JPS5964705A - Method of detecting condition of blast furnace - Google Patents

Method of detecting condition of blast furnace

Info

Publication number
JPS5964705A
JPS5964705A JP17090382A JP17090382A JPS5964705A JP S5964705 A JPS5964705 A JP S5964705A JP 17090382 A JP17090382 A JP 17090382A JP 17090382 A JP17090382 A JP 17090382A JP S5964705 A JPS5964705 A JP S5964705A
Authority
JP
Japan
Prior art keywords
index
furnace
condition
diagnosis
term
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17090382A
Other languages
Japanese (ja)
Inventor
Hiroshi Saito
斎藤 汎
Teiji Shibuya
渋谷 悌二
Takashi Sumikama
隆志 炭竃
Masaro Izumi
泉 正郎
Yoshihiro Horiuchi
堀内 好浩
Ryosuke Kimura
亮介 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP17090382A priority Critical patent/JPS5964705A/en
Publication of JPS5964705A publication Critical patent/JPS5964705A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process

Abstract

PURPOSE:To precisely detect the condition of a blast furnace, by selecting factors which have been ascertained as important ones by experience from various sensor information, and performing their readjustment and quantitative control in response to a phenomenum inside the furnace in both long and short-term points of view. CONSTITUTION:Sensors provided at various positions of a furnace casing detect data necessary for evaluating furnace heat and condition to handle said data as indices representing fluctuation, unhomogeneity, a pattern and a level. On the basis of said data, long-term diagnosis 13 of one - a few days order and short-term diagnosis 14 of 30min order are performed. Said long-term diagnosis 13 mainly aiming at the diagnosis 5 of furnace condition is constituted by the diagnosis 6 of the distribution of a gas stream, the diagnosis 7 of the distribution of pressure, the diagnosis 8 of adhesive matter and the diagnosis 9 of the level of furnace heat in addition to it. Said short- term diagnosis 14 is constituted by the diagnosis 10 of the abnormality of furnace condition, the diagnosis 11 of the decrease of furnace heat and the diagnosis 12 of the amount of residual slag. These results are sent to means for judging long and short- term furnace conditions to integrate these indices into an index for diagnosing the furnace condition.

Description

【発明の詳細な説明】 本発明は高炉の炉況検出方法に関する。[Detailed description of the invention] The present invention relates to a method for detecting the condition of a blast furnace.

高炉の状況を診断し且つこれを管理する方法として、従
来−デ’r’−’−vr高炉4’hX’:’&’%Il
’a M (7) −1= 7 g−カらの悄〜IIコ
定↑生的に゛i′11定11.で炉況の評価欠行い、操
厚−因子の1役消な調t’紫1jうという方法が採られ
ているが、炉況のル1′価の語法にd操榮者の能力や経
験雪に↓る1(Jl八す2があり、操業アクションの基
準化が!:1ifi−L、いとともに、評価が定量的で
ないため1゛ψ業1’+’+析が行いにくいという問題
点があった。このようなごとから、高炉状況の検出力法
として、高炉から、炉内全11:、損指数、シャフト部
1(、力分布指数、]り]人物li;r−ト状況指数ガ
ス利用率指数、炉頂ガス温度分布指数、シャフト炉壁温
度分布指数、炉内「偽しベル指危及び炉内溶融j吻保留
指数の各数値因子を検出し7てこれら指数の組合評価に
より高炉状況を判定するという方法が提案されている。
As a method of diagnosing and managing the situation of the blast furnace, conventional -de'r'-'-vr blast furnace 4'hX':'&'%Il
'a M (7) -1= 7 g-Kara no Taku ~ II Ko Determined ↑ Biologically ゛i'11 Determined 11. The method of evaluating the condition of the furnace is omitted, and the operator's skill and experience are used in the wording of the 1' value of the factor. In the snow, there is 1 (Jl Eighth 2, standardization of operational actions!: 1ifi-L, and in addition, the problem is that it is difficult to analyze 1゛ψ work 1'+'+ because the evaluation is not quantitative) Because of this, as a detection power method for the blast furnace situation, from the blast furnace, the whole inside of the furnace 11:, loss index, shaft part 1 (, force distribution index, ]ri) personli; r-to situation index. By detecting each numerical factor of gas utilization rate index, furnace top gas temperature distribution index, shaft furnace wall temperature distribution index, in-furnace "false bell danger" and in-furnace melt retention index, and evaluating the combination of these indices. A method of determining the blast furnace status has been proposed.

しかし2ながら、本発明者等の検討したところによtL
 &J:、上ri+″、方法には次のような問題点があ
り、実操業への適用は困1,1t−cあると渚えられる
However, according to the study of the present inventors, tL
&J:, Uri+'', the method has the following problems and is considered difficult to apply to actual operations.

■ 単に短期的な炉況変化を把えているだけであるため
、長期的(1日以上)な操業アクションの指(県とはl
リイ()ない。
■ Since it merely grasps short-term changes in reactor conditions, it is difficult to indicate long-term (more than one day) operational actions (the prefecture is different from the prefecture).
There is no Rii ().

況不調に陥っ/こ用台など、その原因についてのi゛(
2価がないため、アクションの指標とはなりイ1tない
、。
The economy has fallen into a slump.
Since it has no bivalence, it cannot be used as an indicator of action.

■ 炉況の診断を変動、不均一に関するものの他、レベ
ル、パターンに関するものをも取り入れて行っているが
、1ノベル、パターンに関するものは、操業方法(例え
ばオイル吹き込み、オールコークス、低燃料比、高燃料
比等)が変・−>7’j場合、基準が変ってくるため、
その111〜iPL制限値目哲5価を変更して炉況診断
を行う火・ガがある3、 ■ 高炉’j’:A ’j%−4において最も重要な因
子の1つで2!する円周方向のバランスに対する評価を
行っ−Cいない。
■ In addition to fluctuations and non-uniformity, the furnace condition is diagnosed by taking into account levels and patterns. However, the diagnosis of furnace conditions is based on the operating methods (e.g. oil injection, all coke, low fuel ratio, If the fuel ratio (high fuel ratio, etc.) changes ->7'j, the standard will change, so
111 - iPL limit value There is fire and gas that perform furnace condition diagnosis by changing the valence 3, ■ Blast furnace 'j': One of the most important factors in A 'j%-4 and 2! The balance in the circumferential direction was evaluated.

(も)炉況を総合的に評価するには因子が少過ぎ、1(
4−に炉熱炉況を判断するのに最も重要な因仔の1つで
ある羽L」情報が含まれていない。
(also) There are too few factors to comprehensively evaluate the furnace condition, and 1(
4- does not include information on the "feather L" which is one of the most important factors in determining the furnace condition.

本発明は以上のような問題点に1゛11みなされたもの
で、■jij々のセン゛リー↑゛H報のうち先’f= 
1!l’+ 、−1−市j埼と2+0明している円イ全
)六択L7、これら全炉内現象と対応づけて9:::;
、、:[Iij、・定(、:化を行うとともに、これら
整理・定−「、:化を知期及び長期の両面から行うこと
により、炉況の曲伸な検出を行うようにしたものである
The present invention has been made in view of the above-mentioned problems.
1! l'+, -1-Ichij Saki and 2+0 bright circle I) Six choices L7, all of these in-core phenomena correspond to 9:::;
,, :[Iij,・determining(,: , , , , , , , , , , , , , , , , , , , , , , , , , , , , It is.

第1図tよ本つク、可法の全体構成〕しI−を示すもの
である。、木兄四状1;l:、  1〜数日(例えば5
[])程度の期間を11′1位して慣巨−)Jl、る情
報から主と1〜て炉況の安定度をt・1価する長期炉況
検出と、30分Rj度の短期間をJii、位と(−た(
W報から、短期的な炉況の定月−的xri’価占、主と
L2て減風、増コークヌ等を必要とするような異常炉況
を検出する知期炉況検出とを行うことを”(jへとして
いる。
Figure 1 shows the overall structure of the law. , 1 to several days (e.g. 5 days)
[ ]) Period of about 11'1 and the period of 11'1 and the period of time -) Jl, mainly from the information of 1 to 1 to detect the stability of the reactor condition by t・1, and the short-term condition of 30 minutes Rj degree Between Jii, place and (-ta(
From the W report, perform periodic furnace status detection to detect abnormal furnace conditions that require wind reduction, increase in wind, etc. mainly in L2 ” (to j.

このうち長期炉況検出は、主として変動・不均一性から
炉況の安定度を評価する炉況診断と土としてレベル比較
、パターン比較等によって炉況の不安定度の原因を把握
することを目的とした各種診断から4昔成され、これら
の診断の総合J′r価により炉況が検出される。これに
より炉況の定9+“的な評価が行われ、装入物分布変更
、羽目風量バランスjillJ ?等を行う揚台の矛1
効な111断(4−刺となる。−に記炉況診断は炉内に
おけるガス、’Q、圧力等の変動ど円周方向のも均、−
性とから操業結果のf+′価を行うことによりイ(ノら
れる。まだ、炉況の不安定度の原因を把1)iiするた
めの診断と12で、ガスb1t、分布診lu1、圧力分
布診断、炉熱レベル診1(1、何着′吻診断が行わi]
、このうちガス流分布診断は、水平ゾンデ、ベルトゾン
デ等から得られた才径方向のガス流分布状1λj1のa
″V価、圧力分布診断は7ヤフト圧力d1、送風圧力計
等により得られた圧力情報からの炉内通気性の評価、伺
着物診断は/ヤフト温匪、クー17ングスデーブ温度等
から炉内付着物成長状態の診断、炉熱レベル診断は補正
燃料比、ガス利用率、G銑温度等からの炉熱lノベルの
評価をそれぞれ行う。
Of these, long-term reactor condition detection is mainly aimed at assessing the stability of the reactor condition based on fluctuations and non-uniformity, as well as understanding the causes of instability in the reactor condition through level comparisons, pattern comparisons, etc. The condition of the furnace can be detected from the overall J'r value obtained from these diagnoses. As a result, a constant 9+" evaluation of the furnace condition is carried out, and changes are made to the lifting platform to change the charge distribution, to balance the air flow rate, etc.
An effective 111 disconnection (4-tabble) is used to diagnose the condition of the furnace.The changes in gas, Q, pressure, etc. in the furnace are uniform in the circumferential direction.-
It is possible to determine the cause of the instability of the furnace condition by performing f+' values of the operation results. Diagnosis, Furnace heat level diagnosis 1 (1, How many tests were performed)
, Among these, gas flow distribution diagnosis is based on a of the gas flow distribution shape 1λj1 in the radial direction obtained from a horizontal sonde, belt sonde, etc.
``V value, pressure distribution diagnosis is 7 Yaft pressure d1, evaluation of furnace air permeability from pressure information obtained from blowing pressure gauge etc. Diagnosis of the growth state of kimono and furnace heat level are performed by evaluating the furnace heat level from the corrected fuel ratio, gas utilization rate, G iron temperature, etc.

一方、短期炉況検ILIは、各抽因f−の変1υ、不均
一性、1ノベル比較等から短時間1υに炉況を評価する
炉況異常診断、各種因子の7変動、不均一性、レベル比
較、シャフト、クーリングスラープの壁落ち等から短萌
間毎に炉熱をA’F11[iする炉熱低下診断、及び夕
1色銑滓11及び炉下部通2性から出銑滓不順を短時間
毎に評価する残銑滓量診断から構成され−Cいる。そし
て上記した各評価値が基準レベルと比較して異常の1.
43合にFま%t′、H報が発せられ、拘゛!業アクシ
ョンの4iJ会が与えられる。
On the other hand, short-term reactor condition inspection ILI is a reactor condition abnormality diagnosis that evaluates the reactor condition in a short period of 1υ based on the variation 1υ of each extraction factor f-, nonuniformity, 1 novel comparison, etc., 7 variations of various factors, nonuniformity, etc. , level comparison, diagnosis of furnace heat drop by A'F11 [i] at every short heating interval from wall fall of shaft, cooling slurp, etc., and extraction of iron slag from 1st color iron slag 11 and furnace lower part permeability. It consists of a residual pig iron slag amount diagnosis that evaluates irregularities at short intervals. Each of the above evaluation values is compared with the standard level and is 1.
At the 43rd minute, an H alarm was issued and arrests were made! A 4iJ meeting of business action will be given.

以上の長期炉況検出及び短期炉況検出を構成する各種診
断結果は総て指数として得られ、各評価因子の定ft的
評価がn」能となる。総ての診断において基本になるデ
ータは、炉体各所に設置されたセンサーから得られる。
All of the various diagnostic results constituting the long-term reactor condition detection and short-term reactor condition detection described above are obtained as indexes, and constant evaluation of each evaluation factor is possible. The basic data for all diagnostics is obtained from sensors installed throughout the furnace body.

各センサーは炉熱・炉況を評価するに必要十分なデータ
を短時間毎(例えば数秒〜数分毎)に検出し、変動、不
均一性、パターン及びレベルを表わす指数が得られる。
Each sensor detects sufficient data to evaluate the furnace heat and furnace condition at short intervals (for example, every few seconds to several minutes), and indexes representing fluctuations, non-uniformities, patterns and levels are obtained.

長期炉況検出においては、1日〜数日分のデータから指
数が導かれ、また短期炉況検出においては、短時間のデ
ータから所定時間毎に指数が導かれる。
In long-term furnace condition detection, an index is derived from data for one to several days, and in short-term furnace condition detection, an index is derived from short-time data at predetermined time intervals.

なお、3+h當この短期炉況検出では、数十分(aO分
程度)毎に炉況検出が行われるが、例えば、数十分毎の
データによる指数を使用した場合、短期的な変化による
誤イa号を把えたり、3〜4時間オーダーでの炉況の徐
変を見逃すおそれがある。このため本発明では、数十分
程度毎に前数時間程度の時系列市川み伺けを行った指数
を導くものである。本発明者等が炉熱・炉況異常に上り
減風を行う前のセンザー変化開始時刻を調査した結果、
平均的にみて3〜4時間の範囲までのセンザー変化を把
えればよいことが判明した。また、別にパワースペクト
ル解析によりガスクロCO濃度等を例にとって炉況の周
期を調査したところ、炉況は最大4〜5時間までの周期
で変動していることが判った。このようなことから、短
期炉況検出においては、各指数全3〜5時IH1(平均
4時間)前までのセンザー情報を含めたものがら(47
るようにすることが好しい。
In addition, in this short-term furnace condition detection, the furnace condition is detected every several tens of minutes (about aO minutes), but if an index based on data every several minutes is used, for example, errors due to short-term changes may occur. There is a risk of not knowing what is happening in the reactor or overlooking gradual changes in the furnace condition on the order of 3 to 4 hours. For this reason, in the present invention, an index is derived by performing a time-series Ichikawa search of the previous several hours every several tens of minutes. As a result of the inventors' investigation of the sensor change start time before the furnace temperature and furnace condition become abnormal and wind reduction is performed,
It has been found that it is sufficient to understand sensor changes over a period of 3 to 4 hours on average. In addition, when the periodicity of the furnace condition was separately investigated using the gas chromatography CO concentration as an example by power spectrum analysis, it was found that the furnace condition fluctuated in a period of up to 4 to 5 hours. For this reason, short-term reactor condition detection includes sensor information from 3 to 5 hours before IH1 (average 4 hours) for each index (47 hours).
It is preferable to do so.

以上のような指数を予め定められたそれぞれの因子の制
限値又は目標値と比較し、その比較結果に応じて各因子
毎に段階評価(例えば5段階訂価)を行う。ぞして、こ
れによるi=F価指数にそれぞれ経験則に基づく重み付
けを行い、炉況・炉熱全表わす因子毎にまとめて加算し
、例えばio点満点満足評価による評価を行う。この評
価により長期炉況検出では、炉況診断の評価因子となる
べき装入物降下状況指数、圧力変動状況指数、ガス流変
動状況指数、円周バランス状況指数、炉熱変動指数が得
られ、きらに炉況異常診断の手掛りとなるべきガス流分
布診断指数、圧力分布診断指数、炉熱レベル診断指数及
び付着物診断指数がそれぞれ得られる。また短期炉況検
出では、炉況異常診断の評価因子となるべき圧力変動状
況指数及び炉況異常診断用のレベル比較指数、炉熱低下
診断の評価因子となる11.セ落ち状況指数及び炉熱低
下診断用のレベル比較指数、炉況異常診断及び炉熱低下
診断の共通の評価因子となるべき装入!l?2I IQ
下状況指数、ガス流変動指数及び円周バランス状況指数
が求められ、ざらに残銑滓量指数が求められる。そして
、長期炉況検出においては装入物降下状況指数、圧力変
動状況指数、ガス流変動状況指数、円周バランス状況指
数及び炉熱変動指数の重み付けを行ってこれらを加算し
、例えば100点満点滴足評価による炉況診断指数を求
める。セし一〇さらに、この炉況診断指数、前記ガス流
分布診断指数、圧力分布診断指数、炉熱レベル診断指数
及び付着物診断指数の重み付けを行ってこれらを加算し
、例えば100点満点滴足評価による長期炉況診断指数
を求める。他方、短期炉況検出においては、装入物降下
状況指数、圧力変動状況指数、ガス流変動状指数、円周
バランス状況指数及び炉況診断用レベル比較指数を重み
付けして加算し、例えば100点?W”J点滴足評価に
よる炉況異常診断指数を求め、また装入物降下状況指数
、壁落ち状況指数、ガス流変1IIh状況指数、円周バ
ランス状況指数及び炉熱低下診断用レベル比較指数を爪
み付けして加算し、例えば100点満点滴足評価Qてよ
る炉況異常診断指数金求める。そして、上記炉況異常診
断指数、炉熱低下診断指数、さらには残銑滓量指数のそ
れぞれのレベルを例えば、A(良好)、B(不良)、C
(悪化)にランク付けし、いずれかの指数がCの1ン易
合にはti K−艮が発せ、られる。
The above indexes are compared with predetermined limit values or target values for each factor, and a graded evaluation (for example, five-level rating) is performed for each factor according to the comparison result. Then, the resulting i=F value index is weighted based on empirical rules, and added together for each factor representing all of the furnace conditions and furnace heat, to perform an evaluation based on, for example, an io-point perfect score satisfaction evaluation. Through this evaluation, in long-term reactor condition detection, the burden descent condition index, pressure fluctuation condition index, gas flow condition index, circumferential balance condition index, and furnace heat fluctuation condition index, which are the evaluation factors for furnace condition diagnosis, can be obtained. A gas flow distribution diagnostic index, a pressure distribution diagnostic index, a furnace heat level diagnostic index, and a deposit diagnostic index, which are clues for diagnosing abnormalities in the furnace condition, can be obtained. In addition, in short-term reactor condition detection, the pressure fluctuation situation index, which is an evaluation factor for furnace condition abnormality diagnosis, the level comparison index for furnace condition abnormality diagnosis, and 11. which is an evaluation factor for furnace heat drop diagnosis. Charging that should become a common evaluation factor for the sagging situation index and the level comparison index for diagnosing furnace condition abnormality and diagnosing furnace heat drop! l? 2I IQ
The bottom condition index, gas flow fluctuation index, and circumferential balance condition index are determined, and roughly the residual pig iron slag amount index is determined. In long-term furnace condition detection, the burden drop condition index, pressure fluctuation condition index, gas flow fluctuation condition index, circumferential balance condition index, and furnace heat fluctuation condition index are weighted and added, and the score is, for example, 100 points. Determine the furnace condition diagnostic index by drop foot evaluation. 10 Furthermore, this furnace condition diagnosis index, the gas flow distribution diagnosis index, the pressure distribution diagnosis index, the furnace heat level diagnosis index, and the deposit diagnosis index are weighted and added, and the score is 100 points, for example. Obtain long-term reactor condition diagnostic index through evaluation. On the other hand, in short-term reactor condition detection, the burden drop condition index, pressure fluctuation condition index, gas flow fluctuation condition index, circumferential balance condition index, and level comparison index for furnace condition diagnosis are weighted and added to give, for example, 100 points. ? Obtain the furnace condition abnormality diagnosis index by W"J drip foot evaluation, and also obtain the charge descent condition index, wall fall condition index, gas flow change 1IIh condition index, circumferential balance condition index, and level comparison index for furnace heat drop diagnosis. For example, calculate the furnace condition abnormality diagnosis index based on the 100-point drip foot evaluation Q.Then, each of the above-mentioned furnace condition abnormality diagnosis index, furnace heat decrease diagnosis index, and residual pig iron slag amount index is determined. For example, the level of A (good), B (bad), C
(deterioration), and if any index is C, ti K-艮 is issued.

各評価及び診断の基礎となる因子の区分けの一例を挙げ
ると以下の通りである。
An example of classification of factors that form the basis of each evaluation and diagnosis is as follows.

(1)艮jtll炉況検出 (イ)   リ;門児r’i:’> I:’:’j区、
・”−人′l用171′  ト状出、1j・′f1曲j
下刃譲し:・、叫J曹’;1. i’i’F f曲ガス
j4i+、’lνji+11状況訂価[I] Iji+
バランス状況評価 炉熱変NbtY価 (ロ) ガス流分布診断 ←9 圧力分布診断 (で−)炉d、1〜レベル診断 ″・補正燃料比 (・溶銑温度 (jリ  イ・1〕::f ’i勿診断(2)短期炉況
診断 装入物降t′状況評価 (・装入′吻降下速度σ ・・スリップ点数 \ 圧カフ〔ルυ状況I;’Y (i’i ガスθ:らユ望賀γ1入ン背九−H曲 円周バノンヌ゛伏況訂仙1 / I・ストックラインレヘル不拘−強U 炉況異當診断用レベル比較評価 ′・(P2− Pi ) / V17(’rm気IK−
指数)・羽1−1輝度 %%ζ落ち状況評価 トクーリングステーブ温度異常変動強度\ 炉熱低下診断用レベル比肩評価 残銑滓’jItl tY価 ’ 、 (1)2 13.2 )7 y 1.7  (
通気度)、・残銑滓量 以上の各因子のうち、スリップ点破りま所定時間内にお
ける装入物のスリップをそ゛の程度と回数で点数化した
ものであり、各種の異常変動点数は、所定時間内におけ
る所定レベル以上の変動の回数又は稈j痰を点数化した
ものである。また、ベル下ゾンデσは1ポイント又は数
ポイントにおけるゾンデの平均のσを取ったものである
。また、円周方向不均一性に関する各不拘−φt n+
1は、高炉円周方向における因子の偏向強度を、指数化
したものである。
(1) 艮jtll furnace condition detection (a) ri;
・”-171′ for people′l, 1j・′f1 song j
Lower blade yield:・、Scream J So';1. i'i'F f curved gas j4i+,'lνji+11 situation correction [I] Iji+
Balance situation evaluation Furnace thermal change NbtY value (b) Gas flow distribution diagnosis ←9 Pressure distribution diagnosis (in -) Furnace d, 1 to level diagnosis''・Correction fuel ratio (・Hot metal temperature (j ri・1)::f 'i Naru Diagnosis (2) Short-term reactor condition diagnosis Charge fall t' status evaluation (・Charging nose descent speed σ ・・Slip points\ Pressure cuff [rule υ status I;'Y (i'i Gas θ: Rayu Moga γ1 in back nine-H curved circumference Banonnu's situation correction 1 / I.Stock line Reher unrestricted - strong U Reactor condition abnormality diagnosis level comparative evaluation' (P2-Pi) / V17 ( 'rmki IK-
Index)・Blade 1-1 Brightness %%ζ Fall status evaluation Cooling stave temperature abnormal fluctuation strength .7 (
Among the factors above and beyond the amount of iron slag (air permeability), slip point breakage is scored based on the degree and number of slips of the charge within a predetermined period of time, and the various abnormal fluctuation points are as follows: The number of fluctuations or culm sputum changes above a predetermined level within a predetermined period of time is scored. Further, the below-bell sonde σ is obtained by taking the average σ of the sonde at one point or several points. In addition, each inconstraint regarding the circumferential non-uniformity −φt n+
1 is the index of the deflection strength of the factor in the circumferential direction of the blast furnace.

第2図及び第3図は本発明のJ!:施に供される:ij
lJ御j> tj77を示すものである。このうち、ま
ず第2図は長期炉況検出における装置を示している。高
炉からは各種の因子、即ち、装入物降下速度σ(X8)
、装入間隔σ(X2)、スリノブ点数(X3)、送風圧
力σ(X、)、ンヤフト圧力σ(X5)、炉頂圧力異常
変動点数(X6)、垂直ゾンデ異常変動点数(X7)、
ガス利用率(ηco)σ(X8)、ベル下ゾンデσ(x
9)、炉頂温度σ(X1o)、ストソクラインレベル不
均一強度(X□□)、炉頂温度不均一強度(X1□)、
溶銑中Si濃度不均一強度(X□3)、羽口輝度不均一
強度(X 14 )、溶銑中Si濃度σ(Xt、)、羽
口輝度(X1a)、水平ゾンデ温度分布(X1□)、ベ
ル下ゾンデ温バし分布(X□8)、シャフト圧力(X1
9)、送風圧力(X2ok炉JJ’j圧力(X21)、
補正燃料比(X2z)、ガス利用率■23)、溶銑f!
1度(X24)、シャフト温度(X2□)、クーリング
ステープ温度(X26)の各因子のデータが取り込まれ
る。これらのデータの取り込みは多くのものが数秒〜数
分間隔毎にまた一部のものが1日数回程度行われる。こ
のようにして取り込まれたデータは指数化装置1aない
し1yに送られ、各装置1から各因子のデータに対応し
た指数が出力される。長期炉況検出は、上述のように短
時毎に得られる情数の1〜数日分を指数化して用いたも
のでおり、このような炉況診断指数の基礎となる各因子
についての指数化には例えば次の!うな処理方法が採ら
れる。
FIGS. 2 and 3 show J! of the present invention! : offered as alms: ij
This shows that lJgoj>tj77. Of these, FIG. 2 first shows a device for long-term reactor condition detection. From the blast furnace, there are various factors, namely, the charge descending rate σ (X8)
, charging interval σ (X2), number of Surinobu points (X3), blowing pressure σ (X, ), Nyaft pressure σ (X5), number of furnace top pressure abnormal fluctuation points (X6), number of vertical sonde abnormal fluctuation points (X7),
Gas utilization rate (ηco) σ (X8), bell-bottom sonde σ (x
9) Furnace top temperature σ (X1o), strike line level non-uniform strength (X□□), furnace top temperature non-uniform strength (X1□),
Non-uniform strength of Si concentration in hot metal (X□3), non-uniform intensity of tuyere brightness (X 14 ), Si concentration σ in hot metal (Xt, ), tuyere brightness (X1a), horizontal sonde temperature distribution (X1□), Bell temperature distribution (X□8), shaft pressure (X1
9), Blow pressure (X2ok furnace JJ'j pressure (X21),
Corrected fuel ratio (X2z), gas utilization rate ■23), hot metal f!
Data for each factor of 1 degree (X24), shaft temperature (X2□), and cooling tape temperature (X26) is imported. Most of these data are taken in at intervals of several seconds to several minutes, and some of them are taken several times a day. The data captured in this manner is sent to the indexing devices 1a to 1y, and each device 1 outputs an index corresponding to the data of each factor. As mentioned above, long-term reactor condition detection uses the information obtained at short intervals for one to several days as an index. For example, the following! A similar treatment method is used.

・装入物降下速度σ(X□) ・・・1日分の生データのσを取る。・Charge descending speed σ (X□) ...Take σ of one day's worth of raw data.

・装入間1’?Aσ(X2) ・・・1日分の生データのσ分取る。・Charging interval 1’? Aσ(X2) ...Take σ of one day's worth of raw data.

・スリノブ点数(X3) ・・・スリップのうち500間以上t o o o m
、未77々−1廣、1000間以上2000朋未満=2
点、2000111111以上=3点として各方向で加
算する。
・Slip score (X3) ... 500 or more slips
, 77-1 Hiro, 1000 or more and less than 2000 = 2
Points, 2000111111 or more = 3 points are added in each direction.

・送風圧力σ(X4) ・・・1日分の生データのσを取る。・Blowing pressure σ (X4) ...Take σ of one day's worth of raw data.

・シャフト圧力σ(X5) ・・・1日分の生データの2σを取る。・Shaft pressure σ (X5) ...Take the 2σ of one day's worth of raw data.

・炉頂圧力異常変動点1(X−s) ・・・炉頂圧力が0.03 Kg/ cM以上増加しだ
ら変l1ill 1点とする。
・Furnace top pressure abnormal fluctuation point 1 (X-s)...If the furnace top pressure increases by 0.03 Kg/cM or more, it will be scored as 1 point.

・垂直ゾンデ異常変動点数(X7) ・・・温度の異常上昇における温度勾配の程度を点数化
する。
・Vertical sonde abnormal fluctuation score (X7) ... Convert the degree of temperature gradient in abnormal temperature rise into a score.

・ガス利用率(ηco)σ(X8) ・・・1日分のηcoのσを取る。・Gas utilization rate (ηco)σ(X8) ...Take σ of ηco for one day.

・ベル下ゾンデσ(X、) ・・・装入の影響を除いた大波変動のσを取る。・Bottom bell sonde σ(X,) ...Take the σ of large wave fluctuations excluding the influence of charging.

・炉]ri i晶仄〔σ (X工。) ・・・装入の影響を除いた大波変動のσを取る。・Furnace] ri i書组〔σ (X-工.) ...Take the σ of large wave fluctuations excluding the influence of charging.

・ストーソクラインレベル不均一強度(Xll)及び炉
頂温度不均一強度(X1□)及び羽口輝度不均一強度(
X14> ・・・1日分の生データの不均一強度を取り。
- Storsocline level non-uniform intensity (Xll), furnace top temperature non-uniform intensity (X1□) and tuyere brightness non-uniform intensity (
X14> ...Take the non-uniform intensity of one day's worth of raw data.

・溶銑中Si濃度不均一強度(X□3)・・・数日分の
出銑口毎のデータの不均一強度を取る。
- Non-uniform strength of Si concentration in hot metal (X□3)...Take the non-uniform strength of data for each tap hole for several days.

・溶銑中Si濃度(Xts) ・・・1日分の鍋毎Sl濃度のσを取る。・Si concentration in hot metal (Xts) ...Take the σ of the Sl concentration for each pot for one day.

データに基づいて決定された各因子の変動、レベル、パ
ターン、不均一性に関する指数値は、比較器2aないし
2□取り込まれ、ここで設定器6aないしろ7.により
予め与えられた制限値又は目杼値と比較される。ここで
、(Xl)ないしくXl、)の主として変動又は不均一
性に関する因子については制限値との、また(X17)
〜(X26)の主としてパターン又はレベルに関する因
子については目標値とのそれぞれ比較が行われる。この
比較の結果、各因子について、例えば5段階評価等の段
階評価が行われ、評価に応じた指数値が出力される。こ
れら指数値のうち炉況診断に関するものについては、乗
算器4aないし4.に取り込まれる。これら乗算器のう
ち、乗算器4aないし4cへは重み付は指数発生器5A
から、乗算器4dないし4fへは重み付は指数発生器5
Bから、乗算器4gないし4jへは重み付は指数発生器
5cから、乗算器4にないし4nへは重み付は指数発生
器5Dから、そして乗算器4゜及び4pへは重み付は指
数発生器5Eから、それぞれの因子に対応し7’c重み
付は指数が入力しており、各因子に対応した指数との間
で乗幻がイー」われる。?−のIU+・クーイ;]は指
数は、高炉の状況等に応じ′Cj−めンに定され゛(↓
、・す、以−トに述べる各1−4i ii(?+ (:
)υづ指;位も同)3FC2゛1わる5、このJうな屯
みイマ]げの行ご、凸り人、1−自の1,1人間11、
〜そ−”ノ1イリLのグル プ毎に加−”t);l);
 6 Aカ、いし、6):に人力さ′J′1、加算され
る。
The index values regarding the variation, level, pattern, and non-uniformity of each factor determined based on the data are taken in by the comparators 2a to 2□, and then input to the setters 6a to 7. is compared with a pre-given limit value or target value. Here, for factors mainly related to variation or heterogeneity of (Xl) or Xl,), the limit value and (X17)
~(X26), factors mainly related to patterns or levels are compared with target values. As a result of this comparison, a graded evaluation such as a five-level evaluation is performed for each factor, and an index value corresponding to the evaluation is output. Among these index values, those related to furnace condition diagnosis are determined by multipliers 4a to 4. be taken in. Among these multipliers, weighting for multipliers 4a to 4c is performed by an exponent generator 5A.
, weighting is performed by an exponent generator 5 to the multipliers 4d to 4f.
From B, the weighting to multipliers 4g to 4j is from an exponent generator 5c, the weighting to multipliers 4 to 4n is from an exponent generator 5D, and the weighting to multipliers 4° and 4p is from an exponent generator. An exponent for the 7'c weighting corresponding to each factor is input from the device 5E, and a multiplication is performed between the exponent and the exponent corresponding to each factor. ? The index of - IU + Kui;] is determined as 'Cj-men' according to the conditions of the blast furnace, etc. (↓
,・S,Each 1-4i ii(?+ (:
) υzu finger; same as place) 3FC2゛1waru5, this J Unadunamiima]ge's line, convex person, 1- own 1, 1 human 11,
~So-”Add for each group of L);l);
6 A, I, 6): Manpower 'J'1 is added to.

と−のノJ11(ンにより、装入!12/Jl’yf下
状況指数WA、圧力られン)。これらの指数は例えば1
0点満点M+ h=評価法によってねられる。これらの
指数値WAないしWotよ、さらに−y1℃!゛λ)富
7いないし7Eに人力され、ここで、市み伺ケ」11数
発生器8から人力された爪み利は指数との乗算が行われ
る。そl〜で、この重み伺けのu−1加31器10によ
り加算され、これにより炉況診断指数VAが求められる
and - no J11 (charged! 12/Jl'yf lower condition index WA, pressured). These indices are, for example, 1
0 points perfect score M+ h = Depends on the evaluation method. These index values WA or Wot, and -y1℃!゛λ) The wealth 7 to 7E are manually input, and here, the tsume miri manually generated from the 11 number generator 8 is multiplied by the exponent. Then, the weights are added by the u-1 adder 10, and the furnace condition diagnosis index VA is obtained.

一方、炉況m断の基礎となる以外の因子についての各指
数値は、よ3’l R診4 qないし47に取り込まれ
る。これら乗算器4.及び4zへは重み伺り指数発生器
5Fから、來多)器48ないし4uへtよ市み付は指数
発生器5Gから、乗算器4vないj74xへンよiI4
 、J、h付は指数発生器5nから、千1〜で乗1″3
−Σに43.及び47−\は】1(み付け1計数発生器
5■からそれぞれの因子に対応l〜だ重々付は指数が入
力し、−(おり、各因子に対応した指数との間で乗算が
行われる。、このような重ミーイ」けの後、各因子の指
数はそれぞ扛のグループ毎に加算’a”1911:いシ
9Dに人力され加算される。この加算にしり、ガス流分
布診tQ’+指数■。、圧力分布諺H;rr4?数vc
、炉熱レベル計17i指数■。、イマ1着物診断指数V
=が得られる。
On the other hand, each index value for the factors other than those that form the basis of the furnace condition is taken into R Diagnosis 4q to 47. These multipliers4. And 4z is weighted from exponent generator 5F, and from 48 to 4u.
, J, and h are from the exponent generator 5n, and are multiplied by 1,000 and 1"3.
-43 to Σ. and 47-\ is] 1 (corresponding to each factor from the counting generator 5). After such heavy calculation, the exponents of each factor are manually added and added for each group. tQ' + index ■., pressure distribution proverb H; rr4?number vc
, Furnace heat level meter 17i index ■. , Imma 1 Kimono Diagnostic Index V
= is obtained.

このようにして得られた■いないしVEの指数値は、総
−C1例えば10点in点く11゛6足d゛1′価等の
共通の=Y価で与えられる。そして、これらの各診断指
数イ直vAないしVEは乗算器12,11Aないし11
Dに入力され、ここで爪み付は指数≧+l’i生器16
かも人力されているjkみ伺は指数との乗ηが行われる
。この重み付けの後、各指数ケ」、長期炉況判定装置1
5に取り込まれ、加鏝2さiすることにより長期ルー・
況の総fr ii’l’価としての長〕せ1炉況診断指
数が求められる。この診断指数は100点rsl1点i
14足iFt’ 111iによ−〕て待らJzる。この
よう′fJ:指数の表示方法としでr、t 、例えばく
もの果グラフが用いら(LS CRTディ7ブレーイj
乞匿にthl(示される。第4図Q」1、このようなく
もの巣グラフによる長1(1]炉況診t[J「の指数表
示の−i:□lIを示している3、この炉況a′価では
72点の点数が力えられている。
The index values of 1 to VE obtained in this way are given by a common =Y value, such as the total -C1, for example, 10 points in points and 11゛6 feet d゛1' value. Each of these diagnostic indices vA to VE is applied to multipliers 12, 11A to 11.
It is input to D, where the index ≧+l'i generator 16
The jk readings, which are performed manually, are multiplied by the exponent η. After this weighting, each index is
5, and by adding trowel 2, long-term
A reactor condition diagnosis index is determined as the total value of the condition. This diagnostic index is 100 points rsl 1 point i
14 feet iFt' 111i -] and wait. In this way, 'fJ:' is used as a method of displaying the index, for example, a spider graph is used.
thl (shown in Figure 4 Q) 1, long 1 (1) furnace condition diagnosis t[J" index display -i: □lI is shown 3, this A score of 72 points was achieved in the furnace condition a' value.

第6図は、以−ヒのような長期炉61検出を実操渠にお
いて1 fE 、141位で行い、炉況管理を行った際
のJ目数jff移を示し7ている。このグラフにょ)]
−は月」二句に総合J″[価(炉況診14ji指数)が
85−90点に推移していた炉況が中間以降わ、漱に但
下し2て60店前後となった。現象としては、装入物降
下状況が悪化し7、ガス流変動、炉熱変り1υも太きく
なっでいる。このため月下旬に1・−マブルアーマによ
る装入物変唄fIC実Mσしたどころ、装入物降下状況
が徐々に好11でシ、約IA間後にtよ評価点が80点
近く壕で回イ(Jした。
FIG. 6 shows the shift in the J number jff when the long-term reactor 61 detection as shown below is carried out at 1 fE and 141st position in the actual operating conduit, and the reactor condition is managed. This graph)]
After the mid-year period, the overall J'' value (Furnace Status Examination 14JI index) had been hovering at 85-90 points, but since the mid-year period, it has dropped to around 60 stores. As for the phenomenon, the situation of the burden descent has deteriorated7, and the gas flow fluctuation and the furnace heat change have increased by 1υ.As a result, in the latter half of the month, the charge change due to the 1-movable armor fICactual Mσ occurred. The situation in which the burden was lowered gradually improved to 11, and after about 1A, the evaluation score turned around 80 points (J) in the trench.

また第3図は燈期炉況検出における装置を示している。Further, FIG. 3 shows a device for detecting the condition of the furnace during the lighting period.

この装置では、上述した(X、L (X3)な い し
1X7)、   (X□。)tと い し、  (X工
2)  、  (X14)  。
In this device, the above-mentioned (X, L (X3) to 1X7), (X□.)t, (Xtechnical 2), (X14).

(X23)及び(X24)の各因子の他に、炉頂ガス中
N2i’fi:[1’ (X27)、炉IJ−t ti
 ス中C07(、”’H度cl (X2.)、/キノ1
フ昌)ロー5″ビ′帛乏′、臣り点数(X29)、クー
リングスデーブ?!l’、′、IJt−、Y4常常駆動
数(X3o)、(p 2−p。2 )7 y 1.7(
X3□)、羽目輝度(X、S□)、溶銑中S i l(
:1グ度(X33)ノシび残銑滓−F+1(X34)の
各因子のデータが取り込゛まれる。このようにして取り
込まれ/(、データは指数作製ff516 aないし1
6Wに送られ、各装置16から各囚イのデータに対応し
た指数が出力される。
In addition to the factors (X23) and (X24), N2i'fi in the top gas: [1' (X27), furnace IJ-t ti
C07(,”'H degree cl (X2.), /Kino1
Fusho) Low 5″ bi'powder', number of points (X29), Coolings Dave?! l',', IJt-, Y4 constant drive number (X3o), (p 2-p. 2) 7 y 1.7(
X3□), grain brightness (X, S□), S i l in hot metal (
: Data of each factor of 1g degree (X33) and iron slag -F+1 (X34) are imported. In this way, the data is taken into account from index generation ff516a to 1
6W, and each device 16 outputs an index corresponding to the data of each prisoner.

知1.II炉況検出は数秒〜数分毎にイlイられる情報
を例えは30分1σに指数化し7て用いるものであるが
、前述し7だように、この指数化にあたり−Cは10数
時間のデータの時系列的重み付けがなされる。例えは、
4時間前才でのデータにより指数を求める場合には次式
による。
Knowledge 1. II reactor condition detection uses information that is collected every few seconds to several minutes and converts it into an index of 1σ per 30 minutes.7 As mentioned above, when converting to an index, -C is used for 10-odd hours. The data are time-series weighted. For example,
When calculating the index using data at 4 hours old, the following formula is used.

1 = aXIaomin+b×Ixhr−1−C×I
zhr+d×1<hrイ旦し、a、b、c、d :車み
保撃4I 3ornin : 30分前から、のブータ
による指数■□hr”時間前  〃 Izhr  :ff!時間前  〃 Inhr ”時間前からのデータによる指数データに基
づいて決定された各因子の変動、レベル、パターン及び
不均一性に関する指数値は、比較器17aないし17w
に取り込まれ、ここで設定器18aないし18wにより
予め与えられた制限値と比較される。この比較の結果、
各因子について、例えば5段階評価等の段階評価が行わ
れ、評価に応じた指数値が出力される。これら指数値の
うち、炉況異常診断に関するものについては、乗算器1
9aないし19nに取り込まれる。これら乗算器のうち
乗算器19a及び19bへは重み付は指数発生器20A
から、乗算器19cないし198へは重み付は指数発生
器20Bから、乗算器19fないし19iへは重み付は
指数発生器20cから、乗算器19jないし19tへは
重み付は指数発生器20Dから、そして乗算器19m及
び19nへはjIIみ付は指数発生器20Eから、それ
ぞれの因子に対応した恵み付は指数が入力しており、各
因子に対応した指数との間で乗算が行われる。このよう
な重み付けの後、各因子の指数はそれぞれのグループ毎
に加算器21Aないし21Eに入力され、加算される。
1 = aXIaomin+b×Ixhr−1−C×I
zhr + d × 1 < hr, a, b, c, d: Car protection 4I 3ornin: From 30 minutes ago, index by boot ■□hr” hours ago 〃 Izhr: ff! hours ago〃 Inhr ” hours The index values regarding the variation, level, pattern and non-uniformity of each factor determined based on the index data from previous data are sent to the comparators 17a to 17w.
Here, it is compared with a limit value given in advance by the setters 18a to 18w. As a result of this comparison,
For each factor, a graded evaluation such as a five-level evaluation is performed, and an index value according to the evaluation is output. Among these index values, those related to abnormality diagnosis of the reactor condition are multiplier 1.
9a to 19n. Of these multipliers, weighting for multipliers 19a and 19b is performed by an exponent generator 20A.
From there, weighting is applied to multipliers 19c to 198 from exponent generator 20B, weighting is applied to multipliers 19f to 19i from exponent generator 20c, and weighting is applied to multipliers 19j to 19t from exponent generator 20D. Then, to the multipliers 19m and 19n, an exponent corresponding to each factor is input from the exponent generator 20E, and multiplication is performed between the exponent and the exponent corresponding to each factor. After such weighting, the exponents of each factor are input to adders 21A to 21E for each group and added.

この加算により、装入物降下状況指数YA1圧力変動状
況指数YR1ガス流会ロ1υ状況指数Yc1円周バラン
7状況指数YD及び炉況異常診断用レベル比軟指数Y。
By this addition, the charge descent status index YA1, the pressure fluctuation status index YR1, the gas flow rate 1υ status index Yc1, the circumferential balun 7 status index YD, and the level ratio soft index Y for furnace condition abnormality diagnosis.

が求められる。これらの指数は例えばio点満点満足評
価法によって得られる。これらの指数値YAないしYE
は、さらに乗算器22Aないり、22Eに入力され、こ
こで重み付は指数発生器26から入力された市み句は指
数との乗算が行われる。そし7て、この重み付けの後、
加算器25により加jI−され、これにより炉況異常診
断指斂UAが求められる。
is required. These indices are obtained, for example, by the io point perfect satisfaction evaluation method. These index values YA or YE
is further input to a multiplier 22A or 22E, where the weighted phrase input from the index generator 26 is multiplied by an index. Then, after this weighting,
The adder 25 adds jI-, thereby obtaining the furnace condition abnormality diagnosis indicator UA.

この炉況異常診断指数UAは、例えば100廣満点満足
評価として得られる。
This furnace condition abnormality diagnosis index UA is obtained as a satisfaction evaluation with a perfect score of 100, for example.

一方、炉熱低下診断に関するものについては、比較器1
7oないし17uがら用カされた指数値は乗算器19o
ないし19.に取り込まれる。これら乗算器のうち、乗
算器1,9o及び19p−\は重み付は指数発生器20
Fから、乗算器19.ないし19uへりま重み付は指数
発生器20Gから、それぞれの因子に対応した重み付は
指数が入力しており、各因子に対応した指数との間で乗
算が行われる。このような重み付けの後、各因子の指数
はそれぞれのグループ毎に加算器21Fないし21゜に
入力され、加算される。この加算により、壁落ち状況指
数YF1炉熱低下診断用レベル比較指数YGが求められ
る。これらの指数も前記YAないしYEと共通の例えば
io点満点満足評価法によって得られる。これらの指数
値YF及びYGlさらに先に述べた装入物降下状況指数
YA1ガス流変動状況指数Yc及び円周バランス状況指
数Ybは、乗算器22Fないし22 、Jに入力され、
ここで重み付は指数発生器24から入力された重み付は
指数との乗算が行われる。そして、この重み付けの後、
加算器26により加算され、これにより、炉熱低下診断
指数UBが求められる。この炉熱低下診断指数U、も、
例えば100点満点滴足評価として得られる。
On the other hand, regarding the diagnosis of furnace heat drop, comparator 1
The exponent value used from 7o to 17u is sent to the multiplier 19o.
or 19. be taken in. Among these multipliers, multipliers 1, 9o and 19p-\ are weighted by the exponent generator 20.
From F, multiplier 19. For the weightings 19u to 19u, exponents are input from the index generator 20G for weighting corresponding to each factor, and multiplication is performed with the exponent corresponding to each factor. After such weighting, the exponents of each factor are input to adders 21F to 21° for each group and added. By this addition, the level comparison index YG for diagnosing the fall of wall condition index YF1 and the decrease in furnace heat is obtained. These indices are also obtained by the same method as YA to YE described above, for example, using the IO point perfect satisfaction evaluation method. These index values YF and YGl, as well as the charge descent status index YA1, the gas flow fluctuation status index Yc, and the circumferential balance status index Yb, are input to multipliers 22F to 22J,
Here, the weighting input from the index generator 24 is multiplied by an index. And after this weighting,
The values are added by an adder 26, thereby obtaining a furnace heat reduction diagnostic index UB. This furnace heat drop diagnostic index U is also
For example, it is obtained as a 100-point drip foot evaluation.

また、残銑滓量評価に関するものについては、比較器1
7v及び17wから出力された指数値は乗算器19v及
び19wに取り込まれ、取み付は指数発生器20 II
から入力された11(み付は指数との乗算が行われる。
In addition, regarding the evaluation of residual pig iron slag amount, comparator 1
The index values output from 7v and 17w are taken into multipliers 19v and 19w, which are attached to index generator 20 II.
The value inputted from 11 (Mitsuke) is multiplied by the exponent.

この重み付けの後、加算器21 Tlにより加算され、
残銑滓量評価指数YHが求められる。この指数もまた炉
況異常診断、炉熱低下診断のための各評価指数と共通の
例えば10点満点満足評価法により得られる。
After this weighting, the adder 21 Tl adds the
The residual iron slag amount evaluation index YH is determined. This index is also obtained by, for example, the 10-point satisfaction evaluation method, which is common to the evaluation indices for diagnosing abnormalities in the furnace condition and diagnosing the decrease in furnace heat.

以上のようにして得られた炉況異當診断指数UA1炉熱
低下診断指数UB及び残銑滓量指数Y)Iは短期炉況判
定装置27に取り込まれ、ここで短期的炉況の判定が行
われる。ここで行われる判定は、前述のように例えば各
指数のレベルをA(良好)、B(普通)、C(悪化)に
ランク付けし、いずれかの指数レベルがCの場合、督報
が発せられる。この短期炉況の表示方法も、例えばくも
の巣グラフが用いられCRTディスプレイ装置に表示さ
れる。
The furnace condition abnormality diagnosis index UA1, furnace heat drop diagnosis index UB, and residual iron slag amount index Y)I obtained in the above manner are taken into the short-term furnace condition determination device 27, where the short-term furnace condition is determined. It will be done. The judgment made here is, as mentioned above, for example, by ranking the level of each index as A (good), B (fair), or C (deteriorating), and if any index level is C, a warning will not be issued. It will be done. This method of displaying the short-term furnace status also uses, for example, a spider web graph and is displayed on a CRT display device.

第5図はこのようなくの巣グラフによる短期炉況診断の
指数表示の一例を示しており、炉況異常診断指数UA(
図中実線)、炉熱低下診断指数UB(図中鎖線)の別に
表示される。この場合の炉況異′);;診1(17指数
′70点、炉−、ノヘ低ト1[1数58小がlうえられ
T)・・す、−、y p−7,42q4.、、 (:I
−,7<、 4HGとし、′C4点が与えられ2)とす
ると、K、[;合−iff 4曲ではBランクがhえら
れる6、(二の」、l)′tf紹合;Ti′価は例えば
次表のように決γiこさi”1. Z)。
Figure 5 shows an example of an index display for short-term reactor condition diagnosis using such a Kunosu graph, and shows an example of the index display for short-term reactor condition diagnosis using such a Kunosu graph.
(solid line in the figure) and the furnace heat reduction diagnostic index UB (dashed line in the figure). Diagnosis 1 (17 index' 70 points, furnace -, nohe low 1 [1 number 58 small is raised T)...su, -, y p-7, 42q4. ,, (:I
-,7<, 4HG, 'C4 points are given and 2), then K,[;go-if 4 songs get B rank 6, (2', l)'tf introduction;Ti For example, the value is determined as shown in the table below.

第7図(イ)ないしくホ)は実操朶において短期炉況船
断により検出された炉況の推移をくもの巣グラフ化した
もので、(イ)は減風10時間前、(ロンは同5時間前
、←)Vよ同2時間前、に)は同1時間前、(ホ)は減
風時の各炉況を示している。また第8図は、第7Iン1
(イ)な、いしくホ)の時期に測定され/ξ装入物降下
状況のチャー1・であり、図中の(イ)ない]7(旬の
符号は第7図(イ)〃いしく19の時期と対応している
。この時は、減風10時間前の(イ)の段階でη」、総
合点84点てAランク、−また続< (I=)及びり夕
の段1費でもそれぞれ総合点64点、(Bランク)、総
合点73点(Bう〉・り)であったものが、第8図で承
ずように装入物降下状況の悪化に伴い、に)の段階でV
i総合点55点(Bランク)になり、さらに(ホ)の段
I(々では総合点27点、Cランクに落し込んだもので
あり、このため、実操築ではこの段階で減風の“アクシ
ョンが取られたものである。
Figures 7 (a) to (e) are spider web graphs of the changes in reactor conditions detected by short-term reactor condition ship breaks in actual operations. shows the condition of the furnace 5 hours ago, ←) V shows 2 hours before, ni) shows 1 hour before, and (e) shows the condition of each furnace at the time of wind reduction. Figure 8 also shows the 7th I-1
It was measured at the time of (a), ishiku, and /ξ is Char 1 of the burden descent situation, and is not (a) in the figure. This corresponds to the period of 19. At this time, 10 hours before the wind decrease, at the stage (a), the total score was 84 points, rank A, -Mata continuation < (I=) and the stage of Even for 1 cost, the total score was 64 points (B rank), and the total score was 73 points (B rank), but as shown in Figure 8, due to the deterioration of the burden descent situation, ) at the stage of V
The total score for I was 55 points (rank B), and the total score for stage I (e) was reduced to 27 points, rank C. Therefore, in actual construction, wind reduction was required at this stage. “Action has been taken.

な卦、実1;スの炉況検出においては、以上ポベた総合
!:’F価の他に、個々のより一ト位の指数全評価17
、炉況評価の一因とすることがある3、このため、−F
位の指数もCRTディスノ゛レイ装置iNにより表示さ
れる。第9図tよ、その−例を示すもので、(イ)は、
長期炉況検出における炉況診断の各因子指数を、また(
口)C」、同じく炉況診断指数をそれぞれ表示したもの
である。
Actually, the above is a comprehensive explanation of the furnace condition detection. :'In addition to the F number, individual indexes of one rank overall evaluation 17
, may be a factor in the furnace condition evaluation3. Therefore, -F
The index of the position is also displayed by the CRT display device iN. Figure 9 (t) shows an example of this, and (a) is
Each factor index of reactor condition diagnosis in long-term reactor condition detection is also (
口)C'', which also display the furnace condition diagnostic index.

以」―が−tN期炉況(6す出及び知期炉況検出の各制
御依措であり、各機(、″・Yによる検出結尿に基づき
炉況?11理が行われるものであるが、本発明ではさら
に、各判定装置iJ′、 j 5及び27で得られた判
定結果(指人文化)を炉況し合刊定妓償、14に取り込
み、ここで、両炉況判定から総合的な炉況判定を行うこ
とができる。この′i1」定は、上として長期的な炉況
判定をLI的とし、短ル」炉況?1′0定結果は長期的
な炉況判定のJ゛1′仙[因子として用いら′!Lる。
This depends on the control of the -tN stage reactor condition (6) and early stage reactor condition detection, and the furnace condition is determined based on the detected urine condensation by each machine (,'', Y. However, in the present invention, the judgment results (instruction culture) obtained by each judgment device iJ', j 5 and 27 are further processed and incorporated into the joint publication Jikkaku, 14, and here, both judgments are carried out. A comprehensive evaluation of the reactor condition can be made from the above. Judgment J゛1' Sen [Used as a factor'!L]

以」二述べた本)61.!l」によれば、高炉円周方向
の不拘−性や羽1j b’i報を含めた多くの、?−F
価因子に基づき炉況検出を行い、しかも短期的な炉況変
化のみならず日単位の長期的炉況変化を把えるだめ、炉
況の総合的なaY価を的1j(r’、に行い炉況管理の
指標とすることができる。
61. ! According to "I", there are many things, including inconsistencies in the circumferential direction of the blast furnace and information on the diameter of the blast furnace. -F
In order to detect not only short-term changes in furnace condition but also long-term changes in furnace condition on a daily basis, the overall aY value of the furnace condition is calculated based on the value factor. It can be used as an indicator for furnace condition management.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法の全体構成のフローシートである。第
2図及び283図は本発明法の実施に供される装置を示
すもので、第2図は長期炉況検出用機イjtの制(+i
llブロック図、2+’73図は短期炉況検出用+、j
七指の制1i111ブロック図である。第4図及び第5
図は総合評価の表示例を示す図である。第6図は炉況診
ltI′i′i/f′X基づき管理を行った場合の炉況
指数11(移をソ1−ずグラノである。第7図ぐよ、短
期炉況診断により検出された炉況の推移を示すグラノで
ある。 第8図は第7図の推移に対応する装入物I17¥下状況
のチャー1・である。第9図(イ)及び(ロ)は下位指
数の表示例をシJ<1゛図である。 図において、1a〜1.Z、は指数化装置17.2a〜
2.1.vよ」ト:li父ン:診、  4 a〜47.
Cま沫、s”r’?” :%V、  5 A〜5工Q」
、jic ミ(t ケJ’a p 発生hy、6 A 
〜6 F; &、J−加!=’i 器、7A〜7]、;
は来Ω器、8は重み付は指数発生器、9A〜91)、1
0は加算器、11A〜i1D、12はMe 、!71 
j、+:4.16は11Lみ付けJ”a 数発生器、1
4れ1、総合1′勃ド装置、15は長期炉況゛11」定
製IE7.. 16 a〜16 wIt:↓」目数化装
置i′Oi、  17 a〜17  w&ま比軸に÷、
198〜19.7は來>1’4A、20A〜20 Hは
jljみ付は指数発生器、21A〜2,1 、I IJ
、加3゛7器、22A〜22Ji1.1.乗算器、25
.24は屯み付け111数発生器、25.26は加1ノ
、器、27はり、的1.+J炉況1′1]定装置である
。 特許用に:0入  日本鋼管株式会社 発  明  者   斎   藤        混同
         渋   谷   悌   三同  
       炭   電   隆   志向  ・泉
  ■5  部 同          堀   内   好   活量
         木   村   亮   介代即人
弁理士   吉   原   省   玉量   同 
     高   (合        浩同  弁護
士   吉   原   弘   子特開昭59−64
705(9) 第4図 第5図 第6図 (0村) 第 (イ) −,−36=
FIG. 1 is a flow sheet of the overall structure of the method of the present invention. Figures 2 and 283 show the equipment used to implement the method of the present invention, and Figure 2 shows the control (+i
ll block diagram, 2+ '73 diagram is for short-term reactor condition detection +, j
It is a block diagram of the seven-fingered system 1i111. Figures 4 and 5
The figure shows a display example of comprehensive evaluation. Figure 6 shows the furnace condition index 11 (transfer) when management is performed based on the furnace condition diagnosis ltI'i'i/f'X. Fig. 8 shows Char 1 in the lower charge I17 condition corresponding to the changes in Fig. 7. Fig. 9 (a) and (b) show the lower An example of displaying an index is shown in the figure J<1. In the figure, 1a to 1.Z are indexing devices 17.2a to 1.Z.
2.1. v yo”t:li father:diagnosis, 4 a~47.
C, s"r'?": %V, 5 A~5 Engineering Q"
, jic mi(t keJ'a p occurrencehy, 6 A
~6 F; &, J-K! ='i vessel, 7A~7];
8 is the weighted index generator, 9A to 91), 1
0 is an adder, 11A to i1D, 12 is Me,! 71
j, +: 4.16 is 11L finding J”a number generator, 1
4.1, comprehensive 1' erection device, 15 is long-term reactor condition '11' fixed IE7. .. 16 a~16 wIt: ↓'' digitization device i'Oi, 17 a~17 w&ma ÷ on the ratio axis,
198~19.7 is here>1'4A, 20A~20H is jlj, the index generator is 21A~2,1, I IJ
, Ka3゛7 device, 22A-22Ji1.1. multiplier, 25
.. 24 is a 111 number generator, 25.26 is a addition 1, a vessel, 27 is a beam, a target 1. +J furnace condition 1'1] is a fixed device. For patent use: 0 Nippon Kokan Co., Ltd. Inventor Saito Confusion Tei Shibuya Sando
Tanaka Dentaka Orientation/Izumi ■5 Department Yoshiyoshi Horiuchi Ryo Kimura, instant patent attorney Masaru Yoshihara Same
Hiroko Yoshihara (lawyer)
705 (9) Figure 4 Figure 5 Figure 6 (0 village) No. (a) -, -36=

Claims (1)

【特許請求の範囲】[Claims] 装入物降下状況指数、圧力変動状況指数、ガス流変動状
況指数、円周バランス状況指数、炉況異常診1tf用レ
ベル比較指数、壁落ち状況指数、炉熱低下診断用レベル
比較指数及び残銑滓量指数を、各指数に対応した複数因
子の短期的な情<jlを時系列的重み付けを行うことに
より指数化するとともに、これら指数値の制限値との比
較、数区分への段階評価、爪み付は及び加算により求め
、前記装入物降下状況指数、圧力変動状況指数、ガス流
変動状況指数、円周バランス状況指数及び炉況異常診断
用レベル比較指数を、重み付けの後加算して炉況異常診
断指数を求め、前記装入物降下状況指数、壁落ち状況指
数、ガス流変動状況指数、円周バランス状況指数及び炉
熱低下診断用レベル比較指数を、重み付けの後加算して
炉熱低下診断指数を求め、前記炉況異常診断指数、炉熱
低下診断指数及び残銑滓量指数から、短時間毎に高炉の
短期的な炉況を検出し、他方、装入物降下状況指数、圧
力変動状況指数、ガス流変動状況指数、円周バランス状
況指数及び炉熱変動掲載を、各指数に対応した複数因子
の長期的な情報を指数化するとともに、これら指数値の
制限値との比較、数区分への段階評価、重み付は及び加
算により求めた後、求められた指数を重み付けの後加算
して炉況診断指数を求め、ガス流分布指数、圧力分布指
数、炉熱レベル指数及び付着物指数を、各指数に対応し
た枚数因子の長期的な情報を指数化するとともに、これ
ら指数値の目徐値との比較、数区分への段階評価、重み
利は及び加算により求め、これら指数及び前記炉況診断
指数を重み付けして加算することにより長期炉況診断指
数を求め、該指数に基づき高炉の長期的な炉況を検出す
ることを’l? Rとする高炉状況検出方法。
Burden drop status index, pressure fluctuation status index, gas flow fluctuation status index, circumferential balance status index, level comparison index for furnace condition abnormality diagnosis 1tf, wall fall status index, level comparison index for furnace heat drop diagnosis, and residual iron The sludge amount index is converted into an index by time-series weighting of the short-term information <jl of multiple factors corresponding to each index, and a comparison of these index values with limit values, graded evaluation into several categories, The nail attachment is determined by addition, and the above-mentioned burden drop condition index, pressure fluctuation condition index, gas flow fluctuation condition index, circumferential balance condition index, and level comparison index for furnace condition abnormality diagnosis are added after weighting. A furnace condition abnormality diagnosis index is calculated, and the above-mentioned burden drop condition index, wall fall condition index, gas flow fluctuation condition index, circumferential balance condition index, and level comparison index for furnace heat drop diagnosis are added after weighting to calculate the furnace condition. A heat drop diagnostic index is obtained, and the short-term furnace condition of the blast furnace is detected at short intervals from the above-mentioned furnace condition abnormality diagnostic index, furnace heat drop diagnostic index, and iron slag amount index. , pressure fluctuation status index, gas flow fluctuation status index, circumferential balance status index, and furnace heat fluctuation status index, long-term information of multiple factors corresponding to each index is converted into an index, and the limit values of these index values are calculated. Comparison, graded evaluation into several categories, weighting are determined by addition, and the determined indexes are added after weighting to determine the furnace condition diagnosis index, gas flow distribution index, pressure distribution index, and furnace heat level index. and the deposit index, by indexing the long-term information of the number factor corresponding to each index, comparing these index values with the target value, graded evaluation into number categories, and calculating the weighted interest by addition. A long-term furnace condition diagnosis index is obtained by weighting and adding these indices and the above-mentioned furnace condition diagnosis index, and the long-term furnace condition of the blast furnace is detected based on the index. Blast furnace condition detection method with R.
JP17090382A 1982-10-01 1982-10-01 Method of detecting condition of blast furnace Pending JPS5964705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17090382A JPS5964705A (en) 1982-10-01 1982-10-01 Method of detecting condition of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17090382A JPS5964705A (en) 1982-10-01 1982-10-01 Method of detecting condition of blast furnace

Publications (1)

Publication Number Publication Date
JPS5964705A true JPS5964705A (en) 1984-04-12

Family

ID=15913466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17090382A Pending JPS5964705A (en) 1982-10-01 1982-10-01 Method of detecting condition of blast furnace

Country Status (1)

Country Link
JP (1) JPS5964705A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0246618A2 (en) * 1986-05-20 1987-11-25 Nippon Kokan Kabushiki Kaisha Method for controlling operation of a blast furnace
US4901247A (en) * 1986-05-20 1990-02-13 Nippon Kokan Kabushiki Kaisha Method for controlling an operation of a blast furnace
KR100361095B1 (en) * 1998-12-28 2003-01-24 주식회사 포스코 How to create a diagnosis rule for blast furnace_

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357113A (en) * 1976-11-02 1978-05-24 Kawasaki Steel Co Method of detecting state of blast furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357113A (en) * 1976-11-02 1978-05-24 Kawasaki Steel Co Method of detecting state of blast furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0246618A2 (en) * 1986-05-20 1987-11-25 Nippon Kokan Kabushiki Kaisha Method for controlling operation of a blast furnace
US4857106A (en) * 1986-05-20 1989-08-15 Nippon Kokan Kabushiki Kaisha Method for controlling operation of a blast furnace
US4901247A (en) * 1986-05-20 1990-02-13 Nippon Kokan Kabushiki Kaisha Method for controlling an operation of a blast furnace
KR100361095B1 (en) * 1998-12-28 2003-01-24 주식회사 포스코 How to create a diagnosis rule for blast furnace_

Similar Documents

Publication Publication Date Title
US7405558B2 (en) Steam generator mapping with reflections of eddy current signal
CN109253870B (en) The assessment device and method in biomass fuel boiler heat-exchange tube service life
CN107923831A (en) Rope deterioration detecting apparatus and the lift appliance with rope deterioration detecting apparatus
WO2013026500A2 (en) System and method for generating a combined model for isothermal and anisothermal fatigue life
EP1229226B1 (en) Combustion vibration estimating apparatus, plant and gas turbine plant
CN109307630A (en) The aging ranking method of fired power generating unit jet chimney 15Cr1Mo1V steel based on on-site test hardness and metallographic structure
JPS5964705A (en) Method of detecting condition of blast furnace
CN108229042A (en) A kind of generator tube remaining life early warning system and method for early warning
GB1573834A (en) Method and apparatus for determining life expenditure of a turbomachine part
CN108072448A (en) A kind of data processing method on the metering of cracking furnace tube outside wall temperature
US11215574B2 (en) Monitoring of heated tubes
RU2692438C1 (en) Method of evaluation of strength and determination of service life of drums and header of boiler
US4248625A (en) Method of operating a blast furnace
JP2954613B2 (en) Plant life diagnosis support equipment
JP7217593B2 (en) Predictive diagnosis system
CN110414606B (en) Method for determining division number of visual alarm area of power transmission line channel
JP2003193808A (en) Diagnostic method and diagnostic system of electric power plant
JP2696114B2 (en) Blast furnace operation management method
KR20240000156A (en) System and method for quantitative assessment of againg deterioration of nuclear reactor buildings
KR102093029B1 (en) Heating temperature estimation system of fire damaged reinforced concrete structures using neuro-fuzzy theory
JP2000178618A (en) Method for predicting condition of blast furnace
KR101790702B1 (en) Integrity verification system
CN113138129B (en) Method for obtaining change rule of mechanical property of power station material based on L-M parameter method
SU1647323A2 (en) Machine diagnostics device
CN112685948B (en) Steam generator integrity assessment method