JPS6227241B2 - - Google Patents

Info

Publication number
JPS6227241B2
JPS6227241B2 JP4199582A JP4199582A JPS6227241B2 JP S6227241 B2 JPS6227241 B2 JP S6227241B2 JP 4199582 A JP4199582 A JP 4199582A JP 4199582 A JP4199582 A JP 4199582A JP S6227241 B2 JPS6227241 B2 JP S6227241B2
Authority
JP
Japan
Prior art keywords
vibration mode
circumference
order
dampers
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4199582A
Other languages
Japanese (ja)
Other versions
JPS58158301A (en
Inventor
Shigeo Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4199582A priority Critical patent/JPS58158301A/en
Publication of JPS58158301A publication Critical patent/JPS58158301A/en
Publication of JPS6227241B2 publication Critical patent/JPS6227241B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/16Form or construction for counteracting blade vibration

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 本発明は、一円周上の回転動翼群をダンパで円
環状に連結したダンパ付翼群構造の回転体に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotating body having a damper-equipped blade group structure in which rotating rotor blade groups on one circumference are connected in an annular manner by a damper.

この種の回転体においては、ダンパを定格回転
数でダンパ効果を十分持たせる程度の強さで連結
させると、回転動翼群が一円周連結した構造とし
ての振動特性を持つ。
In this type of rotating body, if the dampers are connected with enough strength to have a sufficient damping effect at the rated rotational speed, the rotary blades will have vibration characteristics as a structure in which a group of rotary blades are connected around one circumference.

すなわち回転動翼群3は、第1図に矢印で示す
ように最低次の振動モードとして一円周上同位相
の1次接線方向振動モードを持ち、その上の周波
数領域に第2図に示すように円板形振動モード族
と称する多くの軸方向振動モードを持つ。
In other words, the rotating rotor blade group 3 has a first-order tangential vibration mode with the same phase on one circumference as the lowest vibration mode, as shown by the arrow in FIG. It has many axial vibration modes called the disk vibration mode family.

1次接線方向の振動モードは、一円周上の全翼
が同位相で振動するため、回転数の如何なる次数
の励振力と共振しても、共振応力が理論的に零に
なる。
In the primary tangential vibration mode, all the blades on one circumference vibrate in the same phase, so the resonance stress is theoretically zero no matter what order of rotational speed the blade resonates with the excitation force.

これに対し円板形振動モード族は、下記(1)式を
満足する関係が成り立つ時のみ大きな共振応答を
示す。
On the other hand, the disk-shaped vibration mode family exhibits a large resonance response only when the relationship satisfying the following equation (1) holds.

H±ND=λNB又はλNG ……(1) ただし H:回転数の整数倍の次数で、励振次数を表わ
す。
H±N D = λN B or λN G ...(1) However, H: An order that is an integral multiple of the rotation speed and represents the excitation order.

D:一円周上にある動翼群をシユラウド、ラ
ツシングワイヤ等で連結した際に生ずると
みなされる軸方向振動モードのノダルダイ
アメータ数(nodal diameter)。例えば4
―ノダルダイアメータの場合、第3図の如
くになる。
N D : Nodal diameter of the axial vibration mode that is considered to occur when rotor blade groups on one circumference are connected by shrouds, lashing wires, etc. For example 4
- In the case of a nodal diameter meter, it will be as shown in Figure 3.

B:一円周上の動翼枚数 NG:一円周上の翼群数 λ:任意の整数 なお(1)式中NGは、数本の翼をシユラウド、ラ
ツシングワイヤ等で翼群に綴り、この翼群と翼群
との間をダンパで連結する場合に考慮する。また
(1)式は、一般にはλ=0の場合で、励振力の次数
Hとノダルダイアメータ数とが等しいとき成立す
る。
N B : Number of rotor blades on one circumference N G : Number of blade groups on one circumference λ: Any integer In formula (1), N G is the number of blades connected to a shroud, lashing wire, etc. This is taken into consideration when connecting the blade groups with a damper. Also
Equation (1) generally holds true when λ=0 and the order H of the excitation force is equal to the nodal diameter number.

この大きな共振応答を示す点をキヤンベルダイ
ヤグラムで示すと第4図の如くである。キヤンベ
ルダイヤグラムは、翼群の固有振動数が、回転体
の回転数とともにどう変化するか、又その固有振
動数と回転数の整数倍の次数の励振周波数とはど
ういう関係にあるかを表す線図である。このキヤ
ンベルダイヤグラムを示す第4図は、横軸に定格
回転数を100%としたパーセント回転数を、縦軸
に振動数及び回転数の次数を示している。そして
図中A0ND,A1ND…は、円板形m―ノダルダイア
メータ軸方向振動モードの略称で、●印は上記(1)
式を満足する共振応答の大きい共振点である。ま
たT1は1次接線方向振動モードである。
Points exhibiting this large resonance response are shown in a Campbell diagram as shown in FIG. 4. The Campbell diagram is a line that shows how the natural frequency of a blade group changes with the rotational speed of the rotating body, and the relationship between the natural frequency and the excitation frequency of an order that is an integral multiple of the rotational speed. It is a diagram. In FIG. 4, which shows this Campbell diagram, the horizontal axis shows the percentage rotational speed with the rated rotational speed as 100%, and the vertical axis shows the vibration frequency and the order of the rotational speed. In the figure, A 0ND , A 1ND ... are abbreviations for the axial vibration mode of the disc-shaped m-nodal diameter meter, and the ● mark is the above (1).
This is the resonance point with a large resonance response that satisfies the equation. Further, T 1 is the primary tangential vibration mode.

第4図から明らかなように共振点で共振応答レ
ベルを極めて小さいレベルに抑制できれは、振動
モードの問題を解消することができる。図示する
例では、定常運転回転数範囲内では、7―ノダル
ダイアメータの円板形軸方向振動モードの共振が
実機の信頼性上重要な問題となり、この共振応答
レベルを極めて小さいレベルに抑制すればよいこ
とがわかる。
As is clear from FIG. 4, if the resonance response level at the resonance point can be suppressed to an extremely small level, the vibration mode problem can be solved. In the illustrated example, within the steady operating speed range, the resonance of the disk-shaped axial vibration mode of the 7-nodal diameter becomes an important problem for the reliability of the actual machine, and this resonance response level is suppressed to an extremely small level. I know what to do.

本発明者は、上述した知見にもとづき鋭意研究
をおこなつた結果、ノダルダイアメータmに対し
ダンパの数を2mγ個(γは任意の整数)とする
ことにより共振応答が小さいレベルに抑制される
という事実を実験により判明した。
As a result of intensive research based on the above-mentioned knowledge, the present inventor has found that by setting the number of dampers to 2mγ (γ is an arbitrary integer) for the nodal diameter m, the resonance response can be suppressed to a small level. Experiments have revealed that.

第6図は実験結果の一例を示すもので、一円周
上に18個のダンパを配置し、振動モードのノダル
ダイアメータ数を変えた場合の対数減衰率を示す
ものである。また図中破線は、ダンパ無しの場合
の対数減衰率(δ=0.008)を示す。図からノダ
ルダイアメータ数9個のとき、対数減衰率が最も
大きく、ダンパ無しの場合に比べて5倍強の効果
があることを示している。
FIG. 6 shows an example of the experimental results, and shows the logarithmic damping ratio when 18 dampers are arranged on one circumference and the number of nodal diameters of the vibration mode is changed. Furthermore, the broken line in the figure shows the logarithmic damping rate (δ=0.008) without a damper. The figure shows that when the number of nodal diameters is 9, the logarithmic damping rate is the largest, and the effect is more than 5 times that of the case without a damper.

本発明はこのような知見にもとづいてなされた
ものでその目的とするところは、共振点での共振
応答レベルを極めて小さいレベルに抑制すること
により、定格運転回転数での信頼性を向上するこ
とができる回転体を得んとするものである。
The present invention was made based on this knowledge, and its purpose is to improve reliability at the rated operating speed by suppressing the resonance response level at the resonance point to an extremely small level. The aim is to obtain a rotating body that can.

すなわち本発明は、複数の回転動翼群を備え一
円周上にある動翼群を連結した際に生ずるとみな
される軸方向振動モードのノダルダイアメータ
(m)が常用運転回転数の整数倍の次数と共振す
る回転体において、一円周上の動翼群に一円周当
り2mγ個(γは任意の整数)のダンパを均等に
配分して設置することを特徴とする回転体であ
る。
That is, in the present invention, the nodal diameter (m) of the axial vibration mode that is considered to occur when a plurality of rotary blade groups and the rotor blade groups located on one circumference are connected is an integer of the normal operating rotation speed. A rotating body that resonates with twice the order, characterized in that 2 mγ dampers (γ is any integer) are evenly distributed and installed in a group of rotor blades on one circumference. be.

以下本発明を図示する実施例を参照して説明す
る。
The present invention will be described below with reference to illustrative embodiments.

第1図はタービン翼の一段分を示す図である。
図示する動翼群は、シユラウド又はラツシングワ
イヤ等で全円周の翼を連結すると定常運転回転数
範囲のとき動翼群の9―ノダルダイアメータが回
転数の次数9次のものと共振を示す状態にあるも
のである。
FIG. 1 is a diagram showing one stage of a turbine blade.
In the rotor blade group shown in the figure, when the blades of the entire circumference are connected with a shroud or latching wire, etc., the 9-nodal diameter of the rotor blade group resonates with the 9th order of rotation speed in the steady operating speed range. It is in a state that indicates.

この場合ノダルダイアメータ数(m=9)に対
しダンパの数を2mγ個(γは任意の整数)例え
ば18個とし、これを一円周上にほぼ均等に配置す
る。すなわちデイスク1の周囲に設けた動翼2に
ついて、一円周上に8枚綴りの動翼群3を18群に
形成し、動翼群3間にスタブダンパ等のダンパ4
を設けている。
In this case, the number of dampers is set to 2mγ (γ is an arbitrary integer), for example, 18 for the number of nodal diameters (m=9), and these are arranged almost equally on one circumference. That is, regarding the rotor blades 2 provided around the disk 1, 18 groups of eight rotor blades 3 are formed on one circumference, and a damper 4 such as a stub damper is installed between the rotor blade groups 3.
has been established.

この構成によれば、第6図の実験結果から明ら
かなようにダンパ無しの場合に比べて円板形軸方
向振動モードの対数減衰率を5倍強とすることが
できる。
According to this configuration, as is clear from the experimental results shown in FIG. 6, the logarithmic damping rate of the disk-shaped axial vibration mode can be made more than five times that of the case without a damper.

また第4図の場合、定格運転回転数で大きな共
振応答を示すおそれのある振動モードは、7―ノ
ダルダイアメータの円板形軸方向振動モードであ
る。この共振応答を小さいレベルに抑制するに
は、一円周上14ケ所にほぼ等間隔にダンパを配置
すればよい。
In the case of FIG. 4, the vibration mode that may exhibit a large resonance response at the rated operating speed is the disk-shaped axial vibration mode of the 7-nodal diameter. In order to suppress this resonance response to a small level, dampers may be arranged at approximately equal intervals at 14 locations on one circumference.

以上の如く本発明によれば、一円周上に2mγ
個のダンパを等間隔に配置したので、円板形軸方
向振動モードの共振応答を無害にして信頼性を高
めることができる顕著な効果を奏する。
As described above, according to the present invention, 2 mγ on one circumference
Since the dampers are arranged at regular intervals, the resonance response of the disk-shaped axial vibration mode is made harmless and the reliability can be improved, which is a remarkable effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は回転体の動翼群の接線方向振動を示す
図、第2図は同軸方向振動を示す図、第3図は4
―ノダルダイアメータ円板形軸方向振動モードの
例を示す図、第4図はキヤンベルダイヤグラムの
一例を示す線図、第5図は本発明に係す回転体
(タービン翼)の一例を示す概略図、第6図は振
動モードのノダルダイアメータ数と対数減衰率と
の関係を示す図である。 1……デイスク、2……動翼、3……動翼群、
4……ダンパ。
Figure 1 is a diagram showing tangential vibration of the rotor blade group of a rotating body, Figure 2 is a diagram showing coaxial vibration, and Figure 3 is a diagram showing 4
-A diagram showing an example of a nodal diameter disc type axial vibration mode, Fig. 4 is a line diagram showing an example of a Campbell diagram, and Fig. 5 is an example of a rotating body (turbine blade) according to the present invention. The schematic diagram shown in FIG. 6 is a diagram showing the relationship between the nodal diameter number of the vibration mode and the logarithmic damping rate. 1... Disk, 2... Moving blade, 3... Moving blade group,
4...Damper.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の回転動翼群を備え一円周上にある動翼
群を連結した際に生ずるとみなされる軸方向振動
モードのノダルダイアメータ数(m)が常用運転
回転数の整数倍の次数と共振する回転体におい
て、一円周上の動翼群に一円周当り2mγ個(γ
は任意の整数)のダンパを均等に配分して設置す
ることを特徴とする回転体。
1 An order in which the nodal diameter number (m) of the axial vibration mode that is considered to occur when multiple rotor blade groups are connected on one circumference is an integral multiple of the normal operating rotation speed. In a rotating body that resonates with
is an arbitrary integer) dampers are evenly distributed and installed.
JP4199582A 1982-03-17 1982-03-17 Rotary body Granted JPS58158301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4199582A JPS58158301A (en) 1982-03-17 1982-03-17 Rotary body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4199582A JPS58158301A (en) 1982-03-17 1982-03-17 Rotary body

Publications (2)

Publication Number Publication Date
JPS58158301A JPS58158301A (en) 1983-09-20
JPS6227241B2 true JPS6227241B2 (en) 1987-06-13

Family

ID=12623777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4199582A Granted JPS58158301A (en) 1982-03-17 1982-03-17 Rotary body

Country Status (1)

Country Link
JP (1) JPS58158301A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100206U (en) * 1985-12-16 1987-06-26
JPH0218942U (en) * 1988-07-21 1990-02-08

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100206U (en) * 1985-12-16 1987-06-26
JPH0218942U (en) * 1988-07-21 1990-02-08

Also Published As

Publication number Publication date
JPS58158301A (en) 1983-09-20

Similar Documents

Publication Publication Date Title
US3881844A (en) Blade platform vibration dampers
JP4027640B2 (en) Rows of fluid guide members for turbomachines
US6832486B2 (en) Electrical machine
US9410436B2 (en) Blade disk arrangement for blade frequency tuning
US4460316A (en) Blade group with pinned root
US6139275A (en) Impeller for use in cooling dynamoelectric machine
US3958905A (en) Centrifugal compressor with indexed inducer section and pads for damping vibrations therein
US3377050A (en) Shrouded rotor blades
EP0487563A1 (en) Variable skew fan.
JP3107266B2 (en) Fluid machinery and wing devices for fluid machinery
US4217510A (en) Vibration damping stator structure for a hydrogenerator
US3588278A (en) Blade structure for an axial flow elastic fluid utilizing machine
US20080150400A1 (en) Electric machines, rotors, and rotor cages having reduced noise characteristics
JPH08240103A (en) Vibration shock absorber for turbine blade
JPS6227241B2 (en)
JPH0261387A (en) Turbomolecular pump
JPS5917035A (en) Disk rotor for disk brake
US7095152B2 (en) Stator for a line-start electric motor
JPH084761A (en) Damper for bearing
US3050650A (en) Electrical windings for rotary machines
JPS6087639A (en) Ac generator for vehicle
JPH074203A (en) Turbine moving blade
JPH09324603A (en) Turbine rotor blade of high speed rotary machine
JP3940937B2 (en) Turbine blade arrangement method
JPS6385297A (en) Motor fan