JPS62271345A - Manufacture of electrode for plastic battery - Google Patents

Manufacture of electrode for plastic battery

Info

Publication number
JPS62271345A
JPS62271345A JP61113221A JP11322186A JPS62271345A JP S62271345 A JPS62271345 A JP S62271345A JP 61113221 A JP61113221 A JP 61113221A JP 11322186 A JP11322186 A JP 11322186A JP S62271345 A JPS62271345 A JP S62271345A
Authority
JP
Japan
Prior art keywords
current collector
electrolytic
battery
electrode
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61113221A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nonobe
康宏 野々部
Shoji Yokoishi
章司 横石
Toru Onishi
徹 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61113221A priority Critical patent/JPS62271345A/en
Publication of JPS62271345A publication Critical patent/JPS62271345A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0464Electro organic synthesis
    • H01M4/0466Electrochemical polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a battery whose capacity per unit volume is large, by arranging a current collector and a conductive member, in a horizontal posture of a battery jar, in a state where they are vertically opposed to each other and immersing them into an electrolytic cell to perform electrolytic polymerization. CONSTITUTION:In the manufacture of an electrode for a plastic battery, a current collector and a conductive member are arranged in a horizontal posture so that they are vertically opposed to each other and immersed in an electrolytic solution to perform electrolytic polymerization. As a result, lumps of a high- molecular material having cohered without sufficient adherence to the surface of the current collector are not brought down by gravity. At the end of electrolysis, the high-molecular material goes into the gaps between the lumps and clings to them as well so that a high-molecular thin film being uniform as a whole and having enough sticking strength is formed on the current collector. Since the current collector is immersed in the horizontal posture in performing the electrolytic polymerization, the movement of 'deposit grains' caused by gravity is precluded to make the thickness of the film uniform.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明はプラスチック電池用電極の製造方法に関する。[Detailed description of the invention] 3. Detailed description of the invention [Industrial application field] The present invention relates to a method of manufacturing an electrode for a plastic battery.

〔従来技術〕[Prior art]

従来より電極として導電性高分子材料を用いたプラスチ
ック電池が知られている。この電池は鉛電池に比べて開
路電圧が大きく、しかも軽量であるため出力密度が大き
いという優れた利点を有する。
BACKGROUND ART Plastic batteries using conductive polymer materials as electrodes have been known. This battery has excellent advantages over lead batteries in that it has a higher open circuit voltage, is lighter in weight, and has a higher output density.

そして、導電性高分子材料からなるプラスチック電池用
電極を製造する際には、導電性材料からなる集電体の表
面に電解重合によって導電性高分子材料の薄膜を析出さ
せている(「機能材料j1984年4月号第4月号8頁
)。
When manufacturing plastic battery electrodes made of conductive polymer materials, a thin film of conductive polymer material is deposited on the surface of a current collector made of conductive material by electrolytic polymerization ("Functional Materials"). j April 1984 issue, April issue, page 8).

従来のプラスチック電池用電極の製造は、次のように行
われていた。
Conventional electrodes for plastic batteries have been manufactured as follows.

第3図に、電解重合を行うための電解槽の概略構成図を
示す。
FIG. 3 shows a schematic diagram of an electrolytic cell for electrolytic polymerization.

電解液50を収容した電解槽52中に、間分子薄膜を析
出させるための集電体54とそれに対向する導電性基板
56を浸漬し、集電体54を電源の正掻に接続するとと
もに、導電性基板56を電源の負極に接続する。そして
、電気分解を行い、集電体54の表面に高分子材料の薄
膜を形成する。
A current collector 54 for depositing a molecular thin film and a conductive substrate 56 facing it are immersed in an electrolytic bath 52 containing an electrolytic solution 50, and the current collector 54 is connected to the front side of a power source. The conductive substrate 56 is connected to the negative terminal of the power source. Then, electrolysis is performed to form a thin film of a polymeric material on the surface of the current collector 54.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上述の従来の電極の製造方法によれば、集電
体に付着する高分子薄膜の厚さが不均一になるという不
具合が認められた。
However, according to the above-described conventional electrode manufacturing method, a problem has been observed in that the thickness of the polymer thin film attached to the current collector becomes non-uniform.

すなわち、鉛直な状態で浸漬された集電体表面の下方が
、上方より大きな膜厚となっていることが分かった。
That is, it was found that the lower part of the current collector surface immersed in a vertical state had a larger film thickness than the upper part.

この原因を追究するため、本発明等は、透明な電解槽を
用いて実験を行った結果、次のことが判明した。第2図
(a)〜(c)に示した集電体54の縦断面図に基づき
説明する。なお、図は理解を助けるため、模式的に描い
である。
In order to investigate the cause of this, the present invention conducted an experiment using a transparent electrolytic cell, and as a result, the following was found. The description will be made based on longitudinal cross-sectional views of the current collector 54 shown in FIGS. 2(a) to 2(c). Note that the figure is a schematic drawing to aid understanding.

電気分解によって電解液中の高分子のアニオンは、正損
側の集電体54の表面に析出し、薄膜が形成される(第
2図(a))。その際、S電体54の表面には、本発明
等が「澱ゴマ」と呼ぶ、表面に充分に付着しないで凝集
した高分子材料の塊58a、58b、58cができる(
第2図(b))。そして、その「澱ゴマ」の大きなもの
は、表面を滑り落ち、下方へと移動するので、下刃の膜
厚が大きくなるのである(第2図(C))。
By electrolysis, polymer anions in the electrolytic solution are deposited on the surface of the current collector 54 on the positive/loss side, forming a thin film (FIG. 2(a)). At this time, on the surface of the S electric body 54, lumps 58a, 58b, and 58c of the polymeric material, which the present invention and others refer to as "stadium", are formed without sufficiently adhering to the surface and agglomerated (
Figure 2(b)). The large pieces of ``sesame lees'' then slide down the surface and move downward, resulting in an increase in the film thickness of the lower blade (Fig. 2 (C)).

このように、下方の膜厚が大きくなると、電極を多数重
ね合わせてプラスチック電池のセルを作るときに、嵩が
増えて単位体積当りの電池の容量が減少する。
As described above, when the thickness of the lower film increases, when a large number of electrodes are stacked to form a plastic battery cell, the volume increases and the capacity of the battery per unit volume decreases.

したがって、本発明の目的は、均一なl1lO高分子薄
膜を形成した集電体を得る製造方法を提供することによ
り、単位体積当りの容量の大きな電池を得ることにある
Therefore, an object of the present invention is to obtain a battery with a large capacity per unit volume by providing a manufacturing method for obtaining a current collector in which a uniform 111O polymer thin film is formed.

C問題点を解決するための手段) そこで、本発明は、集電体を水平な状態で浸漬して、電
解重合を行うことにより、重力に基づく「澱ゴマ」の移
動を阻止し、均一な膜厚を得ることを特徴とする。
Means for Solving Problem C) Therefore, the present invention performs electrolytic polymerization by immersing the current collector in a horizontal state, thereby preventing the movement of ``seed sesame'' based on gravity and producing a uniform It is characterized by obtaining a film thickness.

具体的には、本発明は、導電性材料からなる集電体の表
面に導電性高分子材料を電解重合により付着させてプラ
スチック電池用電極を製造するに当り、電解質を有機溶
媒に溶かした高分子材料を含む電解液を収容する電解槽
中に少なくとも一つの集電体と少なくとも一つの導電体
を浸漬し、この両体間に通電して電気分解により集電体
上に高分子材料を重合付着するプラスチック電池用電極
の製造方法であって、前記電解槽中において集電体と導
電体を水平状態で鉛直方向に対向するように配設して浸
漬し、電解重合を行うプラスチック電池用電極の製造方
法である。
Specifically, the present invention provides a method for producing electrodes for plastic batteries by attaching a conductive polymer material to the surface of a current collector made of a conductive material by electrolytic polymerization. At least one current collector and at least one conductor are immersed in an electrolytic bath containing an electrolytic solution containing a molecular material, and electricity is applied between the two bodies to polymerize the polymeric material on the current collector by electrolysis. A method for manufacturing an electrode for a plastic battery that adheres, the electrode for a plastic battery comprising immersing a current collector and a conductor in a horizontal state so as to face each other in a vertical direction in the electrolytic bath, and performing electrolytic polymerization. This is a manufacturing method.

集電体としては、導電性で電解液と反応することのない
材料であればよく、例えばアルミニウム板等の金属材料
をシート状に加工したもの、カーボン繊維によって繊維
間に間隔を有するようにシート状に加工したもの等を挙
げることができる。
The current collector may be any material that is conductive and does not react with the electrolyte, such as a sheet made of a metal material such as an aluminum plate, or a sheet made of carbon fiber with spaces between the fibers. Examples include those processed into shapes.

なお、カーボン繊維は導電性を存するために、特に他の
4電性材料を被覆する必要はないが、より導電性を向上
させるために他の導電性材料を被覆したものを用いても
よい。その際のmN性材料としては、金、銀、銅等の金
属材料の他、rnz。
Note that since carbon fibers have electrical conductivity, it is not necessary to coat them with other four-electroconductive materials, but in order to further improve the electrical conductivity, carbon fibers coated with other electrically conductive materials may be used. Examples of the mN material in this case include metal materials such as gold, silver, and copper, as well as rnz.

□−3nO,の固溶体等を用いることができる。A solid solution of □-3nO, etc. can be used.

そして、導電性材料は真空蒸着法、イオンブレーティン
グ、スパフタリング等の適宜手段によってカーボン繊維
の表面に形成することができる6また、導電性高分子材
料としては、ポリピロール、ポリチェニレン、ポリアニ
リン、ポリアセチレン、ポリチオフェン等を挙げること
ができ、これらの導電性高分子材料は集電体の表面に電
解重合によって形成される。
The conductive material can be formed on the surface of the carbon fiber by appropriate means such as vacuum evaporation, ion blating, sputtering, etc. 6 Also, as the conductive polymer material, polypyrrole, polythenylene, polyaniline, polyacetylene, etc. , polythiophene, etc., and these conductive polymer materials are formed on the surface of the current collector by electrolytic polymerization.

また、集電体の対極となる導電体としては、アルミニウ
ム、ニッケル、銅、銀等の金属材料を挙げることができ
る。
Furthermore, examples of the conductor serving as the counter electrode of the current collector include metal materials such as aluminum, nickel, copper, and silver.

〔作用〕[Effect]

上記した本発明のプラスチック電池用電極の製造方法に
よれば、集電体と導電体を水平状態で鉛直方向に対向す
るよう配設して電解液中に浸漬し、電解重合を行うので
、集電体の表面に充分付着しないで凝集した高分子材料
の塊が、重力によって下方へ移動することがないゆ したがって、電解終了時には、塊の間にも高分子材料が
付着し、全体とし、て均一で、充分付着力のある高分子
薄膜が前記集電体とに形成さ机る。
According to the above-described method for manufacturing electrodes for plastic batteries of the present invention, the current collector and the conductor are arranged in a horizontal state so as to face each other in the vertical direction, and are immersed in an electrolytic solution to perform electrolytic polymerization. The lumps of polymer material that have not adhered sufficiently to the surface of the electric body and have aggregated will not move downward due to gravity. Therefore, at the end of electrolysis, the polymer material will also adhere between the lumps, and the overall effect will be A uniform, well-adhesive polymer thin film is formed on the current collector.

〔実施例〕〔Example〕

次に、図面に基づき、本発明の詳細な説明する。 Next, the present invention will be explained in detail based on the drawings.

第1図は、本発明の実施例におけるプラスチック電池用
電極の製造に用いられる電解槽の一部を破断した斜視図
である。
FIG. 1 is a partially cutaway perspective view of an electrolytic cell used for manufacturing an electrode for a plastic battery in an example of the present invention.

図において、10は電解槽である。電解槽lOは、絶縁
材料であるフッ素系樹脂によって形成されており、上方
のみが開放されている。そして、電解槽重0の底面には
、カーボン繊維によって間隔を有するように腸み込んだ
シート状の集電体12がii!fされている。集電体1
2の上方には、アルミニウム板14が、電解槽1oの側
壁に取り付けられたテフロン製の支持具16上にf2置
されている。電解FIO内には、電解液18が満たされ
ている。支持具16は、粗い格子状をしており、格子を
介して電解液18を通過させられるようになっている。
In the figure, 10 is an electrolytic cell. The electrolytic cell IO is made of a fluororesin which is an insulating material, and is open only at the top. Then, on the bottom of the electrolytic cell weight 0, there is a sheet-like current collector 12 filled with carbon fibers at intervals ii! It has been f. Current collector 1
2, an aluminum plate 14 is placed f2 on a Teflon support 16 attached to the side wall of the electrolytic cell 1o. The electrolytic FIO is filled with an electrolytic solution 18. The support 16 has a rough grid shape, and allows the electrolytic solution 18 to pass through the grid.

集電体12およびアルミニウム板14は、それぞれ、電
源20の正極および負極に接続されている。電源20に
は、電解電流値を測定するための電流計が設けられ、正
極側には、電解液18に浸漬されている参照電極22と
の間に電圧計が設置され、集電体12の電位を測定する
ようになっている。なお、参照電極22は、アセトニト
リル中にホウフッカ銀を溶解したものに銀線を通したも
のを用いた。
Current collector 12 and aluminum plate 14 are connected to the positive and negative electrodes of power supply 20, respectively. The power supply 20 is provided with an ammeter for measuring the electrolytic current value, and a voltmeter is installed on the positive electrode side between it and a reference electrode 22 immersed in the electrolytic solution 18. It is designed to measure electric potential. The reference electrode 22 used was one in which a silver wire was passed through a solution of borofukka silver in acetonitrile.

さらに、電解槽10の側壁には、モータ24が取り付け
られており、集電体12とアルミニウム板14の間に延
びるスクリュウ26を回転させて電解液18を攪拌する
ようになっている。
Furthermore, a motor 24 is attached to the side wall of the electrolytic cell 10, and rotates a screw 26 extending between the current collector 12 and the aluminum plate 14 to stir the electrolytic solution 18.

次に、上述のように構成された電解装置を用いて実験を
行ったので、従来例と比較して説明する。
Next, since an experiment was conducted using the electrolytic device configured as described above, a comparison with a conventional example will be described.

電解槽10の内部に0.1〜2.0モル(mol!/β
)のホウフッ化リチウム(LiBF、)および0゜1−
10モル(moj!/1)(7)ピロ)L/ (C4H
5N)をアセトニトリル(CH,CN)で7容解してな
る電解?&18を収容した。
0.1 to 2.0 mol (mol!/β
) of lithium borofluoride (LiBF, ) and 0°1-
10 moles (moj!/1) (7) pyro) L/ (C4H
5N) dissolved in acetonitrile (CH, CN)? &18 was accommodated.

次に、リード線を取りつけた集電体12、支持具16、
リード線を取り付けたアルミニウム板14、参照電極2
2の順で電解槽1oの内部に浸漬した。そして、前述の
ようにリード線等を電R20に接続を行った。
Next, the current collector 12 with the lead wire attached, the support 16,
Aluminum plate 14 with lead wire attached, reference electrode 2
2 was immersed in the electrolytic cell 1o in this order. Then, as described above, lead wires and the like were connected to the electric wire R20.

この状態で、集電体12とアルミニウム板14との間に
、参照電極22に対する正極側の電位が0.5〜1.O
Vとなるように、電流を通電して電解重合を行った。電
解中は、モータ24を作動させ、スクリュウ26により
電解液18をゆっくりと攪拌した。
In this state, between the current collector 12 and the aluminum plate 14, the potential on the positive electrode side with respect to the reference electrode 22 is 0.5 to 1. O
Electrolytic polymerization was carried out by applying a current so that V was obtained. During electrolysis, the motor 24 was operated and the electrolytic solution 18 was slowly stirred by the screw 26.

その際、正極側に接続されている集電体12の表面には
テトラフルオロボレートイオン(BF4.)がドープさ
れた黒色で、しかも導電性のポリピロール(c、Hs 
N)が全体に徐々に析出され、負極側に接続されている
アルミニウム板14の表面にはリチウム(Li)が析出
された。そして、集電体12側に析出されるポリピロー
ルの重量が130mgになるまで電解重合を継続した。
At this time, the surface of the current collector 12 connected to the positive electrode side is black doped with tetrafluoroborate ions (BF4.) and is made of conductive polypyrrole (c, Hs).
N) was gradually deposited over the entire surface, and lithium (Li) was deposited on the surface of the aluminum plate 14 connected to the negative electrode side. Then, electrolytic polymerization was continued until the weight of polypyrrole deposited on the current collector 12 side reached 130 mg.

この結果、集電体12の表面には、均一なポリピロール
の薄膜が形成され、いわゆる「澱ゴマ」は見つからなか
った。
As a result, a uniform thin film of polypyrrole was formed on the surface of the current collector 12, and no so-called "seed sesame" was found.

(比較例) これに対し、集電体12およびアルミニウム板14を鉛
直状態で水平方向に対向させた以外はすべて本実施例と
同一とした比較例の実験結果は、集電体の表面の約3分
の2を「澱ゴマ」が覆っており、集電体の上方に対し下
方部分が最大500μmの膜厚差を有した。
(Comparative Example) On the other hand, the experimental results of a comparative example, which was the same as the present example except that the current collector 12 and the aluminum plate 14 were vertically opposed to each other in the horizontal direction, showed that the surface of the current collector was approximately Two-thirds of the current collector was covered with "starvation sesame", and the lower part had a maximum film thickness difference of 500 μm compared to the upper part of the current collector.

なお、実施例および比較例で得られた集電体を正極とし
、Liからなる負極を用い、ホウフッ化リチウム(L 
i B F4 ) とプロピレンカーボネート(PC)
の電解液からなる電池に組み込んで充放電効率を調査し
たので、その結果を第4図に示す。
Note that the current collectors obtained in Examples and Comparative Examples were used as positive electrodes, Li was used as a negative electrode made of Li, and lithium borofluoride (L
i B F4 ) and propylene carbonate (PC)
The charging and discharging efficiency was investigated by incorporating the battery into a battery consisting of an electrolyte of

第4図から明らかなように、実施例による電池において
は、薄膜が均一に形成されているため、比較例に対して
すべての充放電サイクル数で充放電効率が向上している
ことが分る。
As is clear from Figure 4, in the battery according to the example, the thin film is uniformly formed, so it can be seen that the charging and discharging efficiency is improved over all the number of charging and discharging cycles compared to the comparative example. .

以上、本発明の特定の実施例について説明したが、本発
明は、この実施例に限定されるものではな(、例えば、
集電体と導電体の枚数は、それぞれ1枚に限らず、対向
させて複数組を用いてもよく、また、電解槽を攪拌する
スクリュウの配設位置も集電体および導電体の配置に応
じて、電解液の濃度が均一になるように、種々選択でき
、特許請求の範囲に記載の範囲内で種々の実施態様が包
含されるものである。
Although specific embodiments of the present invention have been described above, the present invention is not limited to these embodiments (for example,
The number of current collectors and conductors is not limited to one each, and multiple sets may be used, facing each other. Also, the location of the screw that stirs the electrolytic cell also depends on the arrangement of the current collectors and conductors. Accordingly, various choices can be made so that the concentration of the electrolytic solution is uniform, and various embodiments are included within the scope of the claims.

〔発明の効果〕〔Effect of the invention〕

以上より、本発明のプラスチック電極の製造方法によれ
ば、重力の影響を受けることがないようにしたので、集
電体上に均一で、かつ、付着力の強い、導電性高分子材
料からなる薄膜が形成されたプラスチック電池用電極を
得ることができる。
As described above, according to the method for manufacturing a plastic electrode of the present invention, it is made of a conductive polymer material that is uniform and has strong adhesion on the current collector because it is not affected by gravity. A plastic battery electrode on which a thin film is formed can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例におけるプラスチック電池用
電極の製造に用いられる電解槽の一部を破断した斜視図
、 第2図は、従来例における集電体の表面に対する導電性
高分子材料の付着状態を表しだ集電体の縦断面図、 第3図は、従来例の電解重合に用いられる電解槽の概略
構成図、 そして、第4図は、本発明の実施例および比較例で得ら
れた集電体を工種として用いた電池の充放電効率を調査
した同である。 10・−・−電解槽 12−・−・・−集電体 14−−−−・・アルミニウム板(導電体)L 6−−
−−−−−支持具 18・・・・−・−電解液 20−・〜・〜・・電源 出願人  トヨタ自動車株式会社 纂1図 第2図 第3図 先方ケ、電“フ“イクノ訳 第4図
FIG. 1 is a partially cutaway perspective view of an electrolytic cell used for manufacturing electrodes for plastic batteries in an embodiment of the present invention. FIG. 3 is a schematic diagram of an electrolytic cell used in conventional electrolytic polymerization, and FIG. 4 is a longitudinal cross-sectional view of a current collector showing the state of adhesion of . The charging and discharging efficiency of a battery using the obtained current collector as a construction material was also investigated. 10...- Electrolytic cell 12-- Current collector 14-- Aluminum plate (conductor) L 6--
-------Support 18...--Electrolyte 20-------Power source Applicant: Toyota Motor Corporation, Figure 1, Figure 2, Figure 3, Translated by Ikuno Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)導電性材料からなる集電体の表面に導電性高分子
材料を電解重合により付着させてプラスチック電池用電
極を製造するに当り、電解質を有機溶媒に溶かした高分
子材料を含む電解液を収容する電解槽中に少なくとも一
つの集電体と少なくとも一つの導電体を浸漬し、この両
体間に通電して電気分解により集電体上に高分子材料を
重合付着するプラスチック電池用電極の製造方法であっ
て、前記電解槽中において集電体と導電体を水平状態で
鉛直方向に対向するように配設して浸漬し、電解重合を
行うことを特徴とするプラスチック電池用電極の製造方
法。
(1) When manufacturing electrodes for plastic batteries by attaching a conductive polymer material to the surface of a current collector made of a conductive material by electrolytic polymerization, an electrolyte solution containing a polymer material in which an electrolyte is dissolved in an organic solvent is used. An electrode for a plastic battery, in which at least one current collector and at least one conductor are immersed in an electrolytic bath containing the battery, and a polymer material is polymerized and deposited on the current collector by electrolysis by passing current between the two bodies. A method for producing an electrode for a plastic battery, which comprises immersing a current collector and a conductor in a horizontal state so as to face each other in the vertical direction in the electrolytic bath, and performing electrolytic polymerization. Production method.
JP61113221A 1986-05-16 1986-05-16 Manufacture of electrode for plastic battery Pending JPS62271345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61113221A JPS62271345A (en) 1986-05-16 1986-05-16 Manufacture of electrode for plastic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61113221A JPS62271345A (en) 1986-05-16 1986-05-16 Manufacture of electrode for plastic battery

Publications (1)

Publication Number Publication Date
JPS62271345A true JPS62271345A (en) 1987-11-25

Family

ID=14606641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61113221A Pending JPS62271345A (en) 1986-05-16 1986-05-16 Manufacture of electrode for plastic battery

Country Status (1)

Country Link
JP (1) JPS62271345A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009112A1 (en) * 1990-11-16 1992-05-29 Teijin Limited Polypyrrole molding, production thereof, and secondary battery
JP2007311725A (en) * 2006-05-22 2007-11-29 Kyushu Univ Photoresponsive electrode for solar cell, method of manufacturing the same, and organic polymer solar cell employing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009112A1 (en) * 1990-11-16 1992-05-29 Teijin Limited Polypyrrole molding, production thereof, and secondary battery
US5384215A (en) * 1990-11-16 1995-01-24 Teijin Limited Polypyrrole shaped material, process for production thereof, and secondary battery
JP2007311725A (en) * 2006-05-22 2007-11-29 Kyushu Univ Photoresponsive electrode for solar cell, method of manufacturing the same, and organic polymer solar cell employing the same

Similar Documents

Publication Publication Date Title
CA1168701A (en) Reversible electrochemical doping of conjugated polymers, and secondary batteries based thereon
Rudge et al. Conducting polymers as active materials in electrochemical capacitors
Osaka et al. Application of solid polymer electrolyte to lithium/polypyrrole secondary battery system
US8709663B2 (en) Current collector for lead acid battery
Mandić et al. Polyaniline as cathodic material for electrochemical energy sources: the role of morphology
US5151162A (en) Rechargeable storage battery with electroactive organic polymer electrodes in polar solvent electrolyte
JPH0454350B2 (en)
Panero et al. Characteristics of electrochemically synthesized polymer electrodes in lithium cells—IV. Effects of the synthesis conditions on the performance of polypyrrole
Karami et al. Lead–acid bipolar battery assembled with primary chemically formed positive pasted electrode
US4728589A (en) Reversible electrochemical doping of conjugated polymers and secondary batteries based thereon
US3556855A (en) Battery with a grid of metal coated fibres and resin
Naoi et al. Application of electrochemically formed polypyrrole in lithium secondary batteries: Analysis of anion diffusion process
Osaka et al. Application of electrochemically formed polyazulene to rechargeable lithium battery
US4801512A (en) Reversible electrochemical doping of conjugated polymers and secondary batteries based thereon
JPS62271345A (en) Manufacture of electrode for plastic battery
US5626986A (en) Carbon coating for an electrode
JPH0362451A (en) Electrode of polyaniline polymer and preparation of polyaniline polymer
JPS6355853A (en) Manufacture of electrode for plastic cell
JPS6313259A (en) Manufacture of electrode for plastic battery
JPS62181325A (en) Electrolytic organic polymer film
JPS6321746A (en) Manufacture of electrode for plastic battery
JPS6332853A (en) Manufacture of electrodes for plastic cell
JPS6337561A (en) Production of electrode for plastic cell positive electrode
JPS6332873A (en) Plastic cell
JPS63174268A (en) Manufacture of electrode for plastic cell positive electrode