2020-10-20 Magna Electronics Inc. Vehicular adaptive headlighting system
US10726578B2 (en) 2007-08-17 2020-07-28 Magna Electronics Inc. Vehicular imaging system with blockage determination and misalignment correction
US10616507B2 (en) 2007-10-04 2020-04-07 Magna Electronics Inc. Imaging system for vehicle
US10839233B2 (en) 2009-02-27 2020-11-17 Magna Electronics Inc. Vehicular control system
US10875526B2 (en) 2009-07-27 2020-12-29 Magna Electronics Inc. Vehicular vision system
US10868974B2 (en) 2010-12-01 2020-12-15 Magna Electronics Inc. Method for determining alignment of vehicular cameras
US10858042B2 (en) 2011-01-26 2020-12-08 Magna Electronics Inc. Trailering assist system with trailer angle detection
US10654423B2 (en) 2011-04-25 2020-05-19 Magna Electronics Inc. Method and system for dynamically ascertaining alignment of vehicular cameras
US10793067B2 (en) 2011-07-26 2020-10-06 Magna Electronics Inc. Imaging system for vehicle
US11279343B2 (en) 2011-10-27 2022-03-22 Magna Electronics Inc. Vehicular control system with image processing and wireless communication
US11007937B2 (en) 2012-02-22 2021-05-18 Magna Electronics Inc. Vehicular display system with multi-paned image display
US10710504B2 (en) 2013-03-28 2020-07-14 Aisin Seiki Kabushiki Kaisha Surroundings-monitoring device and computer program product
US10946799B2 (en) 2015-04-21 2021-03-16 Magna Electronics Inc. Vehicle vision system with overlay calibration

Also Published As

Publication number Publication date
JPS58184398A (en) 1983-10-27

Similar Documents

Publication Publication Date Title
JPS6227318B2 (en)
JP7412073B2 (en) Liquid hydrogen production equipment and hydrogen gas production equipment
JP5148319B2 (en) Liquefied gas reliquefaction apparatus, liquefied gas storage equipment and liquefied gas carrier equipped with the same, and liquefied gas reliquefaction method
WO2013175905A1 (en) Liquid hydrogen production device
JP6021430B2 (en) Reliquefaction method of boil-off gas generated from liquid hydrogen storage tank
KR102289476B1 (en) Hydrogen Liquefaction System and Method
JP7132789B2 (en) Liquid hydrogen production facility
EP2889943B1 (en) Fuel cell system using natural gas
KR910001341A (en) Manufacture and use of coolant in low temperature equipment
GB1089191A (en) Improvements in the production of liquid hydrogen of high para composition
KR102305156B1 (en) Apparatus for hydrogen liquefaction
JP2005241232A (en) Hydrogen liquefying device, and liquid hydrogen manufacturing system
US3760597A (en) Short term storage of natural gas
KR20010077227A (en) Reliquefication system of boiled-off-gas using cold energy in LNG and mothod therefor
JPH02293575A (en) Air separation device
JP2003028567A (en) Method and system for manufacturing liquid hydrogen
JPS6329997Y2 (en)
JPS63152798A (en) Method of storing cryogenic heat in cryogenic liquid storage tank
JPS6321839Y2 (en)
KR102538537B1 (en) Ammonia gas reliquefaction system of ship
JP7352441B2 (en) Cooling system and method
JPS6357679B2 (en)
JPS6124873Y2 (en)
JPS61140777A (en) Manufacture of liquid h2 and gas natural gas
JPH0317490A (en) Production method of liquefied co2