JPS6227142B2 - - Google Patents

Info

Publication number
JPS6227142B2
JPS6227142B2 JP55150037A JP15003780A JPS6227142B2 JP S6227142 B2 JPS6227142 B2 JP S6227142B2 JP 55150037 A JP55150037 A JP 55150037A JP 15003780 A JP15003780 A JP 15003780A JP S6227142 B2 JPS6227142 B2 JP S6227142B2
Authority
JP
Japan
Prior art keywords
fibers
fiber
prepreg
composite material
prepreg sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55150037A
Other languages
Japanese (ja)
Other versions
JPS5774117A (en
Inventor
Akimitsu Ookura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shingijutsu Kaihatsu Jigyodan filed Critical Shingijutsu Kaihatsu Jigyodan
Priority to JP55150037A priority Critical patent/JPS5774117A/en
Publication of JPS5774117A publication Critical patent/JPS5774117A/en
Publication of JPS6227142B2 publication Critical patent/JPS6227142B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、均一に展開された繊維にプラズマ溶
射してプリプレグシートを製造し、このプリプレ
グシートと同様な工程で製造される適数個のプリ
プレグシートを積層して加熱、加圧して製造する
繊維強化材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves manufacturing a prepreg sheet by plasma spraying uniformly spread fibers, and then laminating and heating an appropriate number of prepreg sheets manufactured in the same process as this prepreg sheet. , relates to a method for producing a fiber reinforced material under pressure.

従来のこの種の方法として、マトリツクス材料
をイオン化し、蒸着するイオンプレーテング法に
よるプリプレグシートを製造しこれを適当数積層
してホツトプレスにより成型する方法があるが、
マトリツクス材料を気化し、イオン化して繊維表
面にコーテングするために真空中で実施しなけれ
ばならず連続的に製造しようとする場合に極めて
不利である。仮に真空中でイオンプレーテングと
ホツトプレスを連続的に実施しようとすると大設
備が必要となるのとイオンプレーテング速度とホ
ツトプレス速度の制御が極めて困難で連続化は不
可能であるためバツチシステムを採用しているの
でコスト高の大きな原因となる。
As a conventional method of this type, there is a method in which prepreg sheets are manufactured by ion plating, in which a matrix material is ionized and vapor-deposited, and a suitable number of prepreg sheets are laminated and molded by hot pressing.
In order to vaporize and ionize the matrix material and coat the fiber surface, it must be carried out in a vacuum, which is extremely disadvantageous when continuous production is desired. If we tried to perform ion plating and hot pressing continuously in a vacuum, large equipment would be required, and it would be extremely difficult to control the ion plating speed and hot pressing speed, making continuous operation impossible, so a batch system would be required. This is a major cause of high costs.

また、連続製造が可能な方法として、溶体浸透
法、押し出し法、引抜き法等、各種の方法が試み
られているが、マトリツクスを金属溶湯として利
用する場合、例えば炭素繊維は必然的にマトリツ
クス金属の溶融温度迄昇温し、その表面に金属炭
化物が生ずるのを防ぐことが出来なかつた。この
金属炭化物はもろく、応力が作用した場合に炭素
繊維と金属マトリツクスとの密着を破壊し、複合
材料の強度低下の原因となつていた。その上、マ
トリツクスの固化の時点で強化繊維の分布を直接
に制御することが出来ず、複合材中への繊維の均
一分散の点からも問題があつたものである。
In addition, various methods such as solution infiltration method, extrusion method, and pultrusion method have been tried as methods that enable continuous production, but when using a matrix as a molten metal, for example, carbon fibers are inevitably produced by the matrix metal. It was not possible to prevent the temperature from rising to the melting temperature and the formation of metal carbides on the surface. This metal carbide is brittle and breaks the adhesion between the carbon fiber and the metal matrix when stress is applied, causing a decrease in the strength of the composite material. Furthermore, it is not possible to directly control the distribution of reinforcing fibers at the time of solidification of the matrix, which poses a problem in terms of uniform dispersion of the fibers in the composite material.

本発明は、上記の欠点を解決したもので、まず
本発明の方法に使用する装置について図面で説明
する。
The present invention solves the above-mentioned drawbacks, and first, the apparatus used in the method of the present invention will be explained with reference to the drawings.

多数の炭素繊維、ボロン繊維、硝子繊維等の複
合材強化用の長繊維からなる繊維束1を巻取つた
巻取りロール2とこの繊維束1を均一に末広がり
に展開するための横向き流を発生させるための横
向き流発生装置3と均一に展開された繊維4を取
るための駆動展開ドラム5とこの駆動展開ドラム
5上に均一に展開された繊維4にマトリツクス材
料をプラズマ溶射するプラズマ溶射装置7によつ
てプリプレグシート6の製造装置は構成され、こ
の製造装置は第1図及び第2図に示す如く適数台
配置され、それぞれプリプレグシート6,6,6
…を製造する。この適数個のプリプレグシート
6,6,6…を互に重なり合う状態にして加熱す
る加熱装置8と互に重なり合つた適数個のプリプ
レグシート6,6,6…を一体に加圧圧着する加
圧成型装置9より繊維強化複合材の製造装置は構
成されている。また上記各装置について更に詳細
に説明すると、横向き流発生装置3はガイドロー
ル10と駆動展開ドラム5間で且つ、繊維束1を
中心として対称位置にそれぞれ配置され、圧縮空
気を供給するための供給パイプ11や圧縮空気を
噴出するためのノズル12等より構成されてい
る。またプラズマ溶射装置7はプラズマスプレー
本体13とAl、Tiまた場合によつてはプラスチ
ツク等のマトリツクス材料を供給するための材料
供給パイプ14とAr―Heガスを供給するための
ガス供給パイプ15とプラズマスプレー本体内を
冷却するための冷却水を供給するための冷却水供
給パイプ16と冷却水を排出するための排水パイ
プ17及びスプレー本体13の高さを調整しなが
ら支持するための支持脚18とスプレー本体13
を前後に移動するための車輪19,20を取り付
けた台座21より構成され、この台座21は駆動
手段22によつて自動的に前後に移動してプラズ
マ溶射条件を制御する。23はプラズマスプレー
本体13に取り付けられたノズルで、24はプリ
プレグシート6の厚みを制御するための圧延ロー
ルである。加熱装置8は加熱ヒーター25やガス
バーナー26等を内蔵した加熱機器27と適数個
のプリプレグシート6,6,6…を互に重なり合
う状態にして加熱機器27に誘導するためのプリ
プレグシートの積層調整ロール28,29より構
成されている。また加圧成型装置9は互に重なり
合つた適数個のプリプレグシート6,6,6,…
を一体に加圧圧着するための加圧力調整可能な加
圧ロール30,31より構成されており、32は
適数個のプリプレグシート6,6,6,…を加圧
圧着した繊維強化複合材である。また別の実施例
として加圧成型装置9の加圧ロール30,31を
縦または横方向に適数個配列して、その間に加熱
装置8を配列して加熱―ローリング―加熱―ロー
リングを繰返して所定の厚みや幅をもつた平板状
の繊維強化複合材を製造することも可能であり、
また加圧ロール30,31のかわりに変形ロール
を使用することによつてL型、H型等の繊維強化
複合材を製造することも可能である。また更に別
の実施例として適数個のプリプレグシートを積層
する工程でプリプレグシート間にステンレス板、
金属網、炭素粉末等を介在させる方法や縦方向の
繊維によつて強化されたプリプレグシート間に横
方向の繊維によつて強化されたプリプレグシート
板を適数枚サンドイツチに介在させる方法やプラ
ズマ溶射工程で短繊維も一緒に吹付けて繊維強化
複合材の強度を更に強くする方法も実施できる。
また加熱装置8内にプレス装置を配置して加熱と
同時にプレスして複合材を製造することも可能で
ある。
A take-up roll 2 winds up a fiber bundle 1 made of a large number of long fibers for reinforcing composite materials such as carbon fibers, boron fibers, glass fibers, etc., and a lateral flow is generated to uniformly spread out the fiber bundle 1. a lateral flow generating device 3 for taking the uniformly spread fibers 4; a driving spreading drum 5 for taking the uniformly spread fibers 4; and a plasma spraying device 7 for plasma spraying a matrix material onto the fibers 4 evenly spread on the driving spreading drum 5. As shown in FIG. 1 and FIG.
Manufacture... The heating device 8 heats the appropriate number of prepreg sheets 6, 6, 6... in a state where they are overlapped with each other, and the appropriate number of overlapped prepreg sheets 6, 6, 6... are bonded together under pressure. The pressure molding device 9 constitutes a fiber reinforced composite material manufacturing device. Further, to explain each of the above-mentioned devices in more detail, the lateral flow generating devices 3 are arranged between the guide roll 10 and the driving spreading drum 5 and at symmetrical positions with the fiber bundle 1 as the center, and are used to supply compressed air. It is composed of a pipe 11, a nozzle 12 for ejecting compressed air, and the like. The plasma spraying device 7 includes a plasma spray main body 13, a material supply pipe 14 for supplying matrix materials such as Al, Ti, or in some cases plastic, a gas supply pipe 15 for supplying Ar--He gas, and a plasma spray main body 13. A cooling water supply pipe 16 for supplying cooling water to cool the inside of the spray main body, a drainage pipe 17 for discharging the cooling water, and support legs 18 for supporting the spray main body 13 while adjusting its height. Spray main body 13
The pedestal 21 is equipped with wheels 19 and 20 for moving the plasma back and forth, and the pedestal 21 is automatically moved back and forth by a driving means 22 to control the plasma spraying conditions. 23 is a nozzle attached to the plasma spray main body 13, and 24 is a rolling roll for controlling the thickness of the prepreg sheet 6. The heating device 8 includes a heating device 27 having a built-in heating heater 25, a gas burner 26, etc., and a stack of prepreg sheets for guiding an appropriate number of prepreg sheets 6, 6, 6... to the heating device 27 in an overlapping state. It is composed of adjustment rolls 28 and 29. In addition, the pressure molding device 9 is configured to produce an appropriate number of prepreg sheets 6, 6, 6, . . .
It is composed of pressure rolls 30, 31 whose pressure can be adjusted for integrally pressurizing and crimping, and 32 is a fiber-reinforced composite material made by pressurizing and crimping an appropriate number of prepreg sheets 6, 6, 6, ... It is. In another embodiment, an appropriate number of pressure rolls 30 and 31 of the pressure molding device 9 are arranged vertically or horizontally, and a heating device 8 is arranged between them to repeat heating-rolling-heating-rolling. It is also possible to manufacture flat fiber-reinforced composite materials with a predetermined thickness and width.
Furthermore, by using deformed rolls instead of the pressure rolls 30 and 31, it is also possible to manufacture fiber-reinforced composite materials such as L-shaped and H-shaped. As yet another example, in the process of laminating an appropriate number of prepreg sheets, a stainless steel plate is inserted between the prepreg sheets.
A method of interposing a metal mesh, carbon powder, etc., a method of interposing an appropriate number of prepreg sheet plates reinforced by horizontal fibers between prepreg sheets reinforced by vertical fibers in a sandwich trench, and a method of plasma spraying. It is also possible to further strengthen the strength of the fiber-reinforced composite material by spraying short fibers with it during the process.
It is also possible to arrange a press device in the heating device 8 and press the material simultaneously with heating to manufacture a composite material.

次に本発明の繊維強化複合材の製造方法につい
て説明する。
Next, a method for manufacturing the fiber reinforced composite material of the present invention will be explained.

まず炭素繊維、ボロン繊維、ガラス繊維等の複
合材強化用の適宜の繊維4からなる繊維束1を巻
取りロール2に巻取り、この巻取られた繊維束1
の一端を駆動展開ドラム5にかけて掛け渡し、こ
のドラム5を駆動すると同時に横向き流発生装置
3に供給パイプ11より圧縮空気を供給すると繊
維束1を中心として互に相対する位置に配置され
た横向き流発生装置3より噴出する圧縮空気は互
に衝突して横向き流を発生し、この横向き流によ
つて繊維束1は均一に末広がりに展開され、この
均一に展開された繊維4が適当なテンシヨンの作
用下に一方向に整列させられて順次駆動展開ドラ
ム5上を通過する工程で、プラズマスプレー本体
13に材料供給パイプ14よりたとえばAlの溶
融金属マトリツクス材料を供給し、ガス供給パイ
プ15よりAr―Heガスを供給すると駆動展開ド
ラム5上の均一に展開された繊維にプラズマスプ
レー本体13のノズル23よりマトリツクス材料
が微粒子状で連続して溶射されるとこのマトリツ
クス材料は展開ドラム5上で均一に展開された繊
維4の間や側部よりはいり込み堆積されて上面が
スポンヂ状でドラム面側がより密なプリプレグシ
ート6が形成され、更に圧延ロール24によつて
プリプレグシート6の厚みや幅が均一化されて50
μ〜100μの薄いプリプレグシート6が連続して
製造される。場合により、このロール24は単な
るガイドロールとして作用してもよい。次にこの
プリプレグシート6と他の同様なプリプレグシー
ト製造装置で製造された適数個のプリプレグシー
ト6,6,6,…をプリプレグシートの積層調整
ロール28,29で互に積層し、この積層された
プリプレグシートを加熱機器27に誘導すると、
この加熱機器27でAlの軟化温度に加熱されて
軟化した積層されたプリプレグシート6,6,
6,…は更に次の加圧成型装置9に送られて加圧
ロール30,31によつて一体化され平板状の繊
維強化複合材32が連続して製造される。またマ
トリツクス材料として目的に応じてAlのかわり
にTi等他の金属も使用され、プリプレグシート
6の適数台の製造装置の内たとえばAlのマトリ
ツクス材料を溶射するものとTiのマトリツクス
材料を溶射するものとを適宜組み合わせることに
よつてAl―Ti複合の繊維強化複合材を製造する
ことも可能である。
First, a fiber bundle 1 made of suitable fibers 4 for reinforcing composite materials such as carbon fibers, boron fibers, glass fibers, etc. is wound around a winding roll 2.
When one end is stretched over the driving developing drum 5 and compressed air is supplied from the supply pipe 11 to the lateral flow generator 3 while driving the drum 5, the lateral flows are arranged at opposite positions centering on the fiber bundle 1. The compressed air ejected from the generator 3 collides with each other to generate a lateral flow, and this lateral flow causes the fiber bundle 1 to spread out evenly, and the uniformly spread fibers 4 to be stretched to an appropriate tension. In this step, the plasma spray main body 13 is supplied with a molten metal matrix material of, for example, Al through the material supply pipe 14, and Ar-- When He gas is supplied, matrix material is continuously sprayed in the form of fine particles from the nozzle 23 of the plasma spray main body 13 onto the uniformly spread fibers on the driving spreading drum 5, and this matrix material is sprayed uniformly on the spreading drum 5. The prepreg sheet 6 is deposited by entering between the spread fibers 4 and from the sides and forming a spongy upper surface and denser on the drum surface side, and the thickness and width of the prepreg sheet 6 are further made uniform by the rolling roll 24. 50
Thin prepreg sheets 6 of μ to 100 μ are continuously produced. Optionally, this roll 24 may act merely as a guide roll. Next, this prepreg sheet 6 and an appropriate number of prepreg sheets 6, 6, 6, ... manufactured by other similar prepreg sheet manufacturing equipment are laminated with each other by prepreg sheet lamination adjustment rolls 28, 29, and this laminated When the prepared prepreg sheet is guided to the heating device 27,
The laminated prepreg sheets 6, 6, which are heated and softened by the heating device 27 to the softening temperature of Al,
6, . . . are further sent to the next pressure molding device 9 and integrated by pressure rolls 30, 31 to continuously produce a flat fiber reinforced composite material 32. In addition, other metals such as Ti may be used instead of Al depending on the purpose as a matrix material, and among the appropriate number of manufacturing apparatuses for the prepreg sheet 6, for example, one that sprays an Al matrix material and another that sprays a Ti matrix material. It is also possible to produce a fiber-reinforced Al--Ti composite material by appropriately combining these materials.

本発明は上記の方法よりなるので下記の特有な
作用、効果を奏する。
Since the present invention is comprised of the above-described method, it exhibits the following unique functions and effects.

イ 繊維束を短時間に簡単な方法で連続して均一
に展開でき、そのままの状態を保つてマトリツ
クスを附着させるので、プリプレグシート中の
均一な強化繊維の分布が保証される。
(b) Since the fiber bundle can be spread uniformly and continuously in a short time and in a simple manner, and the matrix is attached while maintaining the same state, uniform distribution of reinforcing fibers in the prepreg sheet is guaranteed.

ロ 空気中で且つ低い温度でプラズマ溶射できる
ので繊維と金属マトリツクス材料との界面に金
属間化合物が生成されずプリプレグシートの強
度劣化の恐れがないばかりか大設備を必要とせ
ず従来のものに比べ大幅なコストダウンが期待
できる。
(b) Plasma spraying can be performed in the air at low temperatures, so intermetallic compounds are not generated at the interface between the fibers and the metal matrix material, so there is no risk of deterioration in the strength of the prepreg sheet, and it does not require large equipment compared to conventional methods. Significant cost reductions can be expected.

ハ 連続して繊維強化複合材が製造できるので多
量生産に適している。
C. Since fiber-reinforced composite materials can be manufactured continuously, it is suitable for mass production.

ニ プリプレグシートの表面がスポンヂ状に形状
されているので適数個のプリプレグシートを積
層して圧着すると互の密着性が極めて良好で、
特になじみの悪い異種金属どうしの圧着にも適
用できる。
D. The surface of the prepreg sheet is shaped like a sponge, so when an appropriate number of prepreg sheets are stacked and pressed together, the adhesion between them is extremely good.
In particular, it can be applied to crimping of dissimilar metals that are not compatible with each other.

ホ たとえばAlマトリツクスのプリプレグシー
トとTiマトリツクスのプリプレグシートを積
層して複合材を製造するとTiマトリツクスに
近い強度の複合材が製造でき安価なAlを使用
した分だけコストダウンが期待できる。
For example, if a composite material is produced by laminating an Al matrix prepreg sheet and a Ti matrix prepreg sheet, a composite material with strength close to that of a Ti matrix can be produced, and costs can be expected to be reduced by the use of inexpensive Al.

ヘ 繊維方向を変えてプリプレグシートを積層し
て複合材を製造することによつて縦横方向の強
度を強化できる。
By manufacturing a composite material by laminating prepreg sheets with different fiber directions, strength in the vertical and horizontal directions can be strengthened.

ト プラズマ溶射工程で短繊維を吹き付ける方法
は繊維と直角方向にも複合材の強度を強化でき
るばかりか、上記への方法よりも複合材の連続
製造方法に適する。
The method of spraying short fibers in the plasma spraying process not only strengthens the strength of the composite material in the direction perpendicular to the fibers, but also is more suitable for continuous production of composite materials than the above methods.

チ 加圧成型装置のロールを取り変えることによ
つて断面異形の複合材を簡単に製造できる。
H. Composite materials with irregular cross-sections can be easily manufactured by replacing the rolls of the pressure molding device.

リ プリプレグシート間に補強材を挿入して複合
材の強度を強化できる。
Reinforcement material can be inserted between prepreg sheets to increase the strength of the composite material.

ヌ この発明の製造方法によつて連続製造される
繊維強化複合材の用途は宇宙、航空機材料、自
動車材料、船舶材料、建築材料等軽くて強い材
料として利用できる。
The fiber-reinforced composite material continuously manufactured by the manufacturing method of the present invention can be used as a light and strong material such as space materials, aircraft materials, automobile materials, ship materials, and building materials.

ル プラズマ溶射で形成されるプリプレグシート
は、繊維と直角な方向には極めて低い強度しか
持たず、バツジ処理の場合に問題となるが、本
発明においては、高い強度を持つ繊維が連続し
ており、これによつて送られるので、取扱い上
の問題を生じない。
Prepreg sheets formed by plasma spraying have extremely low strength in the direction perpendicular to the fibers, which poses a problem in batch processing, but in the present invention, the fibers with high strength are continuous. , so there are no handling problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の繊維強化複合材の製造方法
に使用する装置の概略側面図、第2図は第1図の
斜視図であり、図中の符号は、1…繊維束、2…
巻取りロール、3…横向き流発生装置、4…均一
に展開された繊維、5…駆動展開ドラム、6…プ
リプレグシート、7…プラズマ溶射装置、8…加
熱装置、9…加圧成型装置、10…ガイドロー
ル、11…供給パイプ、12…ノズル、13…プ
ラズマスプレー本体、14…材料供給パイプ、1
5…ガス供給パイプ、16…冷却水供給パイプ、
17…排水パイプ、18…支持脚、19,20…
車輪、21…台座、22…駆動手段、23…ノズ
ル、24…圧延ロール、25…加熱ヒーター、2
6…ガスバーナー、27…加熱機器、28,29
…積層調整ロール、30,31…加圧ロール、3
2…繊維強化複合材を示す。
FIG. 1 is a schematic side view of an apparatus used in the method for manufacturing a fiber-reinforced composite material of the present invention, and FIG. 2 is a perspective view of FIG.
Winding roll, 3... Lateral flow generator, 4... Uniformly spread fiber, 5... Driving developing drum, 6... Prepreg sheet, 7... Plasma spraying device, 8... Heating device, 9... Pressure molding device, 10 ... Guide roll, 11 ... Supply pipe, 12 ... Nozzle, 13 ... Plasma spray main body, 14 ... Material supply pipe, 1
5... Gas supply pipe, 16... Cooling water supply pipe,
17... Drain pipe, 18... Support leg, 19, 20...
Wheel, 21... Pedestal, 22... Drive means, 23... Nozzle, 24... Roll roll, 25... Heater, 2
6... Gas burner, 27... Heating equipment, 28, 29
... Lamination adjustment roll, 30, 31 ... Pressure roll, 3
2... Indicates a fiber reinforced composite material.

Claims (1)

【特許請求の範囲】[Claims] 1 巻取りロール上に巻かれた長繊維束を均一に
展開し、該繊維束を適当なテンシヨンの作用下に
ロール等の基台上に整列する第1工程、該基台上
の繊維束にマトリツクス材料をプラズマ溶射して
プリプレグシートを製作する第2工程、該プリプ
レグシートを所要枚数重ねて加熱し或いは加熱し
て重ねる第3工程、該重ねられたプリプレグシー
トをローラによつて連続プレスする第4工程を連
続して行なうことを特徴とする繊維強化複合材の
連続製造方法。
1. The first step is to uniformly unfold the long fiber bundle wound on a take-up roll and arrange the fiber bundle on a base such as a roll under the action of an appropriate tension. The second step is to produce a prepreg sheet by plasma spraying the matrix material, the third step is to heat or stack the required number of prepreg sheets, and the third step is to continuously press the stacked prepreg sheets with rollers. A continuous manufacturing method for a fiber-reinforced composite material, characterized by continuously performing four steps.
JP55150037A 1980-10-27 1980-10-27 Preparation of fiber reinforced composite material Granted JPS5774117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55150037A JPS5774117A (en) 1980-10-27 1980-10-27 Preparation of fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55150037A JPS5774117A (en) 1980-10-27 1980-10-27 Preparation of fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JPS5774117A JPS5774117A (en) 1982-05-10
JPS6227142B2 true JPS6227142B2 (en) 1987-06-12

Family

ID=15488112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55150037A Granted JPS5774117A (en) 1980-10-27 1980-10-27 Preparation of fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JPS5774117A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104149339A (en) * 2014-07-09 2014-11-19 西安交通大学 Continuous long-fiber reinforced-type composite material 3D printer and printing method thereof
US11084307B2 (en) 2017-02-10 2021-08-10 Papierfabrik August Koehler Se Heat-sensitive recording material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200929A (en) * 1984-03-23 1985-10-11 Hitachi Ltd Production of metallic matrix-fiber composite material
JPS62120446A (en) * 1985-11-21 1987-06-01 Nippon Carbon Co Ltd Production of fiber reinforced metallic composite material
US4786566A (en) * 1987-02-04 1988-11-22 General Electric Company Silicon-carbide reinforced composites of titanium aluminide
JP2783813B2 (en) * 1988-09-20 1998-08-06 ゼネラル・エレクトリック・カンパニイ Method for producing fiber-reinforced metal matrix material and composite structure
JPH02247342A (en) * 1989-03-22 1990-10-03 Ishikawajima Harima Heavy Ind Co Ltd High performance metallic composite material
US5211776A (en) * 1989-07-17 1993-05-18 General Dynamics Corp., Air Defense Systems Division Fabrication of metal and ceramic matrix composites
US5235895A (en) * 1991-04-08 1993-08-17 Electronics & Space Corp. Ballistic armor and method of producing same
JP4779306B2 (en) * 2004-05-12 2011-09-28 凸版印刷株式会社 Tamper-proof mouth cap with sealing ring
DE102015108237A1 (en) * 2015-05-26 2016-12-01 Thyssenkrupp Ag Production of composite material by means of plasma coating
WO2021046137A1 (en) * 2019-09-06 2021-03-11 Web Industries, Inc. Prepreg master rolls and slit tape and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841810A (en) * 1971-09-29 1973-06-19
JPS5312923A (en) * 1976-07-21 1978-02-06 Matsushita Electric Works Ltd Solid composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841810A (en) * 1971-09-29 1973-06-19
JPS5312923A (en) * 1976-07-21 1978-02-06 Matsushita Electric Works Ltd Solid composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104149339A (en) * 2014-07-09 2014-11-19 西安交通大学 Continuous long-fiber reinforced-type composite material 3D printer and printing method thereof
US11084307B2 (en) 2017-02-10 2021-08-10 Papierfabrik August Koehler Se Heat-sensitive recording material

Also Published As

Publication number Publication date
JPS5774117A (en) 1982-05-10

Similar Documents

Publication Publication Date Title
JPS6227142B2 (en)
US4420359A (en) Apparatus for producing fiber-reinforced plastic sheet structures
US3671355A (en) Continuous production of composite panels,particularly for buildings
US5228944A (en) Apparatus for producing composite bodies from layers of plastic flim laminated to one another
US20090065977A1 (en) Process, and apparatus, for producing reinforcing fiber molding
CN110268568A (en) With the method for catalyst coat film
CN108527851A (en) A kind of staple fiber and photosensitive resin photocuring compound molding device
CN108527850A (en) A kind of staple fiber and precoated sand laser shake mirror compound molding device
JP4339507B2 (en) Method and apparatus for bending and quenching glass plates
RU2715662C1 (en) Method and device for production of composite material
US4044715A (en) Apparatus for manufacturing cushion materials
US2631641A (en) Method of and apparatus for producing protected metal articles
CN115198221B (en) Device for automatic spraying and hot rolling of composite plate strip interlayer and processing method thereof
JPH044112A (en) Formation of composite material and formation of mold
US2965513A (en) Formation of metal strip under controlled pressure
JP2639832B2 (en) Panel manufacturing equipment
JP6789518B1 (en) Press equipment
CN214239652U (en) Production facility of glass carbon fiber pultrusion panel production usefulness
CN116118185A (en) 3D printing device and method for thermosetting/thermoplastic mixed fiber reinforced composite material
JP4077309B2 (en) Resin supply device, supply method, and coating device
JPH01198639A (en) Apparatus for producing fiber-reinforced composite material
JPH04316810A (en) Method and equipment to assemble sheet of composite material
US10286613B2 (en) Layered construction of a fibrous body
JPH08108122A (en) Die for coating of resin
JPS63257616A (en) Method for continuously forming fiber reinforced thermosetting resin formed plate