JPS62271300A - Redundant semiconductor circuit - Google Patents

Redundant semiconductor circuit

Info

Publication number
JPS62271300A
JPS62271300A JP61115312A JP11531286A JPS62271300A JP S62271300 A JPS62271300 A JP S62271300A JP 61115312 A JP61115312 A JP 61115312A JP 11531286 A JP11531286 A JP 11531286A JP S62271300 A JPS62271300 A JP S62271300A
Authority
JP
Japan
Prior art keywords
level
fuse
transistor
output
address
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61115312A
Other languages
Japanese (ja)
Inventor
Shoichiro Kawashima
将一郎 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61115312A priority Critical patent/JPS62271300A/en
Publication of JPS62271300A publication Critical patent/JPS62271300A/en
Pending legal-status Critical Current

Links

Landscapes

  • Techniques For Improving Reliability Of Storages (AREA)
  • Read Only Memory (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Abstract

PURPOSE:To prevent a malfunction at the time of applying a power source by connecting a writing negative potential source to a transistor side, further connecting the power source to the transistor side through a resistor, and making a serial connecting point as the reading end of a memory address. CONSTITUTION:At the time of writing, the power sources Vpp, Vcc are added and a control signal WC is brought into L level. Accordingly, if an address bit AB goes '0' (L level), the output of an OR gate G1 goes to L level, and the output of an inverter G2 to H level, the MOS transistor Q is turn on, a current is conducted in the sequence from the power source Vcc, a fuse F, the transistor Q and the power source Vpp and the fuse is melted. If the address bit AB goes to '1' (H level), the output of the OR gate G1 goes to the H level, the output of an inverter G3 goes to the L level, and the transistor Q is turned off and accordingly, the fuse F is not melted.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔概 要〕 電気的にヒユーズを溶断し、プログラムするROM回路
において、ヒユーズ溶断用電源に負電位を有する電源を
用いる。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Summary] In a ROM circuit that electrically blows a fuse and programs it, a power supply having a negative potential is used as a power supply for blowing the fuse.

〔産業上の利用分野〕[Industrial application field]

本発明は冗長用半導体回路、詳しくはヒユーズを用いた
R OMの該ヒユーズを電気的に溶断する回路に関する
The present invention relates to a redundant semiconductor circuit, and more particularly to a circuit for electrically blowing out a fuse in a ROM using a fuse.

〔従来の技術〕[Conventional technology]

半導体記憶装置では大容量になるにつれて一部のメモリ
セルが不良である確率が高くなるので、メモリセルを余
分に設けておき、製造段階で不良メモリセルが検出され
るとその不良セルを冗長セルで1き換え、不良チップを
良品化することが行なわれている。
In semiconductor memory devices, as the capacity increases, the probability that some memory cells are defective increases, so extra memory cells are provided, and if a defective memory cell is detected during the manufacturing stage, the defective cell is replaced with a redundant cell. The defective chip is now replaced with a new one to make it a good product.

冗長セルによる不良セルの置換は、不良セルアドレスが
アクセスされるとき、不良セルではなく冗長セルがアク
セスされるよう切換えることで行なわれる。不良セルの
置き換えはワード線又はピッ1−線単位で行なわれるの
で不良セルアドレスはワード線又はビット線のアドレス
であり、このアドレスをROMに記憶させておき、メモ
リアクセス時はそのアクセスアドレスをROM記憶アド
レスと比較し、一致すると、当該ワード線又はビ。
Replacing a defective cell with a redundant cell is performed by switching so that when a defective cell address is accessed, the redundant cell is accessed instead of the defective cell. Since defective cells are replaced in units of word lines or pin-line units, the defective cell address is the address of the word line or bit line. This address is stored in the ROM, and when accessing the memory, the access address is stored in the ROM. It is compared with the storage address, and if they match, the corresponding word line or bit is selected.

ト線の選択を止め、代って冗長ワード線又はビット線を
選択する。
The selection of the bit line is stopped and a redundant word line or bit line is selected instead.

不良アドレスを記憶するROMとしては、ヒユーズRO
M即ちメモリセルがヒユーズであるROMを用いること
が多い。アドレスの各ビットの1.0に応して該ヒユー
ズを/8断し又は溶断しないことにより該不良アドレス
を記憶させる。第3図にそのヒユーズl専断回路の従来
例を示す。
Fuse RO is a ROM that stores defective addresses.
A ROM in which M, that is, the memory cell is a fuse, is often used. The defective address is stored by blowing or not blowing the fuse by /8 in accordance with 1.0 of each bit of the address. FIG. 3 shows a conventional example of the fuse I disconnection circuit.

第3図でFはヒユーズであり、Qはこれを溶断するだめ
のMO3t−ランジスタである。ヒユーズFとトランジ
スタQの直列接続点NF(ヒユーズノード)はインバー
タG2に接続され、また抵抗R2を介してVss(一般
にはグランドレベル)へ接続される。ヒユーズFの溶断
には比較的大きな電流を必要とするので高電圧(通常1
0〜15■)の電源vppが用意され、その他の回路素
子の電源Vcc(ijl常5V)とは別にされる。電源
Vl)!]はヒユーズ溶断時のみ加えられ、その他は電
源VCCのみであるので、ヒユーズFは抵抗R+を介し
て電源v cc−1も接続される。G+はノアゲートで
、書込み制御信号WCとアドレス信号の1ピノh 分A
Bが加えられる。
In FIG. 3, F is a fuse, and Q is an MO3t-transistor that is used to blow the fuse. A series connection point NF (fuse node) between the fuse F and the transistor Q is connected to an inverter G2, and is also connected to Vss (generally ground level) via a resistor R2. Fuse F requires a relatively large current to blow, so a high voltage (usually 1
A power supply Vpp of 0 to 15V) is prepared and is separate from the power supply Vcc (ijl is normally 5V) for other circuit elements. Power supply Vl)! ] is applied only when the fuse is blown, and otherwise only the power supply VCC is applied, so the fuse F is also connected to the power supply Vcc-1 via the resistor R+. G+ is a NOR gate, 1 pin h of write control signal WC and address signal A
B is added.

書込み時はVcc、Vppが加えられ、また制御信号W
CがL(ロー)レベルになり、従ってアドレスビットA
Bが“0” (Lレベル)であるとファゾーhc+の出
力はH(ハイ)レベルとなり、トランジスタQをオンに
する。従ってVpp、、F、Q。
During writing, Vcc and Vpp are applied, and the control signal W
C becomes L (low) level, so address bit A
When B is "0" (L level), the output of Fazo hc+ becomes H (high) level, turning on transistor Q. Therefore, Vpp,,F,Q.

Vss(通常グランドレベル)の経路で電流が流れ、ヒ
ユーズFは溶断する。これに対してアドレスビットAB
が“1” (Hレベル)ならファゾー1−G1の出力は
Lレベルであり、1−ランジスタQはオフ、従って上記
電流は流れず、ヒユーズFはそのま−である(ン専断し
ない)。
A current flows through the Vss (usually ground level) path, and fuse F blows. On the other hand, address bit AB
If is "1" (H level), the output of the fazo 1-G1 is at the L level, the 1-transistor Q is off, so the above-mentioned current does not flow, and the fuse F remains as it is (does not shut down).

メモリ使用時は電tAVpρは印加されず、電源Vcc
のみであるが、抵抗R+を介してヒユーズFには該VC
C力く加わるので、ヒユーズFカ(〆専断していないと
ノードNFはHレベル(Vccに近いレベル)、ヒユー
ズF力くン専断じているとノートNFはLレベル(Vs
sレヘレベになり、該ノートNFには記IQしたアドレ
スピントABと同じH,Lレベルになる。インバータG
2は該レベルを反転して次段照合回路(図示しない)へ
出力する。なおこの第3図の回路はアドレスの1ピッ1
−分を示しており、デバイスの冗長アドレス長が16ピ
ントなら16個設けられる。
When using the memory, the voltage tAVpρ is not applied and the power supply Vcc
However, the VC is connected to the fuse F via the resistor R+.
If the fuse F is not controlled exclusively, the node NF will be at H level (close to Vcc), and if the fuse F is exclusively controlled, the node NF will be at the L level (Vs
s level, and the note NF has the same H and L levels as the address focus AB written in IQ. Inverter G
2 inverts the level and outputs it to the next stage matching circuit (not shown). Note that the circuit in Figure 3 is based on 1 pin 1 of the address.
- minutes, and if the device has a redundant address length of 16 pins, 16 addresses are provided.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この第3図の回路は電aVppで書込み、電源Vccて
読取りを行ない、電源VCCの読取り回路には抵抗R1
が入っているので次の問題がある。即ちパワーオン時ば
Vec、R1、F、NFの経路でノー)= N Fの充
電が行なわれる(ヒユーズFは溶断していないとして)
が、抵抗R1があるのでノードNFの電位の立上りは第
4図に示すように遅くなる。7ノーFNFの電位の立上
りが遅くなるとヒユーズ溶断/非溶断の検知、即ち冗長
アドレスの読出しが遅れ、これを早目に行なうとHレベ
ル(ヒユーズ非l″容[折)をLレベル(ヒユーズ/容
′FgI)ト誤判定するなどの誤動作が生しる恐れがあ
る。
The circuit shown in FIG. 3 writes with the voltage aVpp, reads with the power supply Vcc, and has a resistor R1 in the reading circuit of the power supply VCC.
is included, so there is the following problem. In other words, when the power is turned on, charging of NF is performed in the path of Vec, R1, F, and NF (assuming that fuse F is not blown).
However, because of the presence of the resistor R1, the potential of the node NF rises slowly as shown in FIG. If the rise of the potential of the 7-no FNF is delayed, the detection of fuse blowing/non-blowing, that is, the reading of the redundant address will be delayed. There is a risk that malfunctions such as erroneous determination may occur.

本発明はか−る点を改;し、電源投入時にも速やかな動
作を行ない、誤動作の恐れがないようにしようとするも
のである。
The present invention aims to improve this point, to perform prompt operation even when the power is turned on, and to eliminate the possibility of malfunction.

〔問題点を解決するための手段〕[Means for solving problems]

第1図に示すように、本発明では高電圧電源Vpl)を
負電源としてトランジスタQのソース側に接続する。G
3およびR3は付加したインバータおよび抵抗てあり、
他は第3図と同様である。
As shown in FIG. 1, in the present invention, a high voltage power supply (Vpl) is connected to the source side of the transistor Q as a negative power supply. G
3 and R3 are the added inverter and resistor,
The rest is the same as in FIG. 3.

〔作用〕[Effect]

書込み時は電源v pp、v ccを加え、また制御信
号WCをLレヘノーこする。従ってアドレスピノ1−A
 Bが“0” (Lレベル)ならオアゲー1−G1の出
力はLレベル、インバータC3の出力はHレベルとなり
、MO5I−ランジスクQはオンで、電源Vcc、ヒユ
ーズF、1−ランジスクQ、電源Vppの経路で電流が
流れ、ヒユーズFは#8断する。これユこ対してアドレ
スヒ゛ソ1−1八Bカく“1” <Hレベル)ならオア
ゲートG +の出力はト正しベル、インハータG3の出
力はLレベルとなり、トランジスタQはオフ、従ってヒ
ユーズFL!溶断しない。
At the time of writing, power supplies Vpp and VCC are applied, and a control signal WC is applied. Therefore, Address Pino 1-A
If B is "0" (L level), the output of OR game 1-G1 is L level, the output of inverter C3 is H level, MO5I-Landisk Q is on, power supply Vcc, fuse F, 1-Landisk Q, power supply Vpp. Current flows through the path, and fuse F #8 is blown. On the other hand, if the address signal 1-18B is "1"<H level), the output of the OR gate G+ is a correct signal, the output of the inharter G3 is L level, the transistor Q is off, and therefore the fuse FL is ! Will not melt.

読出しは電源VCCのみ加え、制御信号WCはHレベル
にする。従ってオアゲー)G+の出力はHレベル、イン
バータG3の出力はLレベル、トランジスタQはオフで
ある。このためノードNFのレベルはヒユーズFの/8
断/非溶断で定まり、溶断ならLレベル、非溶断ならI
(レベルで、書込まれたアドレスビットA、Bの1.0
に応したH1Lレヘルを生しる。インバータG2はこれ
を反転して次段照合回路へ出力する。
For reading, only the power supply VCC is applied and the control signal WC is set to H level. Therefore, the output of the OR game) G+ is at H level, the output of inverter G3 is at L level, and transistor Q is off. Therefore, the level of node NF is /8 of fuse F.
Determined by cut/non-cut, L level if cut, I if not cut.
(at level 1.0 of written address bits A and B)
Create a H1L level that corresponds to the situation. Inverter G2 inverts this and outputs it to the next stage matching circuit.

この回路では読出し時、電源をオンにするとノードNF
はVcc、Fの経路で充電され、第3図の従来回路のよ
うに抵抗R+は含まれないので、ノードNFの立上りは
第2図に示すように急峻であり、冗長アドレスの読出し
遅れ、誤動作は生じない。
In this circuit, when reading, when the power is turned on, the node NF
is charged through the path of Vcc and F, and does not include the resistor R+ as in the conventional circuit shown in Fig. 3, so the rise of the node NF is steep as shown in Fig. 2, resulting in delays in reading redundant addresses and malfunctions. does not occur.

電源vppは電源Vccと和’dノシてヒユーズFにン
容断電流を流すので、高電圧である必要がない。例えば
第3図のように10〜15Vで溶断するなら、第1図で
はV cc= 5 VとしてVpp−−5〜−10Vを
用いればよい。
Since the power supply Vpp is the sum of the power supply Vcc and causes a current to flow through the fuse F, it does not need to be a high voltage. For example, if the fuse is to be fused at 10 to 15V as shown in FIG. 3, Vpp--5 to -10V may be used as Vcc=5V in FIG.

インバータG]はトランジスタQをオフさせるに必要な
ものである。即ちノアゲートGlの出力はHレベルでV
cc、LレベルでVssで、これを直接トランジスタQ
のゲートに加えると、書込み時はV ppm −5〜−
10vを使用するので、オアゲ)G+の出力がLレベル
でもトランジスタQのソース電極から見たゲート電極は
充分にHレベルになり、トランジスタQはオンになって
しまう。
Inverter G] is necessary to turn off transistor Q. That is, the output of NOR gate Gl is at H level and V
cc, Vss at L level, connect this directly to transistor Q
When added to the gate of V ppm -5 to - during writing,
Since 10V is used, even if the output of G+ is at L level, the gate electrode viewed from the source electrode of transistor Q will be sufficiently at H level, and transistor Q will be turned on.

これではアドレスピッ1−ABの1.0に無関係にヒユ
ーズFは溶断することになり、不具合である。
In this case, the fuse F will blow regardless of the address pin 1-AB being 1.0, which is a problem.

インバータG3を挿入し、その低電位側電源を図示のよ
うにトランジスタQのソースと同しvppとし、かつ抵
抗R3を通してVssへも接続してお(と、インバータ
G3の出力のH,Lに応してトランジスタQはオン、オ
フし、また読出し時にもこれらは正常動作する。なお抵
抗R3はVppがVssへ短絡されるのを防止するもの
である。第3図の抵抗R1も、読出し時にVccをヒユ
ーズFへ供給する他に、VppがVCCへ短絡されるの
を防止する機能がある。
Insert an inverter G3, set its low potential power source to vpp, which is the same as the source of the transistor Q as shown in the figure, and also connect it to Vss through a resistor R3 (depending on the H and L outputs of the inverter G3). The transistor Q turns on and off, and they operate normally during reading.Resistor R3 prevents Vpp from being short-circuited to Vss.Resistor R1 in FIG. In addition to supplying Vpp to fuse F, there is a function to prevent Vpp from being shorted to VCC.

ゲートG1はノアゲートとし、出力I11にGlを含め
てインハークを2段接続してもよい。
The gate G1 may be a NOR gate, and the output I11 may include Gl to connect two stages of in-harcs.

(発明の効果〕 以上説明したように本発明ではヒユーズ溶断は正常;こ
行なえ、かつ読出し時のパワーオン時のヒユーズl専断
/非熔断検出は速やかに行なえる利点を有する。
(Effects of the Invention) As described above, the present invention has the advantage that the fuse blows normally; and that the detection of whether or not the fuse I is blown when the power is turned on during reading can be quickly performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を示す回路図、 第2図はその動作説明図、 第3図は従来例を示す回路図、 第4図はその動作説明図である。 第1図でFはヒユーズ、Qはトランジスタ、Vcc。 V ss、  V ppは電源、Rつは抵抗である。 FIG. 1 is a circuit diagram showing the present invention, Figure 2 is an explanatory diagram of its operation. Figure 3 is a circuit diagram showing a conventional example; FIG. 4 is an explanatory diagram of the operation. In Figure 1, F is a fuse, Q is a transistor, and Vcc. Vss and Vpp are power supplies, and R is a resistance.

Claims (1)

【特許請求の範囲】 ヒューズをメモリセルとして冗長アドレスを記憶する冗
長用半導体回路において、 該ヒューズFと、冗長アドレスビットに応じてオンオフ
するトランジスタQとを直列に接続し、該ヒューズ側に
回路用電源Vcc、Vssの該正電位電源Vccを、ま
たトランジスタ側に書込み用負電位源Vppを接続し、
該トランジスタ側には更に抵抗を介して電源Vssを接
続し、前記直列接続点を記憶アドレスの読出し端として
なることを特徴とする冗長用半導体回路。
[Claims] In a redundant semiconductor circuit that stores a redundant address using a fuse as a memory cell, the fuse F and a transistor Q that is turned on and off according to the redundant address bit are connected in series, and a circuit-use semiconductor circuit is provided on the fuse side. The positive potential power supply Vcc of the power supplies Vcc and Vss is connected to the transistor side, and the negative potential source Vpp for writing is connected to the transistor side.
A redundant semiconductor circuit characterized in that a power supply Vss is further connected to the transistor side via a resistor, and the series connection point serves as a read end of a storage address.
JP61115312A 1986-05-20 1986-05-20 Redundant semiconductor circuit Pending JPS62271300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61115312A JPS62271300A (en) 1986-05-20 1986-05-20 Redundant semiconductor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61115312A JPS62271300A (en) 1986-05-20 1986-05-20 Redundant semiconductor circuit

Publications (1)

Publication Number Publication Date
JPS62271300A true JPS62271300A (en) 1987-11-25

Family

ID=14659503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61115312A Pending JPS62271300A (en) 1986-05-20 1986-05-20 Redundant semiconductor circuit

Country Status (1)

Country Link
JP (1) JPS62271300A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153588A (en) * 2006-12-20 2008-07-03 Matsushita Electric Ind Co Ltd Electric fuse circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153588A (en) * 2006-12-20 2008-07-03 Matsushita Electric Ind Co Ltd Electric fuse circuit

Similar Documents

Publication Publication Date Title
TW434548B (en) Fuse circuit and redundant decoder
JPH07326199A (en) Nonvolatile programmable bistable multivibrator programmableby source for memory redundant circuit
JPS59144100A (en) Semiconductor memory
WO1990016069A1 (en) Semiconductor memory device
KR100319032B1 (en) Charge sharing detection circuit for anti-fuses
JPH07105157B2 (en) Redundant memory cell use decision circuit
JPS59140700A (en) Redundant line for ic memory
JP2706659B2 (en) Integrated circuit with switch element for switching to redundant element in memory
JP4478980B2 (en) Fuse circuit and semiconductor device using the same
US5208780A (en) Structure of electrically programmable read-only memory cells and redundancy signature therefor
KR20020061113A (en) Semiconductor device
JP3821992B2 (en) Redundant decoder enable circuit for semiconductor memory device
JP2760326B2 (en) Semiconductor storage device
US6188239B1 (en) Semiconductor programmable test arrangement such as an antifuse to ID circuit having common access switches and/or common programming switches
JPS62271300A (en) Redundant semiconductor circuit
JP3020561B2 (en) Semiconductor storage device
JPS59210596A (en) Semiconductor memory
JPS58175195A (en) Semiconductor memory
US6944085B2 (en) Semiconductor memory device with reduced chip area and improved redundancy efficency
US6236241B1 (en) Redundant decoder having fuse-controlled transistor
JP3084715B2 (en) Semiconductor memory
JP2000200498A (en) Semiconductor device
JPH02236900A (en) Information storage circuit
JP2580600B2 (en) Semiconductor memory device
JPH038039B2 (en)