JPS62272579A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS62272579A
JPS62272579A JP11580686A JP11580686A JPS62272579A JP S62272579 A JPS62272579 A JP S62272579A JP 11580686 A JP11580686 A JP 11580686A JP 11580686 A JP11580686 A JP 11580686A JP S62272579 A JPS62272579 A JP S62272579A
Authority
JP
Japan
Prior art keywords
laser
light
light emitting
phase
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11580686A
Other languages
Japanese (ja)
Inventor
Kiyohide Wakao
若尾 清秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11580686A priority Critical patent/JPS62272579A/en
Publication of JPS62272579A publication Critical patent/JPS62272579A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To easily alter the directivity of an emitted light from a semiconductor light emitting device by providing phase adjusting functions independently in a plurality of optical guides in which a laser output is branched to alter the phase of a propagated light independently in the guides. CONSTITUTION:An optical guide type optical branch is provided at the laser output unit CLD of a laser oscillation region LDOSC of a semiconductor light emitting device having the regions LDOSC and an optical guide region LDCONT on the same substrate 1. A laser light branched by the branch are propagated, and optical guides 3, 4 having independent phase adjusting mechanisms 5, 6 and light emitting ends provided in the guides 3, 4 are provided. The mechanisms generate variations in refractive index by supplying a current to the P-N junction of the guide and varying a current density (where when the current density rises, the refractive index of the optical guide layer of the optical guide decreases.), thereby varying the phase of the light propagated in response thereto. Or, the phase is adjusted by applying an electric field to the guide.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔概要〕 同一基板上にレーザ、光分岐および位相調整機構を持つ
半導体発光装置であり、出射光の指向性等を制御可能に
する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Summary] This is a semiconductor light emitting device having a laser, a light branching mechanism, and a phase adjustment mechanism on the same substrate, making it possible to control the directivity of emitted light.

〔産業上の利用分野〕[Industrial application field]

本発明はアレイ形状の半導体発光装置に係り、特に、出
射光の指向性を可変とするための構造に関する。
The present invention relates to an array-shaped semiconductor light emitting device, and particularly to a structure for making the directivity of emitted light variable.

〔従来の技術〕[Conventional technology]

従来、S積アレイ型半導体レーザは、各々のレーザの発
振状態を変えることにより、出射光の指向性を変えるこ
とができるという特長を持つ。
Conventionally, an S-product array type semiconductor laser has the feature that the directivity of emitted light can be changed by changing the oscillation state of each laser.

従来の集積アレイ型半導体レーザとしては、レーザ活性
層を複数個並列に並べた構造のものかい(つか作られて
いるが、各々のレーザの発振状態を独立に制御し難いた
め、出射光の指向性をあまり変えることができないとい
う欠点がある。
Conventional integrated array semiconductor lasers have a structure in which multiple laser active layers are arranged in parallel (some have been made, but it is difficult to control the oscillation state of each laser independently, so the direction of the emitted light is The drawback is that you cannot change your gender much.

第5図に従来例の半導体発光装置を示している。FIG. 5 shows a conventional semiconductor light emitting device.

図において、n −GaAs基板51上にn −Ga 
Aff Asクラッド層52、n−GaAnAs活性層
53、p−Ga Aj2 Asクラッド層54、p” 
 GaAsコンタクト層55が形成されている。下側の
クラッド層52は部分的に厚(形成されており、この部
分の上方の5iOzll*56に設けた窓にそれぞれ電
極57.58が設けら、基板51の裏側には電極59が
設けられている。
In the figure, an n-GaAs substrate 51 is
Aff As cladding layer 52, n-GaAnAs active layer 53, p-GaAj2As cladding layer 54, p''
A GaAs contact layer 55 is formed. The lower cladding layer 52 is partially thick (formed), and electrodes 57 and 58 are provided in the windows provided in 5iOzll*56 above this part, and electrodes 59 are provided on the back side of the substrate 51. ing.

その構成で、レーザの発振は下側のクラッド層52が厚
くなっている部分52A、52Bで起る。
With this configuration, laser oscillation occurs at the thicker portions 52A and 52B of the lower cladding layer 52.

すなわち、横方向にカップリングした2つのレーザが配
置された構成となり、それぞれのレーザの電流を別々に
印加できる構成である。そこで、左右のレーザの電極5
7と58に流す電流を変えてやると、レーザの発振状態
が変化し、光のカップリングの仕方が変るので、出射光
の指向性が変ってくる。
That is, the configuration is such that two lasers coupled in the lateral direction are arranged, and the current of each laser can be applied separately. Therefore, the left and right laser electrodes 5
By changing the current flowing through 7 and 58, the oscillation state of the laser changes, the way light is coupled changes, and the directivity of the emitted light changes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記従来の半導体発光装置では、レーザの発
振状態自体を変える構成なので、レーザの電流を変化す
ると、発振波長等が変化してしまい出射光の波面のみを
制御することが困難であり、ある特定の条件を満たさな
いと使用できないという問題がある。
However, in the conventional semiconductor light emitting device described above, since the oscillation state of the laser itself is changed, changing the laser current changes the oscillation wavelength, etc., making it difficult to control only the wavefront of the emitted light. There is a problem that it cannot be used unless certain conditions are met.

そこで、本発明の目的は、レーザの出射光の指向性を改
善したアレイ型半導体レーザを提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an array type semiconductor laser in which the directivity of laser light emitted from the laser is improved.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、単一の基板上に、レーザ発振領域と位相調整
機構を持つ導波路領域を形成した半導体発光装置を提供
し、レーザ出力部に光分岐を設け、複数個の導波路に光
を分岐するとともに、それぞれ独立した位相調整機構に
より、伝播光の位相を調整して出射光の指向性が変えら
れるようにしている。
The present invention provides a semiconductor light emitting device in which a laser oscillation region and a waveguide region having a phase adjustment mechanism are formed on a single substrate, and an optical branch is provided in the laser output section to send light to a plurality of waveguides. In addition to branching, each independent phase adjustment mechanism adjusts the phase of the propagating light so that the directivity of the emitted light can be changed.

本発明における、レーザ出力部の分岐は通常の光導波路
の分岐技術が通用できる。
In the present invention, a normal optical waveguide branching technique can be used for branching the laser output section.

また、本発明に用いる位相調整機構は任意の構成を採用
でき、例えば、導波路のp−n接合に電流を流し、電流
密度を変化することにより、屈折率変化(電流密度が上
昇すると導波路の光ガイド層の屈折率が下がる)発生せ
しめそれに応じて伝播する光の位相を変えるようにする
。或いは、電流印加で制御するのでなく、導波路に電界
を印加する構成とし位相調整を行なっても良い。
Further, the phase adjustment mechanism used in the present invention can adopt any configuration. For example, by flowing a current through the p-n junction of the waveguide and changing the current density, the refractive index changes (as the current density increases, the waveguide (the refractive index of the light guide layer decreases) and the phase of the propagating light changes accordingly. Alternatively, the phase adjustment may be performed by applying an electric field to the waveguide instead of controlling by applying a current.

〔作用〕[Effect]

本発明の構成において、レーザ出力を分岐した複数の導
波路に各々独立に位相調整機能を持たせたので、レーザ
の制御に関しての問題は無いうえ、位相調整機能は別々
に制御できその制御が容易であり、各々の導波路で独立
に伝播光の位相を変えることにより、出射光の指向性を
容易に変えることができる。
In the configuration of the present invention, each of the multiple waveguides that branch the laser output has an independent phase adjustment function, so there is no problem with laser control, and the phase adjustment function can be controlled separately, making it easy to control. By changing the phase of the propagating light independently in each waveguide, the directivity of the emitted light can be easily changed.

〔実施例〕〔Example〕

第1図〜第4図に本発明の一実施例のそれぞれ平面図、
a−a’線断面図、b−b“線断面図、およびC−C’
線断面図を示している。
FIGS. 1 to 4 are plan views of an embodiment of the present invention, respectively.
A-a' line sectional view, b-b" line sectional view, and C-C'
A line cross-sectional view is shown.

第1図において、一つの基板1上にレーザ発振領域LD
O5Cと導波路領域LDCONTが設けられてい6る。
In FIG. 1, a laser oscillation region LD is provided on one substrate 1.
O5C and a waveguide region LDCONT are provided 6.

レーザ発振領域LDO5Cには分布帰還型レーザが形成
され、2と指示するのはそのレーザストライプである。
A distributed feedback laser is formed in the laser oscillation region LDO5C, and the laser stripe is indicated by 2.

また、導波路領域LDCONTでは、レーザストライプ
2を分岐した、3.4の導波路が形成され、それぞれの
導波路を通過する光は5,6と指示する位相調整機構P
CONTを介して外部に出射される。出射光をA。
In addition, in the waveguide region LDCONT, 3.4 waveguides are formed by branching the laser stripe 2, and the phase adjustment mechanism P instructs the light passing through each waveguide to be 5 or 6.
It is emitted to the outside via CONT. The output light is A.

岐部分の長さは100μm1位相調整機構PCONTを
か形成される平行導波路部分の長さは200μm程度に
形成されている。
The length of the branch portion is 100 μm, and the length of the parallel waveguide portion in which the phase adjustment mechanism PCONT is formed is approximately 200 μm.

次に、第2図のa−a’断面、および第3図のb−b 
’断面はレーザ発振領域を説明する図である。
Next, the a-a' section in Fig. 2 and the bb-b in Fig. 3.
'The cross section is a diagram illustrating a laser oscillation region.

第2図および第3図において、 n −1nP基板21表面のレーザ発振領域にはコルゲ
ーション(凹凸)21Aを形成されており、このコルゲ
ーション21A上に次の各成長層が順に形成されている
In FIGS. 2 and 3, corrugations (unevenness) 21A are formed in the laser oscillation region on the surface of the n-1nP substrate 21, and the following growth layers are sequentially formed on the corrugations 21A.

2 ’l ・−n −InGaAsP光ガイド層λg=
1.15μm 23−アンドープInGaAsP活性層λg=1.3 
μm 24 ・−p −InGaAsP光ガイド層2μm1.
15μm 25−・−p −1nPクラツド層 27−−− p −1nGaAsP コンタクト層一方
第2図および第4図を参照して導波路領域を説明すると
、InP基板21表面のコルゲーション(凹凸)が無い
21B上に次の各成長層が順に形成されている。
2'l ・−n −InGaAsP light guide layer λg=
1.15μm 23-Undoped InGaAsP active layer λg=1.3
μm 24 ・-p −InGaAsP light guide layer 2 μm1.
15μm 25--p-1nP cladding layer 27--p-1nGaAsP contact layer On the other hand, to explain the waveguide region with reference to FIGS. 2 and 4, there is no corrugation (unevenness) on the surface of the InP substrate 21. The following growth layers are sequentially formed on top.

24 ・−p −InGaAsP光ガイド層2μm1.
15μm 25−・−p −1nPクラツド層 26−9−1nGaAsPコンタクト層なお、以上のレ
ーザ発振領域、および導波路領域の各成長層を得る際、
部分的にコルゲーションが形成された基板21上に、2
2および23の層をエピタキシャル成長し、レーザスト
ライプを残して他の表面部分をエツチングして基板を露
出することにより、コルゲーション21A部分、および
コルゲーションが無い21B部分を形成している。その
後、24〜27の各層をエピタキシャル成長している。
24.-p-InGaAsP light guide layer 2 μm1.
15 μm 25-.-p -1nP cladding layer 26-9-1nGaAsP contact layer When obtaining the above growth layers of the laser oscillation region and waveguide region,
2 on the substrate 21 on which corrugations are partially formed.
A corrugated portion 21A and a corrugated portion 21B are formed by epitaxially growing layers 2 and 23 and exposing the substrate by etching the other surface portions leaving a laser stripe. Thereafter, each of layers 24 to 27 is epitaxially grown.

次に、エツチングによりレーザストライプ2および導波
路3を残して、他部を基板21に達するまで除去し、レ
ーザストライプ2および導波路3を第3図および第4図
に示すようにp−1nP33およびn−1nP32で埋
め込んでいる。
Next, by etching, the laser stripe 2 and waveguide 3 are left, and the other parts are removed until reaching the substrate 21, and the laser stripe 2 and waveguide 3 are removed as shown in FIGS. 3 and 4. It is embedded with n-1nP32.

その後、さらに第2図の溝28を形成して、レーザ発振
領域および位相調整領域を電気的に分離している。そし
て、基板21の背面側に電極31を形成し、表面側では
レーザ発振領域に電極29を、導波路領域に電極30を
形成している。
Thereafter, the groove 28 shown in FIG. 2 is further formed to electrically isolate the laser oscillation region and the phase adjustment region. Then, an electrode 31 is formed on the back side of the substrate 21, and on the front side, an electrode 29 is formed in the laser oscillation region and an electrode 30 is formed in the waveguide region.

以下に、本実施例の半導体発光装置の製造方法を詳述す
る。
The method for manufacturing the semiconductor light emitting device of this example will be described in detail below.

先ず、n −InP基板21上に、深さ400人、ピッ
チ2000人のコルゲーションを幅300μmの’tt
[(レーザ発振領域になる部分21A)に形成した後に
、基板表面全体にn −1nGaAsP光ガイド層22
(λg=1.15μm、厚さ0.1μm)、アンドープ
InGaAsP活性層23(λg=1.3μm、厚さ0
゜1μm) 、p −1nGaAsP光ガイド層24(
λg=1.15μm、厚さ0.2μm)を液相成長法に
より、順次成長する。成長後、コルゲーションの無い部
分(導波路領域になる部分21B)を硫酸系のエツチン
グ液で基板表面までエツチングした後、液相成長法によ
りp −InGaAsPガイド層24(2μm 1.1
5μm 、厚さ0.J un) 、p−1nP 25 
(厚さ2 μm) 、p −1nGaAsPコンタクト
層(λg=1.2μm、厚さ0.3μm)を全面成長す
る。この後、S i O2膜をマスクとして幅〜2μm
のストライプ状の導波路2,3および4を形成する。
First, on the n-InP substrate 21, a corrugation with a depth of 400 and a pitch of 2000 was formed with a width of 300 μm.
[After forming in (the portion 21A that will become the laser oscillation region), an n −1nGaAsP light guide layer 22 is formed on the entire substrate surface.
(λg=1.15 μm, thickness 0.1 μm), undoped InGaAsP active layer 23 (λg=1.3 μm, thickness 0
゜1μm), p -1nGaAsP light guide layer 24 (
(λg=1.15 μm, thickness 0.2 μm) are sequentially grown by a liquid phase growth method. After the growth, the part without corrugation (the part 21B that will become the waveguide region) is etched with a sulfuric acid-based etching solution to the substrate surface, and then a p-InGaAsP guide layer 24 (2 μm 1.1
5 μm, thickness 0. Jun), p-1nP 25
(thickness: 2 .mu.m), and a p-1nGaAsP contact layer (.lambda.g=1.2 .mu.m, thickness: 0.3 .mu.m) is grown on the entire surface. After this, using the SiO2 film as a mask, a width of ~2 μm was formed.
Striped waveguides 2, 3 and 4 are formed.

S iO2膜マスクを残したまま、液相成長法により、
p−InP33(厚さ〜1μm)、n−In2S3(厚
さ〜2μm)を成長し、埋め込み型の導波路を形成する
。結晶成長後、5i02膜マスクを除去し、第2図に示
すようにp −1nGaAsPコンタクト層およびp 
−1nP層を一部除去し溝28を形成した後に電極29
,30.31を形成する。以上で、本実施例の半導体発
光装置が得られる。
Using the liquid phase growth method while leaving the SiO2 film mask,
A buried waveguide is formed by growing p-InP33 (thickness ~1 μm) and n-In2S3 (thickness ~2 μm). After the crystal growth, the 5i02 film mask is removed and the p-1nGaAsP contact layer and p
- After partially removing the 1nP layer and forming the groove 28, the electrode 29
, 30.31. With the above steps, the semiconductor light emitting device of this example is obtained.

本実施例のデバイスの動作を以下に説明する。The operation of the device of this example will be explained below.

レーザ発振領域で発光した光は、光ガイド層で導波され
ながら導波路領域へ伝播され、ここで、水平方向に2つ
に分岐され、各々導波路領域を伝播する。導波路領域に
は光の位相調整機能をもたせであるので、伝播光は、各
々位相変化を受けた後に、出射端から放射される。ここ
で、出射した2つの光は干渉を起こすため、ある特定の
方向だけ電界強度が強くなる。すなわち、指向性を有す
ることになる。本実施例では、位相調整領域に流す電流
を変えると、光の位相が変るため、指向性を変えること
ができる。例えば、第1図右方に示した遠視野像におい
て、1.  II、  IIIのように指向性を変化で
きる。本実施例では、出射光A及びB側の位相調整機構
に流す電流を等しくするとA、Bの波面の進みは同じに
なり、■のようになる。
The light emitted in the laser oscillation region is guided by the light guide layer and propagated to the waveguide region, where it is horizontally branched into two parts, each of which propagates through the waveguide region. Since the waveguide region has a light phase adjustment function, each propagating light is emitted from the output end after undergoing a phase change. Here, since the two emitted lights cause interference, the electric field strength becomes stronger only in a certain direction. In other words, it has directionality. In this embodiment, by changing the current flowing through the phase adjustment region, the phase of the light changes, so the directivity can be changed. For example, in the far-field image shown on the right side of Figure 1, 1. The directivity can be changed like II or III. In this embodiment, when the currents flowing through the phase adjustment mechanisms on the side of the emitted light A and B are made equal, the advances of the wavefronts of A and B become the same, as shown in (2).

また、Aの出射光側の5の位相調整機構に流す電流をB
の出射光側の6のより大にすると、Aの側の屈折率は電
流密度がBの側より大な分だけ低下するから、5の側の
出射光Aは6の側の出射光Bより波面が進み、■のよう
になる。また、Bの出射光側の6の位相調整機構に流す
電流をAの出射光側の5より大にすると、Bの側の屈折
率は電流密度がAの側より大な分だけ低下するから、出
射光Bは出射光Aより波面が進み、■のようになる。
In addition, the current flowing through the phase adjustment mechanism 5 on the output light side of A is changed to
If the output light side of 6 is made larger, the refractive index of the A side will be lowered by the amount that the current density is larger than that of the B side, so the output light A of the 5 side will be smaller than the output light B of the 6 side. The wave front advances and becomes like ■. Also, if the current flowing through the phase adjustment mechanism 6 on the outgoing light side of B is made larger than that on the outgoing light side of A, the refractive index on the B side will decrease by the amount that the current density is greater than on the A side. , the wavefront of the emitted light B is more advanced than that of the emitted light A, as shown in (■).

このように、本実施例の半導体発光装置は、出射端から
出る光の指向性を意図的に変えることができるという利
点を有する。
In this manner, the semiconductor light emitting device of this embodiment has the advantage that the directivity of light emitted from the emission end can be intentionally changed.

なお、上記で示した実施例ではレーザ出力部でレーザ発
振領域から来る光を2つに分岐したが、3つ以上に分け
てそれぞれの導波路で位相調整を行なえば、指向性の調
整をより制御性良く行なえる。また、上記実施例ではレ
ーザ出力部のみに分に分け、それぞれに位相調整機能を
持たせるようにしても良い。
Note that in the example shown above, the light coming from the laser oscillation region is split into two at the laser output section, but if the light is split into three or more and the phase is adjusted using each waveguide, the directivity can be adjusted more easily. Can be performed with good controllability. Further, in the above embodiment, only the laser output section may be divided into sections, and each section may be provided with a phase adjustment function.

〔発明の効果〕〔Effect of the invention〕

以上に示したように、本発明によれば、レーザ出力部に
複数個の導波路を設け、各々の導波路で独立に伝播光の
位相を変えることにより、出射光の指向性を容易に変え
ることができる。また、本発明の構成によれば、分岐を
3個以上にして311M1以上の出射光を別々に制御す
ることが容易であるため、出射光の指向性の制御を精度
良く行なうことができるのみならず、出射光の(遠視野
像の)半値幅をも制御することが可能になる。
As described above, according to the present invention, the directivity of the emitted light can be easily changed by providing a plurality of waveguides in the laser output section and changing the phase of the propagating light independently in each waveguide. be able to. Further, according to the configuration of the present invention, it is easy to separate the emitted light of 311M1 or more by branching into three or more, and therefore it is possible to control the directivity of the emitted light with high precision. First, it is also possible to control the half-value width (of the far-field image) of the emitted light.

【図面の簡単な説明】[Brief explanation of the drawing]

第4図は第1図のc−c’線断面図、 第5図は従来例の断面図である。 1−・・基板 L D OS C−−−レーザ発振領域LDCONT−
一・導波路領域 2− レーザストライプ(導波路) 3.4−(導波路領域の)導波路 5.6一−位相調整機構PCONT A、B−出射光←−一ら 21−n  InP基板 21A・−コルゲーション(凹凸) 21B−・−コルゲーションが無い表面22−− n 
−1nGaAsP光ガイド層23−アンドープInGa
AsP活性層24 ・−p −rnGaAsP光ガイド
層25・・−p −1nPクラッド層 26−p −1nGaAsPコンタクト層27−− p
 −[nGaAsPコンタクト層28−溝 29.30.31−m−電極 32−n −1nP 33−・p−1nP
FIG. 4 is a sectional view taken along the line c-c' in FIG. 1, and FIG. 5 is a sectional view of the conventional example. 1-...Substrate LDOS C---Laser oscillation area LDCONT-
1. Waveguide area 2 - Laser stripe (waveguide) 3.4 - Waveguide (of waveguide area) 5.6 - Phase adjustment mechanism PCONT A, B - Emitted light← - 1 and 21 - n InP substrate 21A -Corrugation (unevenness) 21B--Surface without corrugation 22-- n
-1nGaAsP light guide layer 23 - undoped InGa
AsP active layer 24 -p -rnGaAsP optical guide layer 25... -p -1nP cladding layer 26-p -1nGaAsP contact layer 27--p
- [nGaAsP contact layer 28 - groove 29.30.31-m-electrode 32-n -1nP 33-・p-1nP

Claims (1)

【特許請求の範囲】 同一基板上にレーザ発振領域と、導波路領域を備える半
導体発光装置において、 該レーザ発振領域のレーザ出力部に備えられた導波路型
光分岐と、 該分岐で分岐したレーザ光をそれぞれ伝播するとともに
、それぞれ独立した位相調整機構を持つ導波路と、 該導波路に設けられた光出射端部と、 を有することを特徴とする半導体発光装置。
[Claims] A semiconductor light emitting device including a laser oscillation region and a waveguide region on the same substrate, comprising: a waveguide type optical branch provided in a laser output section of the laser oscillation region, and a laser branched at the branch. What is claimed is: 1. A semiconductor light emitting device comprising: a waveguide that propagates light and has an independent phase adjustment mechanism; and a light output end provided on the waveguide.
JP11580686A 1986-05-20 1986-05-20 Semiconductor light emitting device Pending JPS62272579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11580686A JPS62272579A (en) 1986-05-20 1986-05-20 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11580686A JPS62272579A (en) 1986-05-20 1986-05-20 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPS62272579A true JPS62272579A (en) 1987-11-26

Family

ID=14671548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11580686A Pending JPS62272579A (en) 1986-05-20 1986-05-20 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS62272579A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319667A (en) * 1992-04-10 1994-06-07 Alcatel N.V. Tunable semiconductor laser
JP2009054699A (en) * 2007-08-24 2009-03-12 Kyushu Univ Semiconductor laser, and semiconductor laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319667A (en) * 1992-04-10 1994-06-07 Alcatel N.V. Tunable semiconductor laser
JP2009054699A (en) * 2007-08-24 2009-03-12 Kyushu Univ Semiconductor laser, and semiconductor laser device

Similar Documents

Publication Publication Date Title
US4813054A (en) Distributed feedback laser
US5770466A (en) Semiconductor optical integrated circuits and method for fabricating the same
KR100406865B1 (en) Double core spot size converter using selective area growth and fabricating method thereof
JP3133396B2 (en) Optical branch waveguide
US6228670B1 (en) Method of manufacturing a semiconductor optical waveguide array and an array-structured semiconductor optical device
JPH04243216A (en) Production of optical waveguide and optical integrated element and production thereof
JPH07154036A (en) Waveguide having inclined active stripe, laser having this waveguide, and optical fiber transmission system using this laser
JP2002084033A (en) Distributed feedback semiconductor laser
WO2018197015A1 (en) Curved waveguide laser
CN109449756B (en) Semiconductor laser and preparation method thereof
JPH0961652A (en) Semiconductor optical waveguide and its production
JPS62272579A (en) Semiconductor light emitting device
KR100378596B1 (en) Structure of Semiconductor Optical Modulator
JP3100641B2 (en) Traveling wave type semiconductor optical amplifier
JP2965011B2 (en) Semiconductor optical device and method of manufacturing the same
JPH0697604A (en) Distributed reflection type semiconductor laser
CN115280609A (en) Optical device
JPH0147031B2 (en)
JP3773880B2 (en) Distributed feedback semiconductor laser
EP4311042A1 (en) Opto-electronic device
JPH065980A (en) Distributed reflection type semiconductor laser
JP5870649B2 (en) Optical semiconductor device and manufacturing method thereof
JPH11223739A (en) Integrated optical circuit element and manufacture of the same
CN110224296B (en) Semiconductor laser and preparation method thereof
JPS63313888A (en) Optical electronic element