JPS6227123B2 - - Google Patents
Info
- Publication number
- JPS6227123B2 JPS6227123B2 JP58051453A JP5145383A JPS6227123B2 JP S6227123 B2 JPS6227123 B2 JP S6227123B2 JP 58051453 A JP58051453 A JP 58051453A JP 5145383 A JP5145383 A JP 5145383A JP S6227123 B2 JPS6227123 B2 JP S6227123B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- molybdenum
- powder
- sintered body
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000843 powder Substances 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 8
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 5
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 2
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 29
- 238000000034 method Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 238000005096 rolling process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910020851 La(NO3)3.6H2O Inorganic materials 0.000 description 1
- 229910002422 La(NO3)3·6H2O Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
- 229910003452 thorium oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Description
[発明の目的]
(産業上の利用分野)
本発明は、構造用材料として用いる酸化ランタ
ン(以下La2O3と記す)を均一にモリブデン(以
下Moと記す)中に分散させるMo材の製造方法に
関する。
(従来技術および発明が解決しようとする問題
点)
La2O3を含有したMoは、主に電子管の陰極材
料として線あるいは板状にした後、線はコイル状
(スパイラル状)に板は曲げ加工等、二次加工し
て用いる。Mo中のLa2O3は、酸化トリウム入り
タングステン(ThO2―W)中のThO2と同様に
Moに固溶したり、Moと化合物を作ることなく、
La2O3の粒子として分散している。
このため、Mo中のLa2O3微粉の分散性が不良
の場合には、線または板状に加工する際、断線し
たり、割れたりするため加工が非常に困難であつ
た。
また、Moはもともと銅,アルミニウム等と比
較し、非常に脆い金属であり、コイル状にした
り、板を曲げたりする等、二次加工をすることが
むずかしい材料えある。
この二次加工性を改善する為には、Moの焼結
体あるいは溶融したインゴツトを高い加工率(減
面率)で加工し、加工方向に繊維組織を発達させ
(繊維温度を室温以下にし)、線あるいは板の柔軟
性を向上せしめているのが最も一般的な方法であ
る。
本発明者らは、上記問題点に着目し、La2O3が
1〜5重量%含有するMoについて、その線材を
コイル状にしたり、板を曲げたりする等、二次加
工性を容易にせしめる為には、焼結体からの加工
率が60%以上にすることが必要であることを実験
研究によりつきとめた。又この加工率60%以上に
容易に加工するためには、Mo中に微細なLa2O3
を均一に分散させることが必要であり、その為に
は、Mo粉末中にLa2O3を凝集させることなく均
一に分散させることが必要であつた。
しかしながら、機械的な方法でLa2O3微粉末を
Mo中に均一に分散せしめる従来の方法は、
La2O3が微細になればなるほど、凝集しやすくな
るという問題があつた。
本発明は上記した問題点を解消し、微細な
La2O3をMo中に均一に分散せしめることによ
り、線あるいは板状に容易に加工でき、更にこれ
ら線あるいは板に二次加工性が容易となるMo材
の製造方法を提供することを目的とする。
[発明の構成]
(問題点を解決するための手段)
本発明のMo材の製造方法は、モリブデン
(Mo)もしくはモリブデン酸化物の粉末に、モリ
ブデン重量に対して、酸化ランタン(La2O3)の
量に換算して1〜5重量%となる様に硝酸ランタ
ンを添加した後、120℃以上で加熱分解せしめて
得られた酸化ランタンを含有したモリブデン粉末
を水素雰囲気中で還元し、圧粉成形した後、非酸
化性雰囲気中で1700℃以上で焼結し、得られた焼
結体を焼結体の横断面積に対し加工率60%以上で
加工することを特徴とする。
本発明の最大の特徴は、La2O3の添加方法とし
て、硝酸ランタンでドープ後、これを熱分解によ
つて、La2O3に変えることにある。この方法を用
いることにより、従来のLa2O3粉末の混合方法に
比較し、より微細なLa2O3粉末をMo中に均一に
分散させることができる。この結果、以後、棒線
あるいは板等に加工する場合、断線、割れ等が極
めて少なく、これらを容易に二次加工することが
できる。又、この様にして得られたMo棒、線あ
るいは板は、Mo中に微細なLa2O3が均一に分散
している為、例えば、電子管の陰極材料に使用し
た場合、極めて良好な電子放出特性を得ることが
できる。
本発明において、Mo粉末中に分散させた
La2O3の粒径は、平均粒径で0.5μm以下で、最大
粒径が1.0μm以下であることが望ましく、もし
これ以上の粒径を有するLa2O3が入つた場合、
棒、線あるいは板等にする際の加工性が著しく悪
くなるばかりでなく、構造材料として用いた場
合、その特性を低下させる等さまざまな障害をひ
きおこしやすい。又、Mo粉末の平均粒径は2〜
5μmが望ましく、この範囲外のMo粉末を使用
した場合圧粉体に亀裂が入つたり、焼結体をロー
ル加工、ハンマー加工、転打加工あるいは引き抜
き加工をする場合、加工性に支障を生じやすい。
La2O3の添加量を1〜5重量%とするのは、1
重量%以下では構造材としての特性例えば、十分
な電子放出特性が得られにくくなり、又5重量%
を超えると、加工性に悪影響を及ぼしやすいため
である。
(実施例)
以下、本発明のMoの製造方法について、実施
例に沿つて説明する。
実施例1〜3、比較例1〜2
平均粒径2.5μmのMoO2粉末に、あらかじめ、
分析して硝酸ランタン中のLaを確認した硝酸ラ
ンタンLa(NO3)3・6H2Oを、La2O3換算で表示し
た量含有する水を加えながら泥状になる様に添加
した。
これを温浴中で撹拌しながら十分乾燥させた
後、電気ヒーターで200℃で2時間加熱しLa
(NO3)3をLa2O3に分解させた(乾燥温度を高く
し、La(NO3)3の分解と乾燥を同時に行つても良
い)。
次に粒子表面にLa2O3を分散させたMoO2を水
素雰囲気中で温度1000℃、4時間還元し、平均粒
径3μmのLa2O3担持Mo粉末を得た。この時、
電子顕微鏡で観察したLa2O3の粒径は0.1〜0.4μ
mであつた。
このLa2O3担持Mo粉末を、機械プレスにより
1.5ton/cm2の圧力で、圧粉体を成形し、このまま
では取扱いが困難なため、水素雰囲気中で1200℃
で1時間仮焼結後1850℃で8時間焼結し、形状が
断面積12×12mm、長さ650mm、比重が9.5の焼結体
を得た。
次に、この焼結体を、温度を加えながらロール
加工、転打加工、さらに引抜き加工を施し、0.20
mmφの線を得た。加工率は99.9%であつた。
得られた線材を用いて電子管を製造し、この電
子管を用いてMo中のLa2O3含有量と電子放出特
性との関係を表に示した。なお、表示の値は、
La2O3含有量が0.5重量%含む比較例1を基準とし
たときの相対値である。
[Purpose of the invention] (Industrial application field) The present invention is directed to the production of Mo material in which lanthanum oxide (hereinafter referred to as La 2 O 3 ) used as a structural material is uniformly dispersed in molybdenum (hereinafter referred to as Mo). Regarding the method. (Prior art and problems to be solved by the invention) Mo containing La 2 O 3 is mainly used as a cathode material for electron tubes, after it is made into a wire or plate shape, the wire is coiled (spiral shape) and the plate is bent. Used for secondary processing such as processing. La 2 O 3 in Mo is similar to ThO 2 in tungsten containing thorium oxide (ThO 2 -W).
Without solid solution with Mo or forming compounds with Mo,
Dispersed as particles of La 2 O 3 . For this reason, if the dispersibility of the La 2 O 3 fine powder in Mo is poor, it is very difficult to process the wire or plate because the wire may break or crack. Furthermore, Mo is originally a very brittle metal compared to copper, aluminum, etc., and it is difficult to perform secondary processing such as forming it into a coil or bending a plate. In order to improve this secondary workability, the Mo sintered body or molten ingot is processed at a high processing rate (area reduction rate) and the fiber structure is developed in the processing direction (the fiber temperature is lowered to below room temperature). The most common method is to improve the flexibility of the wire or plate. The present inventors focused on the above-mentioned problems, and made it easy to make secondary workability of Mo containing 1 to 5% by weight of La 2 O 3 by making the wire into a coil shape or bending the plate. In order to achieve this, we found through experimental research that it is necessary to increase the processing rate from the sintered body to 60% or more. In addition, in order to easily process this processing rate to 60% or more, it is necessary to add fine La 2 O 3 in Mo.
Therefore, it was necessary to uniformly disperse La 2 O 3 in Mo powder without agglomerating it. However, mechanical method can produce La 2 O 3 fine powder.
The conventional method for uniformly dispersing Mo into
There was a problem that the finer the La 2 O 3 , the more likely it was to aggregate. The present invention solves the above-mentioned problems and
The purpose of the present invention is to provide a method for producing Mo material that can be easily processed into a wire or plate shape by uniformly dispersing La 2 O 3 in Mo, and further facilitates secondary processing into these wires or plates. shall be. [Structure of the Invention] (Means for Solving the Problems) The method for producing Mo material of the present invention includes adding lanthanum oxide (La 2 O 3 ) After adding lanthanum nitrate to an amount of 1 to 5% by weight (converted to the amount of After powder compaction, the method is sintered at 1700°C or higher in a non-oxidizing atmosphere, and the resulting sintered body is processed at a processing rate of 60% or higher relative to the cross-sectional area of the sintered body. The greatest feature of the present invention is that the method of adding La 2 O 3 is to dope with lanthanum nitrate and then convert it into La 2 O 3 through thermal decomposition. By using this method, finer La 2 O 3 powder can be uniformly dispersed in Mo compared to the conventional method of mixing La 2 O 3 powder. As a result, when the wire is subsequently processed into wire rods, plates, etc., there are extremely few wire breaks, cracks, etc., and these can be easily subjected to secondary processing. In addition, since the Mo rods, wires, or plates obtained in this way have fine La 2 O 3 uniformly dispersed in Mo, they have extremely good electron properties when used as cathode materials for electron tubes, for example. release characteristics can be obtained. In the present invention, dispersed in Mo powder
The particle size of La 2 O 3 is preferably 0.5 μm or less in average particle size and 1.0 μm or less in maximum particle size. If La 2 O 3 with a larger particle size is included,
Not only does it have a markedly poor workability when made into rods, wires, plates, etc., but when used as a structural material, it tends to cause various problems such as deterioration of its properties. In addition, the average particle size of Mo powder is 2~
The preferred diameter is 5 μm. If Mo powder outside this range is used, cracks may occur in the green compact, and workability may be impaired when the sintered compact is rolled, hammered, rolled, or drawn. Cheap. When the amount of La 2 O 3 added is 1 to 5% by weight, 1
If the content is less than 5% by weight, it becomes difficult to obtain sufficient properties as a structural material, such as electron emission properties;
This is because if it exceeds this, it tends to have an adverse effect on workability. (Example) Hereinafter, the method for producing Mo of the present invention will be described with reference to Examples. Examples 1 to 3, Comparative Examples 1 to 2 MoO 2 powder with an average particle size of 2.5 μm was coated with
Lanthanum nitrate La(NO 3 ) 3 ·6H 2 O, which was analyzed to confirm the La content in the lanthanum nitrate, was added to form a slurry while adding water containing the amount indicated in terms of La 2 O 3 . After thoroughly drying this in a warm bath while stirring, it was heated with an electric heater at 200℃ for 2 hours and
(NO 3 ) 3 was decomposed into La 2 O 3 (the drying temperature may be increased to decompose La(NO 3 ) 3 and dry at the same time). Next, MoO 2 with La 2 O 3 dispersed on the particle surface was reduced in a hydrogen atmosphere at a temperature of 1000° C. for 4 hours to obtain La 2 O 3 -supported Mo powder with an average particle size of 3 μm. At this time,
The particle size of La2O3 observed with an electron microscope is 0.1~0.4μ
It was m. This La 2 O 3 supported Mo powder is mechanically pressed.
The green compact is molded under a pressure of 1.5 ton/ cm2 , and since it is difficult to handle it as it is, it is heated at 1200℃ in a hydrogen atmosphere.
After pre-sintering for 1 hour at 1850°C, sintering was carried out for 8 hours to obtain a sintered body with a cross-sectional area of 12 x 12 mm, a length of 650 mm, and a specific gravity of 9.5. Next, this sintered body is subjected to rolling processing, rolling processing, and drawing processing while applying temperature.
A line of mmφ was obtained. The processing rate was 99.9%. An electron tube was manufactured using the obtained wire, and the relationship between the La 2 O 3 content in Mo and the electron emission characteristics using this electron tube is shown in the table. In addition, the displayed value is
This is a relative value based on Comparative Example 1 containing 0.5% by weight of La 2 O 3 content.
【表】
実施例 4
実施例3と同様にして焼結体を製造した後、こ
の焼結体を実施例3と同様にしてロール加工、転
打加工、引抜き加工を施して1.0mmφ、0.5mmφ、
0.1mmφの線を得た。このときの製品歩留りを、
1%ThO2含有のタングステン焼結体から同じ線
径の線を製造したときの製造歩留りを1として表
わし、その値を加工性として図に示した。
実施例 5
実施例3と同様に方法で得られたLa2O3担持の
Mo粉末を、静水圧で2ton/cm2の圧力でプレス
し、圧粉体を成型した。次に、これを水素雰囲気
中で1850℃×8時間焼結して、寸法70mmφ×600
mm、比重9.45の焼結体を得た。
この焼結体を加熱しながら、ハンマーで加工
後、熱間、冷間ロール加工を施し、厚さ30μmの
シートを得た。
この様にして得られた線あるいはシートは、ス
パイラル状または円筒状に二次加工する場合、純
Moの線、あるいはシートと同様、二次加工性は
きわめて良好であつた。
[発明の効果]
以上の説明から明らかな通り、本発明の方法
は、
La2O3の添加をLa(NO3)3・6H2Oにより溶液
の形で行うため、Mo中に均一に、しかも微細
に分散させることができること、
したがつて線、あるは板状に容易に加工でき
ることと、これに伴い、焼結体からの加工率を
大きくとることができ、この結果、線あるいは
板の二次加工性が、純Moと比較し、ほぼ同等
であること、
La2O3がMo中に均一に分散させることがで
きることにより、構造材としての特性が大きく
向上したこと、
等の効果を奏し、その工業的価値は極めて大であ
る。
なお、本発明に係る溶液の分散の方法は、La
(NO3)3に代えて加熱によつてLaの酸化物を生成
する、他の可溶性化合物を用いても同様の効果が
得られることはいうまでもない。[Table] Example 4 After producing a sintered body in the same manner as in Example 3, this sintered body was subjected to rolling, rolling, and drawing in the same manner as in Example 3 to obtain 1.0 mmφ and 0.5 mmφ. ,
A line of 0.1 mmφ was obtained. The product yield at this time is
The manufacturing yield when manufacturing wires of the same wire diameter from a tungsten sintered body containing 1% ThO 2 is expressed as 1, and the value is shown in the figure as workability. Example 5 La 2 O 3 supported sample obtained in the same manner as in Example 3
The Mo powder was hydrostatically pressed at a pressure of 2 tons/cm 2 to form a green compact. Next, this was sintered in a hydrogen atmosphere at 1850°C for 8 hours, and the size was 70mmφ x 600mm.
A sintered body with a specific gravity of 9.45 was obtained. This sintered body was worked with a hammer while being heated, and then subjected to hot and cold rolling to obtain a sheet with a thickness of 30 μm. When the wire or sheet obtained in this way is processed into a spiral or cylindrical shape, the wire or sheet is pure.
Similar to Mo wire or sheet, the secondary processability was extremely good. [Effects of the Invention] As is clear from the above explanation, in the method of the present invention, La 2 O 3 is added in the form of a solution using La(NO 3 ) 3.6H 2 O, so that it is added uniformly into Mo. Moreover, it can be finely dispersed, and therefore it can be easily processed into a wire or plate shape, and as a result, it is possible to increase the processing rate from the sintered body, and as a result, it can be processed into a wire or plate shape. The secondary workability is almost the same as that of pure Mo, and because La 2 O 3 can be uniformly dispersed in Mo, its properties as a structural material are greatly improved. Its industrial value is extremely large. Note that the solution dispersion method according to the present invention is based on La
It goes without saying that similar effects can be obtained by using other soluble compounds that generate La oxides upon heating in place of (NO 3 ) 3 .
図は、本発明の方法により製造されたMo線の
加工性を示す図である。
The figure is a diagram showing the workability of Mo wire produced by the method of the present invention.
Claims (1)
物の粉末に、モリブデン重量に対して、酸化ラン
タン(La2O3)の量に換算して1〜5重量%とな
る様に硝酸ランタンを添加した後、120℃以上で
加熱分解せしめて得られた酸化ランタンを含有し
たモリブデン粉末を水素雰囲気中で還元し、圧粉
成形した後、非酸化性雰囲気中で1700℃以上で焼
結し、得られた焼結体を焼結体の横断面積に対し
加工率60%以上で加工することを特徴とするモリ
ブデン材の製造方法。1. After adding lanthanum nitrate to molybdenum (Mo) or molybdenum oxide powder in an amount of 1 to 5% by weight in terms of lanthanum oxide (La 2 O 3 ) based on the weight of molybdenum, Molybdenum powder containing lanthanum oxide obtained by thermal decomposition at temperatures above ℃ is reduced in a hydrogen atmosphere, compacted, and then sintered at temperatures above 1700℃ in a non-oxidizing atmosphere. A method for producing molybdenum material, characterized by processing the body at a processing rate of 60% or more with respect to the cross-sectional area of the sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58051453A JPS59177305A (en) | 1983-03-29 | 1983-03-29 | Production of molybdenum powder and molybdenum material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58051453A JPS59177305A (en) | 1983-03-29 | 1983-03-29 | Production of molybdenum powder and molybdenum material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59177305A JPS59177305A (en) | 1984-10-08 |
JPS6227123B2 true JPS6227123B2 (en) | 1987-06-12 |
Family
ID=12887344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58051453A Granted JPS59177305A (en) | 1983-03-29 | 1983-03-29 | Production of molybdenum powder and molybdenum material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59177305A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104439267B (en) * | 2014-12-17 | 2016-05-18 | 崇义章源钨业股份有限公司 | A kind of material boat upset material collecting device |
CN110359043B (en) * | 2019-07-27 | 2021-03-26 | 西北师范大学 | Preparation method of titanium-based lanthanum oxide nanoflower film with dielectric wetting low-voltage response |
CN110976900A (en) * | 2019-11-21 | 2020-04-10 | 金堆城钼业股份有限公司 | Production method of composite alloy molybdenum powder |
CN113802025B (en) * | 2021-09-16 | 2022-08-05 | 西安交通大学 | Method for micro-doping TZM alloy and TZM alloy |
-
1983
- 1983-03-29 JP JP58051453A patent/JPS59177305A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59177305A (en) | 1984-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US1814719A (en) | Ductile thorium and method of making the same | |
US1082933A (en) | Tungsten and method of making the same for use as filaments of incandescent electric lamps and for other purposes. | |
CN112725660A (en) | Powder metallurgy preparation method of graphene reinforced aluminum-based composite material | |
CN113355548B (en) | Atmosphere control powder metallurgy preparation method of graphene reinforced aluminum matrix composite | |
CN108941547B (en) | Preparation method of copper-doped graphene reinforced aluminum-based composite material | |
CN112222418B (en) | Method for preparing nano tungsten powder by regulating nucleation and growth processes and application | |
JP2002371301A (en) | Tungsten sintered compact and manufacturing method therefor | |
CN115679174A (en) | Super-strong tungsten filament and preparation method thereof | |
CN114592138B (en) | Nano alumina particle reinforced copper-based composite material and preparation method thereof | |
US5742891A (en) | Tungsten-lanthana alloy wire for a vibration resistant lamp filament | |
JPS6227123B2 (en) | ||
CN115992329B (en) | Tungsten rod blank and application thereof | |
JPS6237707B2 (en) | ||
JP2552679B2 (en) | Method for manufacturing high hardness composite copper alloy | |
JP3035615B1 (en) | Metal short wire dispersed thermoelectric material and method for producing the same | |
JPH0477057B2 (en) | ||
JP2002226935A (en) | Thorium-tungsten alloy, thorium-tungsten wire, method for manufacturing the same, thorium-tungsten wire coil, and cathode structure for electron tube | |
CN110983087B (en) | Method for improving oxide distribution in yttrium oxide dispersion strengthening tungsten alloy | |
CN111847401A (en) | Preparation method of noble metal nitride nano material | |
US1760367A (en) | Ductile chromium and method of producing the same | |
JP2637192B2 (en) | Manufacturing method of dispersion strengthened copper alloy | |
RU2769344C1 (en) | Material for arc-quenching and breaking electrical contacts based on copper and method of its production | |
JP3472882B2 (en) | Oxide dispersion type alloy and method for producing the same | |
US3551992A (en) | Method of producing ductile-tungsten base sheet alloy | |
JPH0379402B2 (en) |