JPS62270712A - System for detecting condition of blast furnace - Google Patents
System for detecting condition of blast furnaceInfo
- Publication number
- JPS62270712A JPS62270712A JP61113794A JP11379486A JPS62270712A JP S62270712 A JPS62270712 A JP S62270712A JP 61113794 A JP61113794 A JP 61113794A JP 11379486 A JP11379486 A JP 11379486A JP S62270712 A JPS62270712 A JP S62270712A
- Authority
- JP
- Japan
- Prior art keywords
- data
- furnace
- blast furnace
- knowledge base
- inference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims description 7
- 238000007781 pre-processing Methods 0.000 abstract description 10
- 238000012545 processing Methods 0.000 abstract description 8
- 238000013473 artificial intelligence Methods 0.000 abstract description 7
- 230000009471 action Effects 0.000 abstract description 4
- 230000002159 abnormal effect Effects 0.000 abstract description 2
- 230000005465 channeling Effects 0.000 abstract 1
- 238000004364 calculation method Methods 0.000 description 22
- 210000002837 heart atrium Anatomy 0.000 description 11
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000000571 coke Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0243—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/006—Automatically controlling the process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
- G05B13/028—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using expert systems only
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0286—Modifications to the monitored process, e.g. stopping operation or adapting control
- G05B23/0289—Reconfiguration to prevent failure, e.g. usually as a reaction to incipient failure detection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S706/00—Data processing: artificial intelligence
- Y10S706/902—Application using ai with detail of the ai system
- Y10S706/903—Control
- Y10S706/906—Process plant
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Chemical & Material Sciences (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Manufacture Of Iron (AREA)
- Blast Furnaces (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、高炉状況検出システム、特に高炉の吹抜け及
びスリップの推測システムに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a blast furnace condition detection system, and particularly to a blast furnace blow-through and slip estimation system.
高炉の状況を診断し且つこれを管理する方法として、従
来一般に高炉操業者が高炉に設置された種々のセンサー
からの情報を定性的に判定して高炉の状況の評価を行い
、操業因子の最適な調整を行うという方法が採られてい
るが、その評価の結果には操業者の能力や経験等による
個人差があり、操業アクシヨンの基準化が難しいと共に
、評価が定量的でないため操業解析が行いにくいという
問題点があった。Conventionally, as a method for diagnosing and managing blast furnace conditions, blast furnace operators have qualitatively judged information from various sensors installed in the blast furnace, evaluated the blast furnace condition, and determined the optimal operating factors. However, the evaluation results vary depending on the ability and experience of the operator, making it difficult to standardize operational actions, and the evaluation is not quantitative, making operational analysis difficult. The problem was that it was difficult to do.
このようなことから、例えば特開昭59−84705号
公報に開示されているような高炉状況の検出方法が提案
されている。こ、の高炉状況検出方法は、種々のセンサ
ー情報のうち経験上重要と判明している因子を選択し、
これらを炉内現象と対応づけて整理・定量化を行うと共
に、これら整理・定量化を短期及び長期の両面から朽う
ことにより、高炉の状況の検出を行うようにしたもので
あり、高炉の適切な状況管理が実現されている。For this reason, a method for detecting blast furnace conditions has been proposed, for example, as disclosed in Japanese Patent Application Laid-Open No. 59-84705. This blast furnace status detection method selects factors that are known to be important from experience from among various sensor information,
By correlating and quantifying these with the phenomena inside the furnace, and by examining these organization and quantification from both short-term and long-term perspectives, it is possible to detect the status of the blast furnace. Appropriate situation management has been achieved.
特開昭59−64705号公報に開示されている従来の
高炉状況の検出方法では、センサーからの情報を。The conventional method for detecting blast furnace conditions disclosed in Japanese Patent Application Laid-Open No. 59-64705 uses information from sensors.
解析モデルに入力して所定の演算を行うようにしている
。このため、その演算を実行するコンピュータは言語と
して例えばフォートランが使用されているが、演算容量
は極めて大きなものとなっている。更に、高炉は経年変
化するので解析モデル自体を変更してメンテナンスしな
ければならないが、解析モデル自体が複雑であるから解
析モデルの条件変更は極めてめんどうな作業になるとい
う問題点があった。The information is input into an analytical model and predetermined calculations are performed. For this reason, the computer that executes the calculation uses, for example, Fortran as the language, but the calculation capacity is extremely large. Furthermore, since blast furnaces change over time, it is necessary to change the analysis model itself for maintenance, but since the analysis model itself is complex, changing the conditions of the analysis model is an extremely troublesome task.
本発明はこのような問題点を解決するためになされたも
のであり、コンピュータで実現した際にその演算容量が
小さく、かつ高炉の経年変化に対してもその変更が容易
な高炉状況検出システムを得ることを目的とする。The present invention was made in order to solve these problems, and provides a blast furnace condition detection system that has a small calculation capacity when implemented on a computer, and that can be easily changed as the blast furnace ages. The purpose is to obtain.
本発明に係る高炉状況検出システムは、高炉に設置され
た各種のセンサからデータを所定のタイミングで取り込
むデータ入力手段、前記センサからのデータに基づいて
荷下り速度、圧力損失、シャフト圧力、シャフト温度、
固定ゾンデの温度、ガス利用率、炉口ゾンデの温度等高
炉の状況を示す各種データを作成する手段及び前記各覆
データをその基準データと比較して真偽データを作成す
る手段、真偽データを一時記憶する記憶手段、高炉につ
いての経験・実績等に基づいた各、Wの知識ベースが記
憶された知識ベース手段、及び前記記憶手段の真偽デー
タと前記知識ベース手段の知識ベースに基づいて所定の
推論をし、吹抜は又はスリップを予測する推論手段を備
えたものである。The blast furnace condition detection system according to the present invention includes a data input means that takes in data from various sensors installed in the blast furnace at a predetermined timing, and a data input means that takes in data from various sensors installed in the blast furnace, unloading speed, pressure loss, shaft pressure, and shaft temperature based on the data from the sensors. ,
Means for creating various data indicating the status of the blast furnace such as fixed sonde temperature, gas utilization rate, furnace mouth sonde temperature, etc., means for creating truth/false data by comparing each of the above-mentioned verification data with its reference data, and truth/false data. , a knowledge base means storing knowledge bases of W based on experience and achievements regarding blast furnaces, and based on the truth data of the storage means and the knowledge base of the knowledge base means. The apparatus is equipped with an inference means for making a predetermined inference and predicting an atrium or slip.
前記の各種データを作成する手段及び真偽データを作成
する手段は、推論手段にて推論演算をする際に必要な高
炉の真偽データ得るためのものであり、前処理演算機能
の役割を果たしている。The means for creating various data and the means for creating truth/false data described above are for obtaining truth/false data of the blast furnace necessary for performing inference calculations by the inference means, and serve as a preprocessing calculation function. There is.
本発明においては、データ入力手段からの高炉データを
高炉の状況を示す各種データを作成した後真偽データを
作成し、その真偽データと知識ベースとに基づいた人工
知能としての推論演算をし、吹抜は又はスリップを予測
する。In the present invention, after the blast furnace data from the data input means is used to create various data indicating the status of the blast furnace, truth data is created, and inference calculations are performed as an artificial intelligence based on the truth data and the knowledge base. , the stairwell or predict a slip.
以下本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.
第1図は本発明の一実施例に係る高炉状況検出システム
の概念図であや、図において叫は従来から高炉の管理・
制御等に用いられている大型のコンピュータであり、各
種センサαυからのデータを時系列に入力処理する時系
列処理手19(L5、時系列ファイル手段αJ及びシス
テム処理手段Q4]を含んでいるが、これらは従来の検
出システムと同様な構成からなるものである。この実施
例では上記各装置に、時系列処理手段(人工知能用)
Ql、時系列ファイル手段(人工知能用)αη、センサ
ーデータ前処理手段OB及びインターフェース・バッフ
ァQ91が組込まれている。図において一点鎖線で囲ま
れたこれらの装置は、次に述べろ小型のコンピュータで
の演算のためにセンサーデータの前処理を行うものであ
る。Figure 1 is a conceptual diagram of a blast furnace status detection system according to an embodiment of the present invention.
It is a large computer used for control, etc., and includes a time series processing unit 19 (L5, time series file unit αJ, and system processing unit Q4) that inputs and processes data from various sensors αυ in time series. , these have the same configuration as conventional detection systems.In this embodiment, each of the above devices is equipped with a time series processing means (for artificial intelligence).
Ql, time series file means (for artificial intelligence) αη, sensor data preprocessing means OB, and interface buffer Q91 are incorporated. These devices surrounded by dashed lines in the figure perform preprocessing of sensor data for calculation by a small computer, which will be described next.
(支)は小型コンピュータで、知識ベース1(異常炉況
診断用1 c!ll、知識ベース2(炉熱判定用)(社
)、知識ベース3(炉熱アクション用)(23、共通デ
ータバッファ(至)及び推論エンジン(社)が含まれて
いる。(branch) is a small computer, knowledge base 1 (for abnormal reactor condition diagnosis 1c!ll), knowledge base 2 (for furnace heat judgment) (company), knowledge base 3 (for reactor heat action) (23, common data buffer (to) and an inference engine (sha).
(至)はCRTで、推論エンジン(社)の推論の結果が
表示される。(To) is a CRT that displays the results of inference by the inference engine.
なお、第2図の大型コンピュータα0)は第1図の概念
図のうち破線で示された構成部分に対応する部分が主と
して示されている。第2図のセンサ(l1m)、 (l
lb)、 (lie)は第1図の各種のセンサαυに対
応し、センサとしては例えば高炉の温度センサ、圧力セ
ンサ、ガスセンサ等従来の高炉に設置されて全てのセン
サが該当する。(41)はインターフェース、(42)
はCPU、(43)はプログラムが格納されたR OM
、 (441、(45)はRAMで、(46)はイン
ターフニスである。CP U (42)及びROM (
43)はそ乙に格納されたプログラムに基づいて、第1
図の時系列処理手段側及びセンサーデータ前処理手段(
至)を構成している。RA M (44)ば第1図の時
系列ファイル手段αりを構成している。RA M (4
5)は後述する前処理が行われたセンサーデータを一時
格納しておく記憶手段で、インターフェース(46)と
共に第1図のインターフェース・バッファ(財)を構成
している。It should be noted that, in the large-scale computer α0) of FIG. 2, the parts corresponding to the constituent parts shown by broken lines in the conceptual diagram of FIG. 1 are mainly shown. Sensor (l1m), (l
lb) and (lie) correspond to the various sensors αυ in FIG. 1, and the sensors include all sensors installed in conventional blast furnaces, such as temperature sensors, pressure sensors, and gas sensors for blast furnaces. (41) is an interface, (42)
is the CPU, and (43) is the ROM in which the program is stored.
, (441, (45) are RAM, (46) is interfunis. CPU (42) and ROM (
43) is based on the program stored in the
The time series processing means side and sensor data preprocessing means (
). The RAM (44) constitutes the time series file means α in FIG. RAM (4
5) is a storage means for temporarily storing sensor data that has been subjected to preprocessing, which will be described later, and constitutes the interface buffer shown in FIG. 1 together with the interface (46).
第2図の小型コンピュータ■において、(47)はキー
ボード、(48) +よインターフェース、(49)は
CPU、(50)はROM、(51)〜(54)はRA
M、(55)はインターフェースである。CP U (
49)及びROM (50)はそこに格納されたプログ
ラムに基づいて、第1図の推論エンジン手段(社)を構
成している。RA M (51)は第1図の知識ベース
11211を、RAM(52)は9[ペース(社)を構
成している。これらのRA M (51) 、 (52
)はその記憶内容が確定されたものとなっている場合に
はROMで構成してもよい。In the small computer (■) in Figure 2, (47) is the keyboard, (48) is the interface, (49) is the CPU, (50) is the ROM, and (51) to (54) are the RA.
M, (55) is an interface. CPU (
49) and ROM (50) constitute the inference engine means (company) of FIG. 1 based on the programs stored therein. The RAM (51) constitutes the knowledge base 11211 in FIG. 1, and the RAM (52) constitutes the 9 [Pace (Inc.). These RAMs (51), (52
) may be constructed from a ROM if its storage contents are fixed.
RA M (53)は知識ベース(イ)を構成しており
、システム構築者がその記憶内容の変更・追加を行う場
合にはキーボード(47)により入力して、インターフ
ェース(48)を介してその内容を記憶させる。RA
M (54)は第1図の共通データバッファ手段(至)
を構成しており、大型コンピュータ叫のRA M (4
5)に格納されたデータがインターフェース(46)を
介して格納される。CP U (49)で演算された結
果は、インターフェース(55)を介してCRT G[
)に表示される。なお、本実施例では時系列処理手段側
、時系列ファイル手段a7+及びセンサーデータ前処理
手段(至)を大型コンピュータ0ωに組込んだ例を示し
ているが、これは既存の大型コンピュータGO)のあま
っている容量を有効に利用しようとするものであり、従
って、これらは小型コンピュータ■に組込んでもよいこ
とはいうまでもない。The RAM (53) constitutes a knowledge base (a), and when the system builder wants to change or add to its memory contents, he inputs it using the keyboard (47) and then inputs it via the interface (48). Memorize the contents. R.A.
M (54) is the common data buffer means (to) in FIG.
It consists of a large computer RAM (4
5) is stored via the interface (46). The results calculated by the CPU (49) are sent to the CRT G[
) is displayed. Note that this embodiment shows an example in which the time-series processing means side, the time-series file means a7+, and the sensor data pre-processing means (to) are incorporated into a large-scale computer 0ω, but this is similar to the existing large-scale computer GO). The aim is to make effective use of the remaining capacity, so it goes without saying that these can be incorporated into a small computer.
以上の構成からなる本実施例の動作を、第3図のフロー
チャート及び第4図の説明図を参照しながら説明する。The operation of this embodiment having the above configuration will be explained with reference to the flowchart in FIG. 3 and the explanatory diagram in FIG. 4.
(11まず、各種のセンサαDのデータを時系列処理手
段側により順次所定のタイミングで読取り、時系列ファ
イル手段面に格納する(ステップ31)。(11) First, data from various sensors αD are sequentially read at predetermined timing by the time series processing means and stored in the time series file means (step 31).
この動作は、具体的には第2図のCP U (42)の
命令動作によりセンサー(Ilal、 (Ilb)、
(llc)−のデータをインターフェース(41)を介
してRA M (44)に格納することで実現される。Specifically, this operation is performed by the sensors (Ilal, (Ilb),
(llc)- data is stored in the RAM (44) via the interface (41).
(2)時系列ファイル手段αηに格納されたデータはセ
ンサーデータ前処理手段αgにてデータ処理される(ス
テップ32)。この動作は第2図のCPU(42)によ
りなされろ。以下センサーデータ前処理の内容を具体的
に説明する。(2) The data stored in the time series file means αη is processed by the sensor data preprocessing means αg (step 32). This operation is performed by the CPU (42) in FIG. The contents of sensor data preprocessing will be specifically explained below.
このセンサーデーク前処理には、荷下り、圧力損失、温
度、ガス利用率及び出銑滓に関するデータ処理がなされ
ろ。This sensor deck preprocessing includes data processing regarding unloading, pressure loss, temperature, gas utilization rate, and tap slag.
(a) 荷下り;
(a−1,)荷下り速度Vi(i−1〜4)■ 着床か
ら指定時間(:=30秒間)内のデータはその処理をし
ない。(a) Unloading; (a-1,) Unloading speed Vi (i-1 to 4) ■ Data within the specified time (:=30 seconds) from landing on the floor is not processed.
■ ■以降は1分毎に
■ 巻上げ時の計算
前回計算〜巻上げの間が1分未満のときは次のようにし
てViを求める。■ From then on, every minute ■ Calculation during winding If the time between the previous calculation and winding is less than 1 minute, calculate Vi as follows.
■ 上記■、■以外の間のViば最新のVi計算値とす
る。ただしVmin−◇maχの範囲外のときは、さら
に前のVi計算値とする。(スリップ時などのデータを
除(ため)
(a−2) 荷下り速度のバラツキσVI(i−1〜
4)(旦 し 、
t”−n
そして、計算は最新1時間とする( n = 59 )
。■If Vi is between ■ and ■ above, use the latest Vi calculation value. However, when it is outside the range of Vmin-◇maχ, the previous Vi calculation value is used. (Excluding data such as slippage) (a-2) Variation in unloading speed σVI (i-1~
4) (time, t"-n, and the calculation is based on the latest hour (n = 59)
.
(a−3) 荷下り遅れ量Vv1
直
但し、
(イ) 現時点(k−0)より前に逆上って初めてvo
を超えた所を見付ける(なければ1時間前の点)。(a-3) Amount of unloading delay Vv1 Directly, however, (a) Vo will not be released until the current time (k-0) is reversed.
(If not, find the point 1 hour ago).
(ロ) そこからvlE以下となった所(k−に’ )
より現時点まで積算する(1時間前からvlE以下なら
全て積算する。)。(b) The point where it became below vlE (k-')
(If the value is less than vlE from 1 hour ago, all values are integrated.)
vo:理論降下速度
ΔVβ:設定値
Vs=V6−ΔVβ
理論降下速度:vo
CB O/C,CB
□+□
CB: コークスベース(16h当すのコークス量)ρ
ζ:コークス嵩密度
07C:鉱石/コークス比。vo: Theoretical descent speed ΔVβ: Set value Vs = V6 - ΔVβ Theoretical descent speed: vo CB O/C, CB □+□ CB: Coke base (coke amount per 16 hours) ρ
ζ: Coke bulk density 07C: Ore/coke ratio.
ρ。二M石平均嵩密度
Vβ :送風流量
V、/、送風原単位・・・・設定(しきい値)Pig量
:予定出銑量/eh
S :炉口断面積
k :補正係数
(a−4)平均荷下り速度Vi
直
(b)圧力損失;
(b−t)圧損(通気性)k、、に、’(イ) xb
(注)熱風炉切替性は計算しない。ρ. 2M stone average bulk density Vβ: Blow flow rate V, /, Blow unit...Setting (threshold) Pig amount: Planned iron extraction amount/eh S: Hearth cross-sectional area k: Correction coefficient (a-4 ) Average unloading speed Vi Direct (b) Pressure loss; (b-t) Pressure loss (air permeability) k, , '(a) xb (Note) Hot-blast stove switchability is not calculated.
Pl:送風圧力
P、:炉頂圧力
vbo曾h:ボッシュガス速度
(ロ) Kb−に0’ >ΔKb+ (#=1.2)
の判定時に、’=に0.通常時
= K、−f(ΔVχ)二減風時
(ΔVχ)・減風量
(b−2) 1日平均圧損(7’01’〜7’00’
)K、。Pl: Blowing pressure P,: Furnace top pressure vbo Soh: Bosch gas velocity (B) 0' to Kb- >ΔKb+ (#=1.2)
When determining '=, 0. Normal time = K, -f (ΔVχ) 2 When the wind is reduced (ΔVχ)・Air reduction amount (b-2) Daily average pressure drop (7'01' to 7'00'
) K.
但し、
(イ)熱風炉切替中(=充圧中)及び減風中のKbtは
に、の計算から除外する。However, (a) Kbt during hot stove switching (=pressurizing) and air reduction are excluded from the calculation.
(if) 計算結果が指定範囲(Kmin〜Kmax
)外のときは、さらに前日のに・を使用する。(if) The calculation result is within the specified range (Kmin~Kmax
) When going outside, use the previous day's ni・.
(b−3) 圧損のバラツキ(最新1時間分)σkb
(注)熱風炉切替中は計算から除外する。(b-3) Variation in pressure drop (latest 1 hour) σkb
(Note) Excludes from calculation while hot air stove is being switched.
(b−4) 安定状態のシャフト圧力平均P1J (
i=1〜4.j−1〜10:40ケ);1時間平均値(
X’01’ 〜X+1°00′)但し、パイロットシス
テムのシャフト圧力変動因子から安定・不安定を判定し
、安定なら今回の1時間平均値を用い、不安定なら前回
と同じ値を用いる。(b-4) Average shaft pressure P1J in steady state (
i=1-4. j-1 to 10:40); 1 hour average value (
(X'01' to X+1°00') However, whether it is stable or unstable is determined from the shaft pressure fluctuation factor of the pilot system, and if it is stable, the current one-hour average value is used, and if it is unstable, the same value as the previous time is used.
(C)温度;
(C−1)シャフト温度上昇
(C−2)安定状態のシャフト温度平均Ti j
(i−1〜8,1〜4.j−1〜740ケ):1時間平
均値(X’01’ 〜X+1’00’ )但し、X’0
1’ 〜X+1’OO’ +7)間に前回のTI、をそ
のまま用いる。(C) Temperature; (C-1) Shaft temperature increase (C-2) Steady state shaft temperature average Ti j
(i-1 to 8, 1 to 4. j-1 to 740): 1 hour average value (X'01' to X+1'00') However, X'0
1' to X+1'OO' +7), the previous TI is used as is.
(C−3) 固定ゾンデ温度上昇
(C−4)安定状態の固定ゾンデ温度平均T’1j(i
”1〜8.1〜16.j−1〜2:2什);1時間平均
値(X@01’ 〜X+ 1000’ )但し、X@0
1’ 〜X+1”oo’ ノ間にdT’ij
□≧100℃73分の変化が1回でもあれ(ご、t
前回のTNjをそのまま用いろ。(C-3) Fixed sonde temperature increase (C-4) Fixed sonde temperature average T'1j (i
"1~8.1~16.j-1~2:2); 1 hour average value (X@01'~X+1000') However, X@0
Even if there is even one change in dT'ij □□□≧100℃73 minutes between 1' and X+1"oo' (Please use the previous TNj as is.
(d)ガス利用率;
(d−1) r) co下降
4?゛°−9・・(現在値)−7・・(3分前)t
りco= CO2/ (co+co、)(d−2)
1 co下降量Δηe。(d) Gas utilization rate; (d-1) r) CO descent 4?゛°-9...(Current value)-7...(3 minutes ago) t rico=CO2/ (co+co,)(d-2)
1 co falling amount Δηe.
Δ+7eo”+7co(現在値)−ηco(9分前の値
)(e)出銑滓;
(e−1) 炉口ゾンデ温度中心(1)(e−2)
炉口ゾンデ温度中心(2)Tc’(現在値)−Tc’
(を分前の値)くΔTeTc’:現在値を含め、過去3
0分間のTcデータの一次回帰による現在の推定値
(e−3) 炉ゾンデ温度周辺(11(e−4)
炉口ゾンデ温度周辺(2)Te’ (現在値) −Te
’ (を分前の値)〉ΔTeTe’ : Te’ と同
様の計算にて求めろ。Δ+7eo"+7co (current value) - ηco (value 9 minutes ago) (e) Tapping slag; (e-1) Hearth sonde temperature center (1) (e-2)
Center of furnace mouth sonde temperature (2) Tc' (current value) - Tc'
(value of minutes ago) ∆TeTc': Including current value, past 3
Current estimated value by linear regression of Tc data for 0 minutes (e-3) Around furnace sonde temperature (11 (e-4)
Around the furnace mouth sonde temperature (2) Te' (current value) -Te
' (value of the previous minute)>ΔTeTe': Find it using the same calculation as Te'.
(e−5) 1日平均送風圧力
(イ) Pb(7”01’〜7・oo’の平均)4化シ
、熱風炉切替中、減風中は計算から除外する。計算結果
がP1鳳in〜P4m+口の範囲外のとき前回のP、を
そのまま使用する。(e-5) Daily average air blowing pressure (a) Pb (average of 7"01' to 7.oo') Exclude from calculation during 4 conversion, hot blast stove switching, and air reduction. Calculation result is P1 When outside the range of in~P4m+mouth, use the previous P as is.
(a) Wb Pb’ >ΔP−において;P為”P
b :通常時
雪 P、−f’ (ΔVX) :減風時以上のようにし
てh) −(e)について求めtこ諸データをそれぞれ
所定の基準値と比較して、第4図のに示される所定の真
偽データを作成し、インターフェース・バッファαlに
格納する。具体的には第2図のRA M (45)に格
納する。(a) When Wb Pb'>ΔP-;
b: Normal snow P, -f' (ΔVX): Determine h) - (e) in the same manner as above when the wind is reduced. The indicated predetermined truth data is created and stored in the interface buffer αl. Specifically, it is stored in RAM (45) in FIG.
(3) 次にインターフェース・バッファ叫に格納さ
れた真偽データを共通データバッファ(2)に転送する
(S3)。具体的には第2図のRA M (45)に格
納されたデータをインターフス(46)を介してRAM
(54)に転送する。(3) Next, the truth data stored in the interface buffer is transferred to the common data buffer (2) (S3). Specifically, the data stored in the RAM (45) in FIG. 2 is transferred to the RAM via the interface (46).
(54).
(4)推論エンジン手段(社)は、知識ベース12υに
予め格納されている知識データと共通データバッファ(
2)の真偽データとに基づいて高炉内の状況を推論する
(S4)。具体的にはRA M (51)のデータとR
A M (54)のデータに基づいて、CP U (4
9)が所定の演算をする。(4) The inference engine means (company) uses the knowledge data stored in advance in the knowledge base 12υ and the common data buffer (
The situation inside the blast furnace is inferred based on the truth/false data of 2) (S4). Specifically, the data of RAM (51) and R
Based on the data of A M (54), CPU (4
9) performs a predetermined calculation.
ここで、知識ベース1 ellは推論の効率等を考慮し
て第4図に示すような知識ユニットから構成されており
、この図では吹抜けに対する知識ベースが図示されてい
る。これらは主にオペレータの知識や経験をIF−TH
EN〜型のプロダクシコンルールとして表現されており
、さらに各々のルー知識ユニットは、直接的に吹抜け・
スリップを判定するユニットと、吹抜け・スリップに大
きな影響を与える残銑滓の状態を判定するユニットの2
つのグループから成っており、全体として、吹抜け・ス
リップの異常が発生する度合を判定している。第4図に
おいて、ORで示されるのは通常の論理和ではなく、各
真偽データにCF−値が考慮された和であり、ANDは
通常の論理積である。例えば、荷下りルールにおいては
、「荷下り速度が遅い」、[荷下り速度のバラツキが大
きい」、[荷下り遅れ量が大きい」及び「平均荷下り速
度が遅い」という真偽データについて、CF値を考慮し
てこれらの和を求め、CF値を伴った「荷下りが不順で
ある」とするデータが得られる。同様にして、圧力関係
ルールにおいても、「圧力損失が大きい」、「圧力損失
のバラツキが大きい」及び「シャフト圧力が高い」とい
′う真偽データに基づいて、CF値を考慮してこれらの
和を求め、CF値を伴った「圧力変動が大きい」とする
データが得られる。温度関係ルールにおいては、「シャ
フト温度が急上昇している」、[シャフト温度の上昇量
が大きい」、「固定ゾンデ温度が急上昇している」及び
「固定ゾンデ温度の上昇量が大きい」という真偽データ
に基づいて、上記と同様にしてCF値を伴った「温度変
動が大きいと」とするデータが得られろ。ガス利用率関
係ルールにおいては、「ガス利用率が急下降している」
及び「ガス利用率の下降量が大きい」という真偽データ
に基づいてCF値を伴った「ガス利用率が下降している
」とうデータが得られる。「残滓が多い(センサ判断)
」か否かについてのセンサ情報による推論においては、
「炉口ゾンデの中心温度が下降している」及び「炉口ゾ
ンデの周辺温度が上昇している」の真偽データの論理積
がとられ、いずれか一方が「1為」であればその論理積
は「偽」となる。Here, the knowledge base 1ell is composed of knowledge units as shown in FIG. 4, taking into account the efficiency of inference, and this figure shows the knowledge base for the atrium. These are mainly based on the operator's knowledge and experience.
It is expressed as an EN~ type production rule, and each rule knowledge unit is directly connected to the atrium and
There are two units: one that determines slippage and one that determines the state of the iron slag, which has a major impact on blow-through and slippage.
It consists of two groups, and as a whole, it determines the degree to which blow-through/slip abnormalities occur. In FIG. 4, OR is not a normal logical sum, but a sum in which the CF-value is taken into account for each truth/false data, and AND is a normal logical product. For example, in the unloading rules, the CF By calculating the sum of these values in consideration of the values, data indicating that "unloading is out of order" along with the CF value is obtained. Similarly, in the pressure-related rules, based on the true/false data of ``the pressure loss is large'', ``the pressure loss has a large variation'', and ``the shaft pressure is high'', these rules are set in consideration of the CF value. The sum is calculated, and data indicating that "pressure fluctuation is large" is obtained along with the CF value. For temperature-related rules, the following truths are true: "The shaft temperature is rising rapidly,""The amount of increase in shaft temperature is large,""The fixed sonde temperature is rising rapidly," and "The amount of increase in fixed sonde temperature is large." Based on the data, data indicating ``if the temperature fluctuation is large'' along with the CF value can be obtained in the same manner as above. In the gas utilization rate related rules, "the gas utilization rate is rapidly declining"
Based on the true/false data that "the amount of decrease in the gas utilization rate is large", data indicating that the gas utilization rate is decreasing is obtained along with the CF value. “There is a lot of residue (sensor judgment)
In inference based on sensor information as to whether
The logical product of the true/false data of "The center temperature of the furnace mouth sonde is decreasing" and "The surrounding temperature of the furnace mouth sonde is rising" is taken, and if either one is "1", then the The logical product is "false".
この点を除いては上述の場合と同様である。なお、その
他残滓(センサ)関係ルールにおいては、「シャフト圧
力の上昇がn個以上である」、「送風圧力が急上昇して
いる」及び「残銑量が多い」という真偽データが用いら
れる。また、ルールのなかにはオペレータの判定を取り
込む[人間判断ルール」も組み込まれており、「残滓が
多い(人間判断)」か否かについてのデータが得られる
。Except for this point, the case is the same as the above case. In addition, in other residue (sensor) related rules, true/false data such as "shaft pressure has increased by n or more", "air blast pressure has increased rapidly", and "residue pig iron amount is large" are used. Furthermore, the rules include a [human judgment rule] that incorporates the operator's judgment, and data can be obtained as to whether there is "a lot of residue (human judgment)" or not.
次に、上記のデータすなわち「荷下りが不順である」、
「圧力の変動が大きい」、「温度の変動が大きい」及び
「ガス利用率が下降している」についてのデータについ
てCF値を考慮してこれらの和を求め、CF値を伴った
「吹抜け(センサ判断)」データが得られろ。同様にし
て、「残滓が多い(センサ判断)」及び「残滓が多い(
人間判断)」についてのデータについてCF値を考慮し
てこれらの和を求め、CF値を伴った「吹抜け(残滓)
」が得られろ。Next, the above data, that is, ``unloading is irregular'',
The sum of the data for "pressure fluctuation is large", "temperature fluctuation is large", and "gas utilization rate is decreasing" is calculated by taking into account the CF value, and the "atrium" ( (sensor judgment)” data can be obtained. Similarly, "There is a lot of residue (sensor judgment)" and "There is a lot of residue (sensor judgment)"
The sum of these data is calculated by considering the CF value for the data regarding ``human judgment)'', and the sum of these data is calculated by considering the CF value.
” can be obtained.
そして、上記の「吹抜け(センサ判断)」及び「吹抜け
(残滓判断)」、更に「吹抜け(前回警報)」について
CF値を考慮して和を求め、「吹抜け(総合判定)」が
なされる。Then, the sum of the above-mentioned "Atrium (sensor judgment)" and "Atrium (residual judgment)" as well as "Atrium (previous warning)" is calculated by considering the CF value, and "Atrium (overall judgment)" is made.
(5)次に上記の総合判定の結果がCRT OQに表示
される。すなわちCP U (491での演算結果がイ
ンターフェース(55)を介してCRT (71に出力
されて、表示される(ステップS5)。(5) Next, the results of the above comprehensive judgment are displayed on the CRT OQ. That is, the calculation result in the CPU (491) is output to the CRT (71) via the interface (55) and displayed (step S5).
(6)停止信号の有無が判断され、「有」の場合には演
算は停止、「無」の場合には再びステップ1(Sl)に
戻る(ステップS6)。(6) The presence or absence of a stop signal is determined. If "present", the calculation is stopped; if "absent", the process returns to step 1 (Sl) (step S6).
以上のステップ(Sl)〜(S6)の工程は所定の時間
間隔(例えば2分間隔)でくり返される。The above steps (Sl) to (S6) are repeated at predetermined time intervals (for example, every two minutes).
上記の説明は吹抜けの場合についてであるが、スリップ
の場合も基本的には同一であり、スリップの場合のCF
値が吹抜けの場合のCF値と異なっている点が相違する
だけである。なお、第4図の破線で囲んだ部分について
は吹抜け・スリップで共通である。The above explanation is for the case of an atrium, but it is basically the same in the case of a slip, and the CF in the case of a slip is
The only difference is that the value is different from the CF value in the case of open ceiling. Note that the part surrounded by the broken line in Figure 4 is common to both atriums and slips.
以上のようにして得られた吹抜けCF値、スリップCF
値及び荷下り速度のタイムチャートを第5図に示す。こ
の診断結果は極めて良好な実績を示しており、スリップ
については85%以上の的中率を達成している。Atrium CF value and slip CF obtained as above
A time chart of the values and unloading speed is shown in FIG. This diagnostic result has shown an extremely good track record, achieving an accuracy rate of over 85% for slips.
なお、第1図の知識ベースlX5及び知識ベース3(2
)は本発明とは直接関係がないので、ここでは炉熱判定
及び炉熱アクションについても、本発明の基本思想が適
用され得る旨指摘するだけとし、その詳細な説明は省略
す名。Note that knowledge base 1X5 and knowledge base 3 (2
) are not directly related to the present invention, so here we will only point out that the basic idea of the present invention can be applied to furnace heat determination and furnace heat action, and will omit detailed explanation thereof.
本発明は以上のように高炉に設置された各種のデータか
ら真偽データを作成し、そのデータと知識ベース手段に
記Wきれた経験等に基づいた知識ベースとに基づいた人
工知百巨としての所定の推論をするようにしたので、従
来の経験が十分に生かされ、システムをコンピュータで
実現した場合にもその容量は極めて小さなものですむ。As described above, the present invention creates true/false data from various data installed in a blast furnace, and uses this data and a knowledge base based on experience recorded in a knowledge base means as an artificial intelligence system. Since the predetermined inference is made, conventional experience can be fully utilized, and even if the system is implemented on a computer, its capacity will be extremely small.
更に高炉の経験変化に対しても知識ベース手段の記憶内
容を変更するだけですみ、変更が極めて容易である。Furthermore, changes in the experience of the blast furnace can be made only by changing the stored contents of the knowledge base means, making it extremely easy to make changes.
第1図は本発明の一実施例に係るシステムを示す概念図
、第2図は第1図の概念図の八−ド構成を示すブロック
図、第3図は第1図のシステムの動作を示すフローチャ
ート、第4図は知識ベースの構成及びその推論過程を示
す説明図、第5図は第1図のシステムにおける出力(判
定結果)を示したタイムチャートである。
代理人 弁理士 佐 藤 正 年
第2図Fig. 1 is a conceptual diagram showing a system according to an embodiment of the present invention, Fig. 2 is a block diagram showing the eight-domain configuration of the conceptual diagram in Fig. 1, and Fig. 3 shows the operation of the system in Fig. 1. FIG. 4 is an explanatory diagram showing the configuration of the knowledge base and its inference process, and FIG. 5 is a time chart showing the output (judgment result) of the system shown in FIG. Agent Patent Attorney Tadashi Sato Figure 2
Claims (1)
ミングで取り込むデータ入力手段、前記センサからのデ
ータに基づいて荷下り速度、圧力損失、シャフト圧力、
シャフト温度、固定ゾンデの温度、ガス利用率、炉口ゾ
ンデの温度等高炉の状況を示す各種データを作成する手
段、前記各種データをその基準データと比較して真偽デ
ータを作成する手段、 真偽データを一時記憶する記憶手段、 高炉についての経験・実績等に基づいた各種の知識ベー
スが記憶された知識ベース手段、及び前記記憶手段の真
偽データと前記知識ベース手段の知識ベースに基づいて
所定の推論をし、吹抜け又はスリップを予測する推論手
段 を備えたことを特徴とする高炉状況検出システム。[Scope of Claims] Data input means that takes in data at predetermined timing from various sensors installed in the blast furnace, unloading speed, pressure loss, shaft pressure, etc. based on the data from the sensors;
Means for creating various data indicating the status of the blast furnace such as shaft temperature, fixed sonde temperature, gas utilization rate, furnace mouth sonde temperature, etc., means for creating truth/false data by comparing the various data with reference data, true A storage means for temporarily storing false data, a knowledge base means for storing various knowledge bases based on experience and achievements regarding blast furnaces, and a knowledge base based on the truth/false data of the storage means and the knowledge base of the knowledge base means. A blast furnace situation detection system characterized by comprising an inference means for making a predetermined inference and predicting blow-through or slip.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61113794A JPS62270712A (en) | 1986-05-20 | 1986-05-20 | System for detecting condition of blast furnace |
EP87106727A EP0246517A1 (en) | 1986-05-20 | 1987-05-08 | A method for controlling an operation of a blast furnace |
BR8702539A BR8702539A (en) | 1986-05-20 | 1987-05-19 | PROCESS FOR CONTROL OF THE OPERATION OF A BLAST OVEN |
CN198787103633A CN87103633A (en) | 1986-05-20 | 1987-05-19 | The method of control operation of blast furnace |
US07/391,639 US4901247A (en) | 1986-05-20 | 1989-08-07 | Method for controlling an operation of a blast furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61113794A JPS62270712A (en) | 1986-05-20 | 1986-05-20 | System for detecting condition of blast furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62270712A true JPS62270712A (en) | 1987-11-25 |
JPH049843B2 JPH049843B2 (en) | 1992-02-21 |
Family
ID=14621252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61113794A Granted JPS62270712A (en) | 1986-05-20 | 1986-05-20 | System for detecting condition of blast furnace |
Country Status (5)
Country | Link |
---|---|
US (1) | US4901247A (en) |
EP (1) | EP0246517A1 (en) |
JP (1) | JPS62270712A (en) |
CN (1) | CN87103633A (en) |
BR (1) | BR8702539A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4976780A (en) * | 1988-12-20 | 1990-12-11 | Nippon Steel Corporation | Blast furnace operation management method and apparatus |
KR101032531B1 (en) | 2008-11-07 | 2011-05-04 | 주식회사 포스코 | System and method for visualizing temperature distribution in blast furnace |
CN105483301A (en) * | 2015-12-01 | 2016-04-13 | 中冶南方工程技术有限公司 | Blast furnace charging batch safe-interval control method |
JP2018009224A (en) * | 2016-07-14 | 2018-01-18 | 株式会社神戸製鋼所 | Operation condition evaluation system |
JP2020020003A (en) * | 2018-08-01 | 2020-02-06 | Jfeスチール株式会社 | Learning method of level lowering speed prediction model for blast furnace, level lowering speed prediction model for blast furnace, prediction method of level lowering speed for blast furnace, blast furnace operation guidance method, control method of level lowering speed for blast furnace, molten iron production method, blast furnace operation method, and a learning device for level lowering speed prediction model for blast furnace |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR920003701B1 (en) * | 1988-03-17 | 1992-05-09 | 가부시끼가이샤 도시바 | Real-time expert system |
US5121496A (en) * | 1988-07-25 | 1992-06-09 | Westinghouse Electric Corp. | Method for creating, maintaining and using an expert system by recursively modifying calibration file and merging with standard file |
JP2907858B2 (en) * | 1989-03-20 | 1999-06-21 | 株式会社日立製作所 | Display device and method |
US5099438A (en) * | 1989-08-28 | 1992-03-24 | Ucar Carbon Technology Corporation | Method for on-line monitoring and control of the performance of an electric arc furnace |
JP3268529B2 (en) * | 1990-03-14 | 2002-03-25 | 株式会社日立製作所 | Knowledge database processing system and expert system |
GB2245382B (en) * | 1990-04-28 | 1994-03-23 | Motorola Inc | Automotive diagnostic system |
FR2677152B1 (en) * | 1991-05-28 | 1993-08-06 | Europ Gas Turbines Sa | METHOD AND DEVICE FOR MONITORING AN APPARATUS OPERATING UNDER VARIABLE CONDITIONS. |
CN1038146C (en) * | 1993-07-21 | 1998-04-22 | 首钢总公司 | Computerized blast furnace smelting expert system method |
US5521844A (en) * | 1993-09-10 | 1996-05-28 | Beloit Corporation | Printing press monitoring and advising system |
DE4338237A1 (en) * | 1993-11-09 | 1995-05-11 | Siemens Ag | Method and device for analyzing a diagnosis of an operating state of a technical system |
US5572670A (en) * | 1994-01-10 | 1996-11-05 | Storage Technology Corporation | Bi-directional translator for diagnostic sensor data |
JP3633642B2 (en) * | 1994-02-28 | 2005-03-30 | 富士通株式会社 | Information processing device |
CN1039498C (en) * | 1995-11-23 | 1998-08-12 | 宝山钢铁(集团)公司 | Blast furnace comprhensive deterministic system |
CN1052758C (en) * | 1997-06-13 | 2000-05-24 | 冶金工业部自动化研究院 | Blast furnace operating consulting system |
US6389330B1 (en) | 1997-12-18 | 2002-05-14 | Reuter-Stokes, Inc. | Combustion diagnostics method and system |
US6341519B1 (en) | 1998-11-06 | 2002-01-29 | Reuter-Stokes, Inc. | Gas-sensing probe for use in a combustor |
US6277268B1 (en) | 1998-11-06 | 2001-08-21 | Reuter-Stokes, Inc. | System and method for monitoring gaseous combustibles in fossil combustors |
US7128818B2 (en) * | 2002-01-09 | 2006-10-31 | General Electric Company | Method and apparatus for monitoring gases in a combustion system |
GB0911836D0 (en) * | 2009-07-08 | 2009-08-19 | Optimized Systems And Solution | Machine operation management |
CN101792836B (en) * | 2010-03-25 | 2011-08-31 | 济南领航机械设备有限公司 | Blast furnace bell-less furnace top failure diagnosis forecasting system |
CN102096404B (en) * | 2010-12-31 | 2013-11-20 | 中冶南方工程技术有限公司 | Bell-less string tank furnace top charging material software tracker and control method thereof |
CN102703626B (en) * | 2012-06-16 | 2014-01-15 | 冶金自动化研究设计院 | Intelligent optimal control system for CO2 emission of blast furnace |
CN102816883B (en) * | 2012-06-18 | 2013-12-11 | 北京科技大学 | Radar, video and laser system combined device for measuring blast furnace burden surface |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB142206A (en) * | 1919-02-06 | 1920-05-06 | William Mann | Improved process relating to the decomposition of hydrocarbons and other substances in the liquid and, or, vapour phases |
US4248625A (en) * | 1979-08-06 | 1981-02-03 | Kawasaki Steel Corporation | Method of operating a blast furnace |
JPS5964705A (en) * | 1982-10-01 | 1984-04-12 | Nippon Kokan Kk <Nkk> | Method of detecting condition of blast furnace |
GB2142206B (en) * | 1983-06-24 | 1986-12-03 | Atomic Energy Authority Uk | Monitoring system |
JPH0789283B2 (en) * | 1984-11-02 | 1995-09-27 | 株式会社日立製作所 | Formula processing control system |
-
1986
- 1986-05-20 JP JP61113794A patent/JPS62270712A/en active Granted
-
1987
- 1987-05-08 EP EP87106727A patent/EP0246517A1/en not_active Withdrawn
- 1987-05-19 CN CN198787103633A patent/CN87103633A/en active Pending
- 1987-05-19 BR BR8702539A patent/BR8702539A/en not_active IP Right Cessation
-
1989
- 1989-08-07 US US07/391,639 patent/US4901247A/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4976780A (en) * | 1988-12-20 | 1990-12-11 | Nippon Steel Corporation | Blast furnace operation management method and apparatus |
AU612531B2 (en) * | 1988-12-20 | 1991-07-11 | Nippon Steel Corporation | Blast furnace operation management method and apparatus |
EP0641863A1 (en) * | 1988-12-20 | 1995-03-08 | Nippon Steel Corporation | Blast furnace operation management method and apparatus |
KR101032531B1 (en) | 2008-11-07 | 2011-05-04 | 주식회사 포스코 | System and method for visualizing temperature distribution in blast furnace |
CN105483301A (en) * | 2015-12-01 | 2016-04-13 | 中冶南方工程技术有限公司 | Blast furnace charging batch safe-interval control method |
CN105483301B (en) * | 2015-12-01 | 2017-06-13 | 中冶南方工程技术有限公司 | Charging of blast furnace charge personal distance control method |
JP2018009224A (en) * | 2016-07-14 | 2018-01-18 | 株式会社神戸製鋼所 | Operation condition evaluation system |
JP2020020003A (en) * | 2018-08-01 | 2020-02-06 | Jfeスチール株式会社 | Learning method of level lowering speed prediction model for blast furnace, level lowering speed prediction model for blast furnace, prediction method of level lowering speed for blast furnace, blast furnace operation guidance method, control method of level lowering speed for blast furnace, molten iron production method, blast furnace operation method, and a learning device for level lowering speed prediction model for blast furnace |
Also Published As
Publication number | Publication date |
---|---|
US4901247A (en) | 1990-02-13 |
EP0246517A1 (en) | 1987-11-25 |
CN87103633A (en) | 1987-12-23 |
BR8702539A (en) | 1988-02-23 |
JPH049843B2 (en) | 1992-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62270712A (en) | System for detecting condition of blast furnace | |
US4976780A (en) | Blast furnace operation management method and apparatus | |
JP2022014169A (en) | Operation guidance method, blast furnace operation method, production method of hot metal, and operation guidance device | |
JPS62270708A (en) | Control system for blast furnace heat | |
JP2678767B2 (en) | Blast furnace operation method | |
JP2001254111A (en) | Method of controlling furnace heat in blast furnace and guidance device | |
JP2724364B2 (en) | Blast furnace operation method | |
JPH083621A (en) | Method for adjusting molten steel temperature in steelmaking process | |
JP2724365B2 (en) | Blast furnace operation method | |
JPH11335710A (en) | Method for predicting furnace heat in blast furnace | |
JP2000144229A (en) | Method for predicting slopping in converter and device therefor | |
TWI435936B (en) | Method for predicting channeling phenomenon of blast furnace | |
KR100286670B1 (en) | Apparatus and method for diagnosing heat level of blast furnace using expert system | |
JP4081248B2 (en) | Control method of the lower part of the blast furnace | |
JP2696114B2 (en) | Blast furnace operation management method | |
JP2000178618A (en) | Method for predicting condition of blast furnace | |
JPS6054256A (en) | Method for diagnosing abnormality of continuous casting machine | |
JPH1180820A (en) | Device for supporting operation at the time of abnormal furnace condition in blast furnace and method therefor | |
JPH0686979B2 (en) | Frost Prediction Device for Thermal Shock Tester | |
JP2518753B2 (en) | Blast furnace charge distribution control device | |
JP6944393B2 (en) | Plant condition evaluation system, plant condition evaluation method, and program | |
JPH02166203A (en) | Method for controlling blast temperature in blast furnace | |
KR100340571B1 (en) | Behavior Prediction Device and Method for Bell-less Blast Charge | |
JPH09111318A (en) | Method for predicting abnormal operation of plant | |
JP2733565B2 (en) | Blast furnace operation method |