JPS62270707A - Production of metallic powder - Google Patents

Production of metallic powder

Info

Publication number
JPS62270707A
JPS62270707A JP11548986A JP11548986A JPS62270707A JP S62270707 A JPS62270707 A JP S62270707A JP 11548986 A JP11548986 A JP 11548986A JP 11548986 A JP11548986 A JP 11548986A JP S62270707 A JPS62270707 A JP S62270707A
Authority
JP
Japan
Prior art keywords
powder
metal
less
solidification rate
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11548986A
Other languages
Japanese (ja)
Other versions
JPH0617492B2 (en
Inventor
Katsu Okumura
奥村 濶
Kensuke Hidaka
日高 謙介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP61115489A priority Critical patent/JPH0617492B2/en
Publication of JPS62270707A publication Critical patent/JPS62270707A/en
Publication of JPH0617492B2 publication Critical patent/JPH0617492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To efficiently produce fine metallic powder having a low oxygen content by melting a metal having ductility or malleability at room temp., cooling drops of the molten metal with a gas or liq. at a specified solidification rate and subjecting the resulting powder to oxidation, mechanical fine crushing and heat treatment in a reducing atmosphere. CONSTITUTION:A metal having ductility or malleability at room temp., e.g., an alloy consisting of 13wt% Cr, 1wt% Si and the balance Fe is melted to make drops. Drops of the molten metal is cooled with a gas or liq. at <=10<4> deg.C/sec solidification rate so as to regulate the grain size of the resulting powder to <=30mum. The resulting powder is oxidized, mechanically finely crushed and heat treated in a reducing atmosphere. Thus, metallic powder having <=0.5% oxygen content and <=30mum particle size is produced.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は微細な金属粉末を容易に製造する方法に関する
ものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for easily producing fine metal powder.

〔従来の技術〕[Conventional technology]

金属粉末の用途で粉末冶金用、フィルター用、電磁材用
、塗料用等に微細な金属粉末が要求されている。
Fine metal powder is required for powder metallurgy, filters, electromagnetic materials, paints, etc.

従来、微細な金属粉末はアトマイズ法や粉砕法により製
造し、これを篩分けして製造していた。
Conventionally, fine metal powder has been produced by an atomization method or a pulverization method, and then sieved.

アトマイズ法で粉末を製造する場合、延性又は展性を有
する金属溶滴を微細に粉砕するのに噴霧圧力を高く、噴
霧水量又は噴霧ガス量を多(することによって酸素量の
低い球状又は不規則状の徽  。
When producing powder by the atomization method, the spray pressure is high and the amount of spray water or gas is increased to finely crush ductile or malleable metal droplets (by doing so, it is possible to form spherical or irregular particles with a low oxygen content). The hui of the state.

細な金属粉末が得られる。しかしながら、30μm以下
の粉末の収率は約30%で経済的に好ましい方法ではな
い。
A fine metal powder is obtained. However, the yield of powder of 30 μm or less is about 30%, which is not an economically preferable method.

粉砕法で粉末を製造する場合、脆性を有する金属は塑性
変形能が小ざいので粉砕すると結晶粒界又は結晶粒内を
破壊して角状の粉末を得ることができる。しかしながら
、延性または展性を有する材料の薄板または金属粉末を
スタンプミル又は振動ミルによる機械的粉砕によって微
細な金属粉末に粉砕することができる力く、展延性を有
しているので粉砕後の粉末のアスペクト比が大きくて片
状の金属粉末が得られる。しかしながら、30μm以下
の粉末の収率は20〜30%で経済的に好ましい方法で
はない。
When producing powder by a pulverization method, since brittle metals have low plastic deformability, pulverization can destroy grain boundaries or inside grains to obtain angular powder. However, thin sheets of ductile or malleable materials or metal powders can be ground into fine metal powders by mechanical grinding with stamp mills or vibrating mills. A flaky metal powder with a large aspect ratio is obtained. However, the yield of powder of 30 μm or less is 20 to 30%, which is not an economically preferable method.

〔本発明が解決しようとする7、1題点〕本発明は、前
記従来の技術の問題点に留意してなされたものであり、
延性又は展性を有する金属で微細な金属粉末を容易にか
つ簡単に製造することを種々検討した結果、30μm以
下の結晶粒を有する金属粉末を酸化させて、粉砕すれば
微細な角状の金属粉末を収率よ(製造し得るとの知見に
基き本発明を完成したものである。
[7.1 Problems to be Solved by the Present Invention] The present invention has been made in consideration of the problems of the prior art, and
As a result of various studies on how to easily and easily produce fine metal powder from ductile or malleable metals, we found that by oxidizing and crushing metal powder with crystal grains of 30 μm or less, fine angular metal can be produced. The present invention was completed based on the knowledge that the powder could be produced in a high yield.

〔問題を解決するための手段] 即ち、本発明は室温で延性又は展性を有している金属の
溶滴を気体又は液体により、得られた粉末の結晶粒が3
0μm以下の大きさとなるように、104℃/sec以
下の凝固速度で冷却し、得られた粉末を酸化させて機械
的に粉砕し、還元雰囲気で熱処理をおこなうことにより
、酸素量が0.5%以下で30μm以下の金属粉末を製
造する方法であ−る。
[Means for Solving the Problem] That is, the present invention uses a gas or liquid to melt droplets of a metal that is ductile or malleable at room temperature, so that the crystal grains of the obtained powder are
The powder is cooled at a solidification rate of 104°C/sec or less so that the size becomes 0 μm or less, the resulting powder is oxidized and mechanically pulverized, and heat treated in a reducing atmosphere to reduce the amount of oxygen to 0.5 μm. % or less and metal powder with a diameter of 30 μm or less.

〔作用〕 本発明に於いて、粉砕前の粉末の結晶粒の大きさを調節
することが重要なことである。粉末の結晶粒の大小は材
質、凝固速度により影響されていることは知られている
。中でも特に凝固速度が重要な要因である。
[Operation] In the present invention, it is important to control the crystal grain size of the powder before pulverization. It is known that the size of crystal grains in powder is influenced by the material and solidification rate. Among these, the solidification rate is a particularly important factor.

30μ…以下の微細な結晶粒を有する粉末を得ることが
目的であることがら溶滴の凝固速度104℃/secよ
り速い凝固速度とした。前記工程で得られた室温で延性
又は展性を有する材料で微細な結晶粒を有する粉末を高
温で加熱して、金属と酸素の拡散を進行させて粉末を酸
化させる。粉末表面に形成された酸化皮膜は粒界を通し
て酸素が内部に拡散する。、又、内部から拡散してきた
金属イオンと粒界で反応して結晶粒界に沿って酸化物が
形成されて、体積膨張を起こす。この体積膨張により粉
末内部に圧縮応力が発生して、割れが発生する。
Since the purpose was to obtain a powder having fine crystal grains of 30 μm or less, the solidification rate was set to be faster than the droplet solidification rate of 104° C./sec. The powder obtained in the above step, which is a material that is ductile or malleable at room temperature and has fine crystal grains, is heated at a high temperature to promote diffusion of metal and oxygen and oxidize the powder. Oxygen diffuses into the oxide film formed on the powder surface through grain boundaries. Moreover, oxides are formed along grain boundaries by reacting with metal ions diffused from inside at the grain boundaries, causing volume expansion. This volumetric expansion generates compressive stress inside the powder, causing cracks to occur.

酸化反応を加速するのに加熱においても、乾燥空気と湿
潤空気とでは酸化損耗の度合が異なり、H2Oによって
酸化が加速される傾向がある。ただし、単体金属は0□
または空気中酸化においてH2Oの影響は少ない傾向に
ある。
Even when heating is used to accelerate the oxidation reaction, the degree of oxidation loss differs between dry air and humid air, and oxidation tends to be accelerated by H2O. However, for single metals, 0□
Alternatively, in air oxidation, the influence of H2O tends to be small.

酸化した粉末はほとんど塑性変形することがないのでス
タンプミル、振動ミル、ジェットミル、アトライター等
の粉砕機で粉砕しても片状化され、た形状にはならずに
結晶粒界に沿って粉砕される。
Oxidized powder hardly undergoes plastic deformation, so even if it is crushed by a crusher such as a stamp mill, vibration mill, jet mill, or attritor, it will not form into flakes and will not form into a shape, but will continue along the grain boundaries. Shattered.

又、酸素を固溶した金属は概ね硬くて脆い状態に、  
あるので、結晶粒内でも粉砕されて微細な粉末が得られ
る。
In addition, metals containing oxygen as a solid solution are generally hard and brittle,
Because of this, even the inside of the crystal grains can be pulverized to obtain fine powder.

微細な粉末は酸素との反応により酸化された状態なので
、次の工程として還元雰囲気中で熱処理をおこなう、例
えば水素雰囲気、COガス雰囲気等を使用することによ
って粉末の酸素量が低い粉末が得られる。
Since the fine powder is in an oxidized state due to the reaction with oxygen, the next step is heat treatment in a reducing atmosphere. For example, by using a hydrogen atmosphere, CO gas atmosphere, etc., a powder with a low oxygen content can be obtained. .

10’℃/secより遅い凝固速度では結晶粒の大きさ
を30μ−以下とするのが難しい。たとえ、これを結晶
粒界で粉砕しても30μ…以下の粉末は得られない。3
0μm以下の粉末を得るのに結晶粒内を破壊する必要が
ある。延性又は展性を有する材料については困難である
。なぜなら30μI以下の粉末を得るためには機械的粉
砕の場合、圧縮応力を繰り返し受はアスベトク比の大な
る片状化された粉末になり、微細な粉末は収率良(得ら
れない。
If the solidification rate is slower than 10'C/sec, it is difficult to reduce the grain size to 30μ or less. Even if this is pulverized at grain boundaries, powder of 30 μm or less cannot be obtained. 3
In order to obtain powder of 0 μm or less, it is necessary to destroy the inside of the crystal grains. This is difficult for ductile or malleable materials. This is because in the case of mechanical pulverization to obtain a powder with a particle size of 30 μI or less, compressive stress is repeatedly applied, resulting in flaky powder with a high asbestos-to-tok ratio, and fine powder cannot be obtained in good yield.

〔実施例〕〔Example〕

以下、本発明の代表的な実施例を示す。 Hereinafter, typical examples of the present invention will be shown.

実施例(1) Cr 13.Owt%、Si 1.OwL%、残部Fe
の合金を溶解し、1600℃の溶湯を耐火物容器の底の
孔の径10mmから流出させ、溶滴の凝固速度が10’
℃/sec以下になるように噴霧圧カフ0kg/cd、
噴霧水量10It /secで溶湯流を粉砕、水中に落
下させて冷却して粉末を製造した。得られた粉末の平均
粒径は70μ謡、結晶粒の大きさは5〜20μmであっ
た。
Example (1) Cr 13. Owt%, Si 1. OwL%, balance Fe
The molten metal at 1600°C was flowed out from a hole with a diameter of 10 mm at the bottom of a refractory container, and the solidification rate of the droplets was 10'.
Spray pressure cuff 0kg/cd so that it is below ℃/sec,
The molten metal stream was pulverized with a water spray amount of 10 It/sec, and was cooled by dropping into water to produce a powder. The average particle size of the obtained powder was 70 μm, and the crystal grain size was 5 to 20 μm.

上記の工程で得られた粉末を容器に入れて電気炉に装入
した。電気炉の雰囲気は0.3%020を含む湿潤空気
を流入し、温度1000℃、10時間保持して粉末を酸
化させた。酸化した粉末を搗砕機に3kg投入して3時
間粉砕した。粉砕した粉末の酸素量と同量のカーボンを
2.8%添加して混合した後、容器にいれて真空炉に装
入し、温度1200℃、4時間保持した。還元によって
得られた30μm以下の粉末は2.7Kgで、収率は9
0%であった。また粉末の酸素量は0.25%、平均粒
径は15μIであった。
The powder obtained in the above step was placed in a container and charged into an electric furnace. Humid air containing 0.3% 020 was introduced into the electric furnace, and the temperature was maintained at 1000° C. for 10 hours to oxidize the powder. 3 kg of the oxidized powder was put into a crusher and crushed for 3 hours. After adding and mixing 2.8% of carbon, which is the same amount as the amount of oxygen in the pulverized powder, the mixture was placed in a container and placed in a vacuum furnace, where it was maintained at a temperature of 1200° C. for 4 hours. The amount of powder of 30 μm or less obtained by reduction was 2.7 kg, and the yield was 9.
It was 0%. Further, the oxygen content of the powder was 0.25%, and the average particle size was 15 μI.

実施例(2) Ni 12.Owt%、Cr 16.Owt%、Si 
1.0wt%、残部Feの合金を溶解し、1600℃の
溶湯を耐火物容器の底の孔の径10mmから流出させ、
溶滴の凝固速度が104℃/sec以下になるように噴
霧圧カフ0kg /d、噴霧水量101 /secで溶
湯流を粉砕し、水中に落下させて冷却して粉末を製造し
た。得られた粉末の平均粒径は60μ論、結晶粒の大き
さは3〜20μmであった。
Example (2) Ni 12. Owt%, Cr 16. Owt%, Si
An alloy of 1.0 wt% and the balance Fe was melted, and the molten metal at 1600°C was flowed out from a hole with a diameter of 10 mm at the bottom of a refractory container.
The molten metal stream was pulverized with a spray pressure cuff of 0 kg/d and a spray water amount of 101/sec so that the solidification rate of the droplets was 104° C./sec or less, and the powder was cooled by dropping into water to produce a powder. The average particle size of the obtained powder was 60 μm, and the crystal grain size was 3 to 20 μm.

上記の工程で得られた粉末を容器に入れて電気炉に装入
した。電気炉の雰囲気は0.5%H20を含む湿潤空気
を流入した。温度1000℃、10時間保持して粉末を
酸化させた。酸化した粉末を振動ミルに2kg投入して
2時間粉砕した。粉砕した粉末の酸素量と同量のカーボ
ンを3.3%添加して混合した後、容器にいれて真空炉
に装入し、温度1200℃、4時間保持した。還元によ
って得られた30μm以下の粉末は1.8にgで収率は
90%であった。また粉末の酸素量は0.35%、平均
粒径は10μmであった。
The powder obtained in the above step was placed in a container and charged into an electric furnace. The atmosphere in the electric furnace was humid air containing 0.5% H20. The powder was oxidized by maintaining the temperature at 1000° C. for 10 hours. 2 kg of the oxidized powder was placed in a vibration mill and pulverized for 2 hours. After adding and mixing 3.3% of carbon, which is the same amount as the amount of oxygen in the pulverized powder, the mixture was placed in a container and placed in a vacuum furnace, where it was maintained at a temperature of 1200° C. for 4 hours. The amount of powder of 30 μm or less obtained by reduction was 1.8 g, and the yield was 90%. The oxygen content of the powder was 0.35%, and the average particle size was 10 μm.

実施例(3) Cu 100%の金属を溶解し、1300℃の溶湯を耐
火物容器の底の孔の径8m1Wから流出させ、溶滴の凝
固速度が10’℃/sec以下になるように噴霧圧カフ
0kg/cj、噴霧水IJ51/secで溶湯流を粉砕
し、水中に落下させて冷却して粉末を製造した。得られ
た粉末の平均粒径は60μ和、結晶粒の大きさは2〜1
5μmであった。
Example (3) A 100% Cu metal was melted, and the molten metal at 1300°C was flowed out from a hole with a diameter of 8m1W at the bottom of a refractory container, and sprayed so that the solidification rate of droplets was 10'°C/sec or less. The molten metal stream was pulverized with a pressure cuff of 0 kg/cj and sprayed water at IJ51/sec, and was cooled by dropping into water to produce a powder. The average particle size of the obtained powder was 60μ, and the crystal grain size was 2 to 1.
It was 5 μm.

上記の工程で得られた粉末を容器に入れて電気炉に装入
した。を気炉の雰囲気は乾燥空気を流入し、温度600
℃、6時間保持して粉末を酸化させた。酸化した粉末を
粉砕機に3kg投入して3時間粉砕した。粉砕した粉末
を容器に入れて水素雰囲気中の炉に装入し、温度720
℃、2時間保持した。
The powder obtained in the above step was placed in a container and charged into an electric furnace. The atmosphere of the air furnace is dry air flowing in, and the temperature is 600℃.
℃ for 6 hours to oxidize the powder. 3 kg of the oxidized powder was put into a pulverizer and pulverized for 3 hours. The crushed powder was placed in a container and charged into a furnace in a hydrogen atmosphere, and the temperature was 720°C.
It was kept at ℃ for 2 hours.

還元によって得られた30μl以下の粉末は2.7 K
gで収率は90%であった。また粉末の酸素量は0.1
5%、平均粒径は11μmであった。
30 μl or less of powder obtained by reduction is 2.7 K
The yield was 90%. Also, the amount of oxygen in the powder is 0.1
5%, and the average particle size was 11 μm.

実施例(4) Sn 10.0 、残部Cuの合金を溶解し、1250
°Cの溶湯を耐火物容器の底の孔の径8mmから流出さ
せ、溶滴の凝固速度が104℃/sec以下になるよう
に噴霧圧力4kg/cflI、噴霧ガス量3001 /
secで溶湯流を粉砕し、水中に落下させて冷却して粉
末を製造した・得られた粉末の平均粒径は80μm、結
晶粒の大きさは3〜25μmであった。
Example (4) An alloy of Sn 10.0 and the balance Cu was melted to 1250
°C molten metal is flowed out from a hole with a diameter of 8 mm at the bottom of the refractory container, and the spray pressure is 4 kg/cflI and the spray gas amount is 3001/cm so that the solidification rate of the droplets is 104 °C/sec or less.
A powder was produced by crushing the molten metal stream at 100 sec and cooling it by dropping it into water.The average particle size of the obtained powder was 80 μm, and the crystal grain size was 3 to 25 μm.

上記の工程で得られた粉末を容器に入れて電気炉に装入
した。電気炉の雰囲気は0.5%H20を含む湿潤空気
を流入し、温度600℃、5時間保持して粉末を酸化さ
せた。酸化した粉末を振動ミルに2kg投入して2時間
粉砕した。粉砕した粉末を容器に入れて水素雰囲気中の
炉に装入し、温度750℃、2時間保持した。還元によ
って得られた301Jm以下の粉末は1.7Kgで収率
は85%であった。また粉末の酸素量は0.35%、平
均粒径は15μmであった。
The powder obtained in the above step was placed in a container and charged into an electric furnace. Humid air containing 0.5% H20 was introduced into the electric furnace, and the temperature was maintained at 600° C. for 5 hours to oxidize the powder. 2 kg of the oxidized powder was placed in a vibration mill and pulverized for 2 hours. The pulverized powder was placed in a container, placed in a furnace in a hydrogen atmosphere, and maintained at a temperature of 750° C. for 2 hours. The amount of powder of 301 Jm or less obtained by reduction was 1.7 kg, and the yield was 85%. The oxygen content of the powder was 0.35%, and the average particle size was 15 μm.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば合金、または金属
の粉末中に含まれている酸素量が0.5%以下で微細な
金属粉末を収率良く、容易に得ることができる。
As explained above, according to the present invention, it is possible to easily obtain fine metal powder with good yield in which the amount of oxygen contained in the alloy or metal powder is 0.5% or less.

本発明の金属粉末はわ)末冶金用、フィルター用、電磁
材用、塗料用等に好適である。
The metal powder of the present invention is suitable for powder metallurgy, filters, electromagnetic materials, paints, etc.

Claims (1)

【特許請求の範囲】[Claims] 室温で延性又は展性を有している金属の溶滴を気体又は
液体により、得られた粉末の結晶粒が30μm以下の大
きさとなるように10^4℃/sec以下の凝固速度で
冷却し、得られた粉末を酸化させて機械的に粉砕し、還
元雰囲気で熱処理をおこなうことにより、酸素量が0.
5%以下で30μm以下の金属粉末を製造する方法。
A droplet of a metal that is ductile or malleable at room temperature is cooled with a gas or liquid at a solidification rate of 10^4°C/sec or less so that the crystal grains of the obtained powder have a size of 30 μm or less. The obtained powder is oxidized, mechanically pulverized, and heat treated in a reducing atmosphere to reduce the amount of oxygen to 0.
A method for producing metal powder of 30 μm or less with a content of 5% or less.
JP61115489A 1986-05-19 1986-05-19 Method for producing metal powder Expired - Lifetime JPH0617492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61115489A JPH0617492B2 (en) 1986-05-19 1986-05-19 Method for producing metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61115489A JPH0617492B2 (en) 1986-05-19 1986-05-19 Method for producing metal powder

Publications (2)

Publication Number Publication Date
JPS62270707A true JPS62270707A (en) 1987-11-25
JPH0617492B2 JPH0617492B2 (en) 1994-03-09

Family

ID=14663783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61115489A Expired - Lifetime JPH0617492B2 (en) 1986-05-19 1986-05-19 Method for producing metal powder

Country Status (1)

Country Link
JP (1) JPH0617492B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202208A (en) * 2010-03-24 2011-10-13 Tohoku Univ Method of producing metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237475A (en) * 1975-09-17 1977-03-23 Electron Fusion Devices Distributing apparatus for measuring viscous material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237475A (en) * 1975-09-17 1977-03-23 Electron Fusion Devices Distributing apparatus for measuring viscous material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202208A (en) * 2010-03-24 2011-10-13 Tohoku Univ Method of producing metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film
US9309119B2 (en) 2010-03-24 2016-04-12 Hitachi Metals, Ltd. Producing method of metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film

Also Published As

Publication number Publication date
JPH0617492B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
US4756746A (en) Process of producing fine spherical particles
US4783216A (en) Process for producing spherical titanium based powder particles
US4772315A (en) Hydrometallurgical process for producing finely divided spherical maraging steel powders containing readily oxidizable alloying elements
US4778515A (en) Process for producing iron group based and chromium based fine spherical particles
CN109570521A (en) The method that plasma spheroidization prepares metal powder
US4787934A (en) Hydrometallurgical process for producing spherical maraging steel powders utilizing spherical powder and elemental oxidizable species
US5114471A (en) Hydrometallurgical process for producing finely divided spherical maraging steel powders
JP2023500975A (en) Method for producing aluminum-containing alloy powder and its use, and alloy ribbon
US2304130A (en) Process for the conversion of metals into finely divided form
JP4264873B2 (en) Method for producing fine metal powder by gas atomization method
US4836850A (en) Iron group based and chromium based fine spherical particles
US4943322A (en) Spherical titanium based powder particles
JP2010013713A (en) Composite particle, and method for manufacturing composite particle
US3687654A (en) Method of making alloy steel powder
US3646176A (en) Method for producing low oxide metal powders
JPH03122205A (en) Manufacture of ti powder
JPS62270707A (en) Production of metallic powder
US2990267A (en) Preparation of metal powders
Schade et al. Atomization
CN110355376B (en) Method for preparing aluminum or aluminum alloy powder by exciting aluminum-salt mixed melt through ultrasonic waves
TW202305148A (en) Method for recovering platinum group element
JPH0238505A (en) Manufacture of metal super fine powder
US4792351A (en) Hydrometallurgical process for producing irregular morphology powders
JPS60114503A (en) Manufacture of processed product of mother alloy powder
KR101065211B1 (en) Manufacturing method of super-fine amorphous powder using mechanical low-energy crushing process