JPS62271501A - Magnetostatic wave nonlinear device - Google Patents

Magnetostatic wave nonlinear device

Info

Publication number
JPS62271501A
JPS62271501A JP61115162A JP11516286A JPS62271501A JP S62271501 A JPS62271501 A JP S62271501A JP 61115162 A JP61115162 A JP 61115162A JP 11516286 A JP11516286 A JP 11516286A JP S62271501 A JPS62271501 A JP S62271501A
Authority
JP
Japan
Prior art keywords
magnetic field
thin film
wave
strip conductor
field part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61115162A
Other languages
Japanese (ja)
Inventor
Hideki Asao
英喜 浅尾
Yoshitada Iyama
伊山 義忠
Makoto Matsunaga
誠 松永
Fumio Takeda
武田 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61115162A priority Critical patent/JPS62271501A/en
Publication of JPS62271501A publication Critical patent/JPS62271501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguides (AREA)

Abstract

PURPOSE:To attain broad band by decreaseing the magnetic field strength distribution applied to a YIG thin film device stepwise so as to specify the propagation direction of an electromagnetic wave. CONSTITUTION:A magnetic field having different uniformed strength distribution is fed to a YIG thin film 2 of a microstrip line 6 by a permanent magnet 12 having a large magnetic pole area, a permanent magnet 11 having a small magnetic pole area and a magnetic adjuster iron piece 13 so as to propagate an electromagnetic wave thereby reducing the magnetic field strength distribution stepwise from the strong magnetic field part of the strip conductor 5 toward the weak magnetic field part. Then the noise is attenuated more than the high frequency signal in the strong magnetic field part and both attenuations are less in the weak magnetic field part, the S/N is improved totally to attain broad band of a magnetostatic wave nonlinear device.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野] この発明は、静磁波を用いたマイクロ波信号処理デバイ
スに関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] This invention relates to a microwave signal processing device using static magnetic waves.

〔従来の技術J II9図は、例えばAppl、 Phya 、 Lat
t 、 36(6ハ15March 1980. pp
、 485〜487に示された静磁波非線形デバイスを
示す斜視図である。図において、(1)はGGG (ガ
ドリニクムーガリクムーガーネット)基板、(2)はG
GG基板(1)表面に液相成長して製作し九YIG(イ
ットリクムー鉄−ガーネット)薄膜、(3)はYIG 
# !1(2)表面の両側端に取付けた吸収体、(4)
Fi裏面に地導体を密着した誘電体基板、(5)はYI
G薄111(23表面に近接したストリップ導体、(6
)tj上記誘電体基板(4)と上記ストリップ導体とか
ら構成されるマイクロストリップ線路、(ηは金属基台
、(8)は永久磁石、(9)はa吹、(lO)は上記永
久磁石(8)と上記継鉄(9)とから構成される磁気回
路であ企。
[Prior art J II 9 diagrams are shown in, for example, Appl, Phya, Lat
t, 36 (6ha 15March 1980.pp
, 485-487 is a perspective view showing the magnetostatic wave nonlinear device shown in FIG. In the figure, (1) is a GGG (Gadolinic Mugalic Mugarnet) substrate, and (2) is a G
GG substrate (1) is a YIG (yttrium iron-garnet) thin film fabricated by liquid phase growth on the surface, (3) is a YIG
#! 1 (2) Absorber attached to both ends of the surface, (4)
Dielectric substrate with ground conductor closely attached to the back side of Fi, (5) is YI
G thin 111 (23 strip conductor close to the surface, (6
) tj microstrip line composed of the above dielectric substrate (4) and the above strip conductor, (η is the metal base, (8) is the permanent magnet, (9) is the a-blow, (lO) is the above permanent magnet (8) and the above-mentioned yoke (9).

次に動作について説明する。ここでは、YIG薄[(2
)に近接するストリップ導体(5)の長さ方向を工方向
、YIG薄膜(2)の面を!7面とする。このYIG#
N(2)には、磁気回路(10)によりX方向に均−な
磁界HOが印加される。この磁界HoはYIG薄膜(2
)面に平行であり、またYIG薄膜(2)の膜厚とX方
向の長さの比が10−”程度と小さいため、反磁界が無
視できる。このためYIG N II (2)の内部磁
界Hilは、印加磁界HOに等しい。
Next, the operation will be explained. Here, YIG thin [(2
), the length direction of the strip conductor (5) is in the direction, and the surface of the YIG thin film (2) is! There will be 7 sides. This YIG#
A magnetic field HO uniform in the X direction is applied to N(2) by the magnetic circuit (10). This magnetic field Ho is a YIG thin film (2
) plane, and the ratio of the thickness of the YIG thin film (2) to the length in the Hil is equal to the applied magnetic field HO.

まず、雑音などに相当した小さな電力の寛@波が、マイ
クロストリップmM(6)に入射すると、周波数範囲f
il〜fb1で、ストリップ導体(5)に近接するYI
G薄Ps(2)内に、上記電磁波の電力に比例して静磁
表面波が励起される。ここでfll<fhlとし、YI
G薄膜(2)の飽和磁化を4πM8、磁気回転比をTと
すると、fllはT /H11(H1t+4rMa)、
fhlはT(H1l+2πMa)で表わされる。この静
磁表面波の励起により、小さな電力の電磁波がマイクロ
ストリップ線路(6)通過時に失なう電力は、この電磁
波の電力に比例して静磁表面波に変換される電力に等し
いO つぎに、信号などに相当した大きな電力の電磁波がマイ
クロストリップ線路(6)に入射すると、特定の電力値
pth以上で、かつ電磁波の同波数が2TH11以上で
はYIGなど7工リ磁性体特有の電子スピン歳差異動の
非41形効果が生じ、静磁表面波の励起される量は電磁
波の電力に比例せず、飽和し一定値になる。また、上記
非線形効果が生じた場合には、同時にf/2スピン波と
呼ばれる波が励起され、この波は、励起直後に1lll
!lIK変換される。
First, when a small power harmonic wave corresponding to noise etc. is incident on the microstrip mm(6), the frequency range f
YI close to the strip conductor (5) at il~fb1
A magnetostatic surface wave is excited in the G thin Ps(2) in proportion to the power of the electromagnetic wave. Here, fll<fhl, and YI
If the saturation magnetization of the G thin film (2) is 4πM8 and the gyromagnetic ratio is T, fll is T /H11 (H1t+4rMa),
fhl is expressed as T(H1l+2πMa). Due to the excitation of this magnetostatic surface wave, the power lost when a small power electromagnetic wave passes through the microstrip line (6) is proportional to the power of this electromagnetic wave and is equal to the power converted into a magnetostatic surface wave. When an electromagnetic wave with a large power equivalent to a signal etc. enters the microstrip line (6), if the electric power exceeds a certain power value pth and the wave number of the electromagnetic wave exceeds 2TH11, the electron spin aging, which is unique to magnetic materials such as YIG, will occur. A non-41 type effect of differential motion occurs, and the amount of magnetostatic surface waves excited is not proportional to the power of the electromagnetic wave, but saturates and becomes a constant value. Furthermore, when the above-mentioned nonlinear effect occurs, a wave called an f/2 spin wave is simultaneously excited, and this wave immediately after the excitation
! It is converted to lIK.

このため、pth以上の大きな電力の電磁波がマイクロ
ストリップ線路(6)を通過する場合に失なう電力は、
飽和により一定値だけ静磁表面板に変換された電力と、
f/2スピン波に変換された電力の和に等しい。
For this reason, the power lost when electromagnetic waves with large power greater than pth passes through the microstrip line (6) is:
The electric power converted to the magnetostatic surface plate by a certain value due to saturation,
It is equal to the sum of the powers converted into f/2 spin waves.

そこでマイクロストリップ線路(6)を通過する場合に
失なう電力と入射電力との比で決まる挿入損失を、小さ
な電力Ota技とpth以上の大きな電磁波をそれぞれ
入射する2つの場合において比較すると、一般にPth
以上の大きな電iniを入射した場合の方が押入損失が
小さくなる。したがって入射する電磁波の電力を大きく
するとマイクロストリップ線路(6)の押入損失が小さ
くなるという非線形性が現われる。
Therefore, when comparing the insertion loss determined by the ratio of the power lost when passing through the microstrip line (6) and the incident power in two cases, one in which a small power Ota technique and one in which a large electromagnetic wave of PTH or more is incident, it is generally found that Pth
The intrusion loss is smaller when a larger electric ini is incident than the above. Therefore, nonlinearity appears in that as the power of the incident electromagnetic wave increases, the intrusion loss of the microstrip line (6) decreases.

従来の静磁波非線形デバイスは、この性質を利用したも
のであり、入射した小さな電力の雑音は大きく減衰し、
大きな電力の信号はわずかに減衰することから、信号対
雑音比を拡大する機能をもつ。
Conventional magnetostatic wave nonlinear devices utilize this property, and the noise of a small incident power is greatly attenuated.
Since high power signals are attenuated slightly, it has the function of expanding the signal-to-noise ratio.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の静磁波非線形デバイスは以上のようにYIGN展
(2)内の内部磁界を均一にしているため、11J作帯
JiiE幅h T  Hls(H1x+4gM5) ト
11’ ()Iil+2+cMa)の間に制限されると
いう問題点があった。
Since the conventional magnetostatic wave nonlinear device makes the internal magnetic field in the YIGN expansion (2) uniform as described above, it is limited between the 11J working band JiiE width h T Hls (H1x + 4gM5) and 11' ()Iil + 2 + cMa). There was a problem that

この発明は上記のような問題点を解消するためになされ
たもので、広帯域化が図れる静磁波非線形デバイスを得
ることを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to obtain a magnetostatic wave nonlinear device that can achieve a wide band.

c問題点を解決するための手段〕 この発明に係る静磁波非線形デバイスにおいては%YI
G薄膜内に、マイクロストリップ導体に沿った方向に磁
界の強度分布をほぼステップ状に順次減少するようにし
、強い磁界が加わるYIG薄膜に近接したストリップ導
体から、弱い磁界が加わるYIG薄膜に近接したストリ
ップ導体の方向へ電磁波を伝搬させるようにしたもので
ある。
Means for Solving Problem c] In the magnetostatic wave nonlinear device according to the present invention, %YI
In the G thin film, the intensity distribution of the magnetic field is gradually decreased in a stepwise manner in the direction along the microstrip conductor, from the strip conductor close to the YIG thin film to which a strong magnetic field is applied to the strip conductor close to the YIG thin film to which a weak magnetic field is applied. It is designed to propagate electromagnetic waves in the direction of the strip conductor.

〔作用〕[Effect]

この発明における静磁波非線形デバイスは、はばステッ
プ状の不均一な磁界をYIG薄膜に加え、電磁波の伝搬
方向を特定することによシ、静磁表面波が励起される周
波数帯域幅が拡大され、かつ、磁界を不均一にしたこと
に伴なうf/2スピン技励起による信り対雑音比の劣化
が抑圧され、広帯域化が実現てきる。
In the magnetostatic wave nonlinear device of this invention, the frequency band width in which magnetostatic surface waves are excited is expanded by applying a step-like nonuniform magnetic field to the YIG thin film and specifying the propagation direction of electromagnetic waves. Moreover, deterioration of the reliability-to-noise ratio due to f/2 spin technique excitation caused by making the magnetic field non-uniform is suppressed, and a wide band can be realized.

〔実施例1 以下、この発明の一実施例を図について説明する。第1
図において、(11)#−j磁極面積の小さい永久磁石
、(12) H磁極面積の大きい永久磁石、(13)は
磁極面積の小さい永久磁石(11)に取付けた整磁用鉄
片、(14)は、これら永久磁石(11)、(12) 
、整磁用鉄片(13)および継鉄(9)よ砂構成される
磁9L回路、(15)は入力端子、 (16)は出力端
子である。
[Embodiment 1] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1st
In the figure, (11) #-j permanent magnet with a small magnetic pole area, (12) H permanent magnet with a large magnetic pole area, (13) a magnetic shunt iron piece attached to the permanent magnet (11) with a small magnetic pole area, (14) ) are these permanent magnets (11), (12)
, a magnetic 9L circuit consisting of a magnetizing iron piece (13) and a yoke (9), (15) is an input terminal, and (16) is an output terminal.

次に動作について説明する。ここでは、説明を簡単にす
るため、はぼステップ状で順次減少する磁界強度分布と
しては、はぼ強弱2値のステップ状の場合について述べ
る。第2図に、整磁用鉄片(13)と磁極面積の大きな
永久磁石(12)との間の磁界強度分布を示す。磁気回
路(14)の2つの磁極形状が異なるため不均一な磁界
強度分布になる。また、磁極面積の小さな永久磁石(1
1)に取付けた整磁用鉄片(13)の先端を、例えば第
1図に示すように凹形状とすることにより、この整磁用
鉄片(13)近傍の磁界強度分布を平担にするとかでき
る。この磁界の中に配置したYIG薄膜(2)内では、
前記の通り反磁界の影響が無視でき、この磁界強度に等
しい内部磁界が存在する。ここでは以下の説明を簡単に
するため上記内部磁界の強度分布を第3図に示すように
ステップ状の分布に近似する。また、この2値の内部磁
界強度の弱い方をHl2、強い方をHimとする。さら
に内部磁界強度Hi2、Hlmは、それぞれの内s磁界
強度Hi!、Hlmに応じた靜磁波弗線形デバイスの動
作帯v:、f12〜fh2、fll〜fh3のfhlと
fllが一致するように決められるもノドスル。ッfi
 D fll、fhl、fls、fbs o大tJJl
係をflll<fhll=fll <fhlとする。第
4図には、これら内部磁界強度と動作帯域の関係を示す
。なお図の中の斜線部は静磁波非線形デバイスの動作可
能鎖板を示す。第5、第6図には、それぞれ内部磁界強
度がHlm 、 1lilが単独に加わる静磁波非線形
デバイスの挿入損失特性を示す。本発明による静磁波非
線形デバイスはこれら第5、第6図に示す押入損失特性
をもつ2つの静磁波非線形デバイスを直列接続したもの
と見なすことができる。しかし、信号対雑音比を大きく
する動作をfll −fhlの周波数範囲で行なわせる
ためには、強い磁界が加わるYIG薄膜(2)に近接し
たストリップ導体(5)から弱い磁界が加わるY I 
G 4M(2)に近接したストリップ導体(5)の方向
へ電磁波を伝搬させる必要がある。この理由を以下に説
明する。なお以下の説明において弱い磁界H12、およ
び強い磁界H1sが加ワるYlG薄[(2)% マイク
ロストリップ線路(6)をそれぞれ弱磁界部分、強磁界
部分と呼ぶ。
Next, the operation will be explained. Here, in order to simplify the explanation, a case will be described in which the magnetic field strength distribution that sequentially decreases in a stepwise manner has a stepwise binary strength distribution. FIG. 2 shows the magnetic field strength distribution between the magnetic shunt iron piece (13) and the permanent magnet (12) with a large magnetic pole area. Since the two magnetic pole shapes of the magnetic circuit (14) are different, the magnetic field strength distribution is non-uniform. In addition, permanent magnets with a small magnetic pole area (1
For example, by making the tip of the magnetic shunt iron piece (13) attached to the magnetic field shunt iron piece (13) concave as shown in Fig. 1, the magnetic field strength distribution near this magnetic shunt iron piece (13) can be flattened. can. Inside the YIG thin film (2) placed in this magnetic field,
As mentioned above, the influence of the demagnetizing field is negligible, and there is an internal magnetic field equal to the strength of this magnetic field. Here, in order to simplify the following explanation, the intensity distribution of the internal magnetic field is approximated to a step-like distribution as shown in FIG. Further, the weaker one of these binary internal magnetic field strengths is designated as Hl2, and the stronger one is designated as Him. Furthermore, the internal magnetic field intensities Hi2 and Hlm are the respective internal magnetic field intensities Hi! , Hlm The operation band v of the silent magnetic wave flat linear device is determined so that fhl and flll of f12 to fh2 and flll to fh3 match. fffi
D fll, fhl, fls, fbs o large tJJl
Let fll<fhll=fll<fhl. FIG. 4 shows the relationship between the internal magnetic field strength and the operating band. Note that the shaded area in the figure indicates the operable chain plate of the magnetostatic wave nonlinear device. 5 and 6 show the insertion loss characteristics of a magnetostatic wave nonlinear device to which internal magnetic field strengths of Hlm and 1lil are applied independently, respectively. The magnetostatic wave nonlinear device according to the present invention can be regarded as a series connection of two magnetostatic wave nonlinear devices having the intrusion loss characteristics shown in FIGS. 5 and 6. However, in order to increase the signal-to-noise ratio in the fll - fhl frequency range, a weak magnetic field is applied from the strip conductor (5) close to the YIG thin film (2) to which a strong magnetic field is applied.
It is necessary to propagate electromagnetic waves in the direction of the strip conductor (5) close to G 4M (2). The reason for this will be explained below. In the following description, the YlG thin [(2)% microstrip line (6) to which the weak magnetic field H12 and the strong magnetic field H1s are applied will be referred to as the weak magnetic field section and the strong magnetic field section, respectively.

まず、静磁表面波が励起される帯域以外でのf/2スピ
ン波による電力損失について説明する。静磁表面波が励
起される帯域より高い周波数では、r/2スピン波に変
換される電力損失だけがマイクロストリップ線路(6)
の押入損失に寄与する。したかつてこの場合の押入損失
は電磁波の電力が大きいほど大きくなり、信号対雑音比
が小さくなる。
First, power loss due to f/2 spin waves outside the band where magnetostatic surface waves are excited will be explained. At frequencies higher than the band in which magnetostatic surface waves are excited, only the power loss converted to r/2 spin waves occurs in the microstrip line (6).
This contributes to the intrusion loss. However, the intrusion loss in this case increases as the power of the electromagnetic wave increases, and the signal-to-noise ratio decreases.

一方、f/2スピン波が励起され始める周波数2孤と静
磁表面波が励起され始める周波数T v’ Hl(H1
+4πMs)は通常の使用周波数帯域においてほぼ一致
するため、静磁表面波が励起される帯域より低い周波数
では、f/2スピン波による電力損失の影響は現われな
い。
On the other hand, the frequency T v' Hl (H1
+4πMs) are almost the same in the normally used frequency band, so the influence of power loss due to f/2 spin waves does not appear at frequencies lower than the band in which magnetostatic surface waves are excited.

そこで周波数帯域fll〜fhllの低域側f12〜f
h2では、強磁界部分の押入損失//i第6図に示すよ
うにほとんど0であるため、強磁界部分と弱磁界部分を
直列接続した場合の総合の押入損失特性は、強・弱いず
れの磁界が加わる部分から電磁波を入射しても、弱磁界
部分の挿入損失特性に一致する。従って信号対雑音比を
大きくする効果が現われるため間Mは無い。゛ 一方、周波数帯域flll〜fhlの高域側fil〜f
h3では、弱磁界部分は第5図のとおり信号対雑音(Q
) 比を小さくするように働く。このため、高域側f1m−
” fhlでは弱磁界部分の信号対雑音比を小さくする
効果と、強磁界部分の信号対雑音比を大きくする効果が
重畳することになる。この周波数帯において、本発明の
構成に従い強磁界部分から弱磁界部分の方向へ電Wi波
を伝搬させる場合には、まず強磁界部分で信号対雑音比
を大きくする効果が生じ、信号は若干減衰し、雑音は大
きく減衰する。
Therefore, the lower side f12 to f of the frequency band fll to fhll
In h2, the intrusion loss in the strong magnetic field part //i is almost 0 as shown in Figure 6, so the overall intrusion loss characteristic when the strong magnetic field part and the weak magnetic field part are connected in series is Even if electromagnetic waves are incident from the part where the magnetic field is applied, the insertion loss characteristics match the insertion loss characteristics of the weak magnetic field part. Therefore, since the effect of increasing the signal-to-noise ratio appears, there is no interval M.゛On the other hand, the high frequency side fil~f of the frequency band fllll~fhl
In h3, the weak magnetic field part has a signal-to-noise (Q
) acts to reduce the ratio. For this reason, the high frequency side f1m-
” In fhl, the effect of reducing the signal-to-noise ratio in the weak magnetic field portion and the effect of increasing the signal-to-noise ratio in the strong magnetic field portion are superimposed.In this frequency band, according to the configuration of the present invention, When the electric Wi wave is propagated in the direction of the weak magnetic field part, the effect of increasing the signal-to-noise ratio first occurs in the strong magnetic field part, and the signal is slightly attenuated and the noise is greatly attenuated.

そこで、つぎの弱磁界部分に入射する信号の電力は着干
小さくなっており、弱磁界部分ではこの信号と雑音はほ
とんど減衰しない。従って強磁界部分から弱磁界部分へ
電磁波を伝搬させた場合には、強磁界部分と弱磁界部分
の総合の押入損失は信号に比較し雑音に対しての方が大
きくなり、信号対雑音比を大きくする効果が生じる。第
7図には強磁界部分から弱磁界部分へ電磁波を伝搬させ
る本発明による静磁波非線形デバイスの挿入損失特性を
示す。周波数flJ〜fbjにおいて信りに対する押入
損失が雑音に対する押入損失より大きくなり、周波数f
l〜fhsにおいて信号対雑音比を大きくできる。
Therefore, the power of the signal that enters the next weak magnetic field section is considerably smaller, and this signal and noise are hardly attenuated in the weak magnetic field section. Therefore, when an electromagnetic wave is propagated from a strong magnetic field part to a weak magnetic field part, the total intrusion loss of the strong magnetic field part and the weak magnetic field part is larger for noise than for the signal, and the signal-to-noise ratio is This has the effect of increasing the size. FIG. 7 shows the insertion loss characteristics of the magnetostatic wave nonlinear device according to the present invention that propagates electromagnetic waves from a strong magnetic field section to a weak magnetic field section. At frequencies flJ to fbj, the intrusion loss for faith becomes larger than the intrusion loss for noise, and the frequency f
The signal-to-noise ratio can be increased in l to fhs.

ところが、前記と同じく高板側周波数帯w、f11〜f
baにおいて、本発明の構成とは逆に弱磁界部分から強
磁界部分の方向へ電磁波が伝搬する場合には、まず弱磁
界部分で信号対雑音比を小さくする効果が庄じ、信号は
大きく減衰し、雑音は減衰しない。そこで、つぎの強磁
界部分に入射する信号の電力が小さくなっており、強磁
界部分ではとの信gは雑音とともに大きく減衰する。従
って弱磁界部分から強磁界部分へ電磁波を伝搬させた場
合には、弱磁界部分と強磁界部分の総合の押入損失は、
信号・雑音いずれに対しても大きくなり信号対雑音比を
大きくする効果は現われない。188図には、本発明の
構成とは逆に1弱磁界部分から強磁界部分へ電磁波を伝
搬させ九場合の挿入損失特性を示す。周波数fl〜fh
lにおいて信号に対する挿入損失が雑音と同程度となり
、この周波数帯においては信号対雑音比を大きくするこ
とはできない。
However, as above, the high plate side frequency band w, f11 to f
In ba, when electromagnetic waves propagate from the weak magnetic field part to the strong magnetic field part, contrary to the configuration of the present invention, the effect of reducing the signal-to-noise ratio is first exerted in the weak magnetic field part, and the signal is greatly attenuated. However, the noise is not attenuated. Therefore, the power of the signal incident on the next strong magnetic field section is reduced, and the signal g in the strong magnetic field section is greatly attenuated along with noise. Therefore, when electromagnetic waves are propagated from a weak magnetic field part to a strong magnetic field part, the total intrusion loss of the weak magnetic field part and the strong magnetic field part is
The effect of increasing both signal and noise and increasing the signal-to-noise ratio does not appear. FIG. 188 shows insertion loss characteristics in a case where electromagnetic waves are propagated from a weak magnetic field part to a strong magnetic field part, contrary to the configuration of the present invention. Frequency fl~fh
At 1, the insertion loss for the signal is on the same level as the noise, and the signal-to-noise ratio cannot be increased in this frequency band.

以上のように、不均一な磁界をYIG薄al(2)に加
え、強磁界部分から弱磁界部分へ電磁波を伝搬させるこ
とにより、静磁表面波を励起できる周波数を拡大し、か
つ、磁界を不均一にしたことに伴なう信号対雑音比の劣
化を抑圧し、広帯域化を図ることができる効果がある。
As described above, by applying a non-uniform magnetic field to YIG thin Al(2) and propagating electromagnetic waves from the strong magnetic field part to the weak magnetic field part, we can expand the frequency at which magnetostatic surface waves can be excited and increase the magnetic field. This has the effect of suppressing deterioration of the signal-to-noise ratio due to non-uniformity and achieving a wider band.

また、上記実旌例ではほぼ強弱2値のステップ状の磁界
強度分布の場合について説明したが、強中弱3値など2
値以上の場合であっても、強い磁界が加わる部分から電
磁波を入射する限シ同様の効果を奏する。
In addition, in the practical example above, the case of a step-like magnetic field strength distribution with almost two strong and weak values was explained, but it is also possible to
Even if the value exceeds this value, the same effect can be achieved as long as the electromagnetic waves are incident from the part to which a strong magnetic field is applied.

【発明の効果J 以上のように、この発明によればYIG薄展(2)Kは
ぼステップ状の不均一磁界を印加し、強磁界部分から電
磁波を入射することにより静磁波非線形デバイスの広帯
域化が図れる効果がある。
Effects of the Invention J As described above, according to the present invention, YIG thin-rolled (2) This has the effect of increasing the

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例にょる静磁波非線形デバイ
スを示す斜視図、第2図はこの発明による静磁波非線形
デバイスの磁極間の磁界強度分布図、第3図は第2図の
磁界強度分布をモデル化しく12) 九図、第4図はYIG薄膜内部磁界強度と静磁波非線形
デバイスの動作帯域との関係を示す図、第5図は弱磁界
部分の挿入損失特性、第6図は強磁界部分の挿入損失特
性図、第7図はこの発明による静磁波非線形デバイスの
押入損失特性図、第8図は弱磁界部分から強磁界部分へ
電磁波を伝搬させた場合の挿入損失特性図、第9図は、
従来の静磁波非線形デバイスを示す斜視図である。 図中符’) (2)はY工all膜、(3)は吸収体、
(4)は誘電体基板、(5)はストリップ導体、(6)
はマイクロストリップ線路、(14)は磁気回路。 なお1図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a perspective view showing a magnetostatic wave nonlinear device according to an embodiment of the present invention, FIG. 2 is a magnetic field strength distribution diagram between magnetic poles of the magnetostatic wave nonlinear device according to the present invention, and FIG. 3 is a magnetic field shown in FIG. Modeling the intensity distribution12) Figures 9 and 4 are diagrams showing the relationship between the YIG thin film internal magnetic field strength and the operating band of the magnetostatic wave nonlinear device, Figure 5 is the insertion loss characteristic of the weak magnetic field portion, and Figure 6 7 is an insertion loss characteristic diagram of the strong magnetic field section, FIG. 7 is an intrusion loss characteristic diagram of the magnetostatic wave nonlinear device according to the present invention, and FIG. 8 is an insertion loss characteristic diagram when electromagnetic waves are propagated from a weak magnetic field section to a strong magnetic field section. , Figure 9 is
FIG. 2 is a perspective view showing a conventional magnetostatic wave nonlinear device. (2) is a Y-all membrane, (3) is an absorber,
(4) is a dielectric substrate, (5) is a strip conductor, (6)
is a microstrip line, and (14) is a magnetic circuit. In addition, in FIG. 1, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] ストリップ導体を有するマイクロストリップ線路を伝搬
する電磁波の一部が、上記ストリップ導体の近傍に配置
されかつ上記ストリップ導体の長さ方向に磁界を加えら
れたYIG薄膜の内部で、静磁波に非線形に変換される
現象を利用し、大きな電力の電磁波に対し挿入損失を小
さくできる静磁波非線形デバイスにおいて、上記YIG
薄膜に加わる磁界の強度分布を、上記ストリップ導体の
長さ方向にほぼステップ状に順次減少する分布とし、強
い磁界が加わるYIG薄膜から弱い磁界が加わるYIG
薄膜の方向へ向つてマイクロストリップ線路内の電磁波
を伝搬させる構成としたことを特徴とする静磁波非線形
デバイス。
A part of the electromagnetic waves propagating through a microstrip line having a strip conductor is nonlinearly converted into a static magnetic wave inside a YIG thin film placed near the strip conductor and subjected to a magnetic field in the length direction of the strip conductor. The above YIG
The intensity distribution of the magnetic field applied to the thin film is made to be a distribution that gradually decreases in an almost step-like manner in the length direction of the strip conductor, from YIG thin film to which a strong magnetic field is applied to YIG thin film to which a weak magnetic field is applied.
A magnetostatic wave nonlinear device characterized by having a configuration in which electromagnetic waves in a microstrip line are propagated in the direction of a thin film.
JP61115162A 1986-05-20 1986-05-20 Magnetostatic wave nonlinear device Pending JPS62271501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61115162A JPS62271501A (en) 1986-05-20 1986-05-20 Magnetostatic wave nonlinear device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61115162A JPS62271501A (en) 1986-05-20 1986-05-20 Magnetostatic wave nonlinear device

Publications (1)

Publication Number Publication Date
JPS62271501A true JPS62271501A (en) 1987-11-25

Family

ID=14655868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61115162A Pending JPS62271501A (en) 1986-05-20 1986-05-20 Magnetostatic wave nonlinear device

Country Status (1)

Country Link
JP (1) JPS62271501A (en)

Similar Documents

Publication Publication Date Title
US4027253A (en) Non-reciprocal broadband slot line device
US2784378A (en) Magnetically controlled microwave structures
JP3019008B2 (en) Magnetostatic wave device
KR100226571B1 (en) Distributor, synthesizer and s/n enhancer
JPS62271501A (en) Magnetostatic wave nonlinear device
Wang et al. Permanent magnet-based guided-wave magnetooptic Bragg cell modules
JP2000082901A (en) Latching circulator and low-pass filter
EP0658978A1 (en) Magnetostatic wave device
JP2522579B2 (en) Magnetostatic microwave oscillator for PLL control
JP2694440B2 (en) Magnetic device
JP3272967B2 (en) Magnetostatic wave device and voltage controlled oscillator using the same
JP3657681B2 (en) Magnetostatic wave S / N enhancer
US5781079A (en) Magnetostatic wave device
US5289143A (en) Magnetostatic wave device
CN116154434B (en) Complementary split ring resonator YIG limiter
JPS62224101A (en) Magnetostatic wave filter bank
US2970274A (en) Solid state amplifier
JPS63125002A (en) Static magnetic wave nonlinear device
JPH0727682Y2 (en) MSW filter
JPS63127603A (en) Magnetostatic wave nonlinear device
JPH104301A (en) Magnetostatic wave device
JPH05175710A (en) Temperature compensation type magnetostatic surface wave filter
JPH0613803A (en) S/n enhancer
JPS6019161B2 (en) Ferrimagnetic circuit element
JPH0727683Y2 (en) Magnetostatic wave device