JPS6227066B2 - - Google Patents

Info

Publication number
JPS6227066B2
JPS6227066B2 JP53158159A JP15815978A JPS6227066B2 JP S6227066 B2 JPS6227066 B2 JP S6227066B2 JP 53158159 A JP53158159 A JP 53158159A JP 15815978 A JP15815978 A JP 15815978A JP S6227066 B2 JPS6227066 B2 JP S6227066B2
Authority
JP
Japan
Prior art keywords
reaction
concentration
aqueous solution
dichlorohydrazobenzene
nitrochlorobenzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53158159A
Other languages
Japanese (ja)
Other versions
JPS5585554A (en
Inventor
Teruyuki Nagata
Kosuke Yamamoto
Akihiro Tamaoki
Katsuji Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP15815978A priority Critical patent/JPS5585554A/en
Publication of JPS5585554A publication Critical patent/JPS5585554A/en
Publication of JPS6227066B2 publication Critical patent/JPS6227066B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はO−ニトロクロロベンゼンからの2・
2′−ジクロロヒドラゾベンゼンの製造方法に関す
る。 2・2′−ジクロロヒドラゾベンゼンは既知の方
法で容易に3・3′−ジクロロベンジジンに変換さ
せることができ、後者は染料中間体、その他合成
の中間体として有用な化合物である。 O−ニトロクロロベンゼンを接触還元すること
による2・2′−ジクロロヒドラゾベンゼンの製造
方法としては、米国特許第3156724号明細書にア
ルカリ水溶液存在下に一挙に目的物まで還元して
しまう方法が記されている。この方法によれば目
的物への選択率は最高90%程度にすぎない。その
場合の副産物の主なものはO−クロロアニリンで
ある。 本発明者らは、アルカリ水溶液存在下のO−ニ
トロクロロベンゼンの接触還元反応を詳細に調べ
た結果、本反応はO−ニトロクロロベンゼンが中
間体2・2′−ジクロロアゾキシベンゼンに変換す
る段階と、更にこの中間体が目的物に変換する段
階とに明確に分れていることを見出し、更に、各
段階の最適条件について鋭意検討を重ねた結果、
各段階の反応条件を適切に選ぶことにより2・
2′−ジクロロヒドラゾベンゼンへの選択率を飛躍
的に向上させることができることを見出し、本発
明に到達した。 即ち、本発明の目的はO−ニトロクロロベンゼ
ンを接触的に還元して高収率で2・2′−ジクロロ
ヒドラゾベンゼンを得るための改良された方法を
提供するにある。 本発明者らは、アルカリ水溶液存在下のO−ニ
トロクロロベンゼンの接触還元が下記反応式(1)お
よび(2)の二段階に明確に区分されることを見出し
た。 即ち、原料のO−ニトロクロロベンゼンが存在
する間は2・2′−ジクロロアゾキシベンゼンが蓄
積されるのみで、2・2′−ジクロロヒドラゾベン
ゼンは殆んど生成せず、O−ニトロクロロベンゼ
ンが消失してはじめて2・2′−ジクロロアゾキシ
ベンゼンの接触還元がはじまるのである。 副生成物は両段階共主としてO−クロロアニリ
ンであつた。 次に、アルカリ水溶液の濃度をかえて反応を試
みたところ、反応式(1)に示される第1段の反応に
おける2・2′−ジクロロアゾキシベンゼンの収率
はアルカリ水溶液の濃度が高い程高くなり、反応
式(2)に示される第2段の反応における2・2′−ジ
クロロヒドラゾベンゼンの収率はアルカリ水溶液
の濃度がやゝ低い範囲で極大値を示すことがわか
つた。即ち、既知の方法においては途中で手を加
えることなく水素吸収が認められなくなるまで反
応を進行させるのに対し、第1段および第2段の
反応混合物中のアルカリ水溶液の濃度を別個に調
節することにより、目的物の収率が著しく向上す
ることが見出された。 本発明の方法に用いられるアルカリには苛性ソ
ーダおよび苛性カリがある。第1段の反応におけ
るアルカリ水溶液の濃度は、3Nないし5Nに維持
して反応を行い、好ましくは4.0〜4.5N付近がよ
い。5N以上の高濃度で実施しても収率にはほと
んど変りはなく、反応時間が長くかかるので工業
的には不利となる。また3N以下では目的生成物
への選択率が低下する傾向となる。原料O−ニト
ロクロロベンゼンに対するアルカリ水溶液の重量
比は0.3ないし3.0がよい。第2段の反応における
アルカリ水溶液の濃度は1.0Nないし2.5Nの範囲
で行い、この範囲になるよう水を新たに加えて調
節する。この範囲外で実施した場合、副生物のO
−クロロアニリンなどが増えるので好ましくな
く、最適濃度は1.5N付近で実施するのがよい。
第2段の反応において、有機層に対するアルカリ
水溶液の重量比は0.3ないし3.0がよい。 触媒はパラジウムまたは白金を含有するものが
有効であり、例えば活性炭に担持されたもの等が
用いられる。触媒量はパラジウムまたは白金金属
としてO−ニトロクロロベンゼンに対し0.00005
%ないし0.02%が通常用いられるが望ましくは
0.0001%ないし0.01%がよい。 更に助触媒として2・3−ジクロロナフトキノ
ン、2・3−ジヒドロキシナフトキノン等のナフ
トキノン誘導体を少量加えることにより、この種
の反応の選択性が向上することは既知であるが、
本発明の方法に於いてもこのような物質を用いる
ことができる。ナフトキノン誘導体の添加量はO
−ニトロクロロベンゼンに対し、0.01重量%ない
し2重量%がよいが、望ましくは0.02ないし1重
量%がよい。 有機溶剤を使用することは必要ではないが、製
品の使途等によつては必要に応じてベンゼン、ト
ルエン、キシレン等を加えて反応させることがで
きる。 本発明の方法を実施するにはO−ニトロクロロ
ベンゼン、苛性アルカリ水溶液、触媒、および助
触媒を混合し、所定温度および水素圧下で水添
し、原料のO−ニトロクロロベンゼンが大部分消
費されたのち(即ち前記第1段反応がほぼ終了し
た時点で)水層の一部または全部を除去して、所
定の濃度になるように水または低濃度の苛性アル
カリ水溶液を添加するか、または単に水を添加す
ることにより水層中の苛性アルカリ濃度を調節
し、引きつづいて水添を行なわせればよい。 反応物は油水二層からなるので、接触をよくす
るために有機スルホン酸、有機ホスホン酸、その
他の界面活性剤を添加してもよい。 反応温度は40℃ないし120℃がよいが、望まし
くは65℃ないし110℃がよい。水素分圧は0.02な
いし50Kg/cm2Gがよいが望ましくは1ないし25
Kg/cm2Gがよい。 本発明の方法によれば2・2′−ジクロロヒドラ
ゾベンゼンの収率は93〜97%に達する。 次に実施例により本発明の方法を更に詳しく説
明する。 実施例 1 内容積1のステンレススチール製オートクレ
ーブにO−ニトロクロロベンゼン250g、5%白
金カーボン触媒0.32g、2・3−ジクロロナフト
キノン0.27g、ドデシルベンゼンスルホン酸ナト
リウム塩1.25g、および5.0N苛性ソーダ水溶液
397gを加え、90℃、水素圧8Kg/cm2Gで接触還
元した。95分後2.65モルの水素が吸収された時点
で反応を中断した。その間約48gの水が生成し反
応系中の苛性ソーダ水溶液の濃度は約4.5Nとな
つた。水層を297g排除し、同量の水297gを新た
に追加して、反応系中の苛性ソーダ水溶液の濃度
を約1.5Nに調整したのち、再び90℃、水素圧8
Kg/cm2Gで水素の吸収が認められなくなるまで反
応を続けた。この間110分を要した。反応生成物
をガスクロマトグラフ法で分析した結果、2・
2′−ジクロロヒドラゾベンゼン、およびO−クロ
ロアニリンの収率は夫々96.4%および2.4%であ
つた。 実施例 2 内容積1のステンレススチール製オートクレ
ーブにO−ニトロクロロベンゼン250g、5%白
金カーボン触媒0.32g、2・3−ジクロロナフト
キノン0.27g、ドデシルベンゼンスルホン酸ナト
リウム塩1.25g、および4.3N苛性ソーダ水溶液
188.6gを加え、90℃、水素圧8Kg/cm2Gで接触
還元した。2.65モルの水素が吸収された時点で反
応を中断した。その間約48gの水が生成し反応系
中の苛性ソーダ水溶液の濃度は約3.5Nとなつ
た。水265.9gを追加して反応系中の苛性ソーダ
水溶液の濃度を約1.6Nに調節したのち、90℃、
水素圧8Kg/cm2Gで水素の吸収が認められなくな
るまで還元を続けた。反応生成物をガスクロマト
グラフ法により分析した結果、2・2′−ジクロロ
ヒドラゾベンゼンの収率は93.6%、O−クロロア
ニリンの収率は4.3%であつた。 反応に要した時間は前半が94分、後半が90分で
あつた。 比較例 1 約5.0N相当の17%苛性ソーダ水溶液の代りに
3.5N苛性ソーダ水溶液355gを用いた以外は実施
例1と同様の原料を用い、90℃、水素圧8Kg/cm2
Gで水素吸収が認められなくなるまで接触還元を
行なつた。この間反応系中の苛性ソーダ水溶液の
濃度は生成水のため約3.1Nとなり、反応に120分
を要した。反応生成物をガスクロマトグラフ法に
よつて分析した結果、2・2′−ジクロロヒドラゾ
ベンゼン、およびO−クロロアニリンの収率は
各々89.4%および8.5%であつた。 実施例 3 実施例1において5%白金カーボン触媒の代り
に5%パラジウムカーボンを用いた以外は全く同
様にして反応を行なつた結果、反応時間は第1段
105分、第2段130分、2・2′−ジクロロヒドロゾ
ベンゼンおよびO−クロロアニリンの収率は夫々
94.2%および3.0%であつた。 比較例 2 比較例1において5%白金カーボン触媒の代り
に5%パラジウムカーボンを用いた以外は全く同
様にして反応を行なつた結果、反応時間は165
分、2・2′−ジクロロヒドラゾベンゼンおよびO
−クロロアニリンの収率は夫々87.4%および8.6
%であつた。 実施例 4〜7 反応温度あるいは水素圧をかえた以外は実施例
2と同様にして反応を行なつた結果を表1に示
す。
The present invention deals with the production of 2.
The present invention relates to a method for producing 2'-dichlorohydrazobenzene. 2,2'-dichlorohydrazobenzene can be easily converted to 3,3'-dichlorobenzidine by known methods, and the latter is a compound useful as a dye intermediate and other synthetic intermediates. As a method for producing 2,2'-dichlorohydrazobenzene by catalytic reduction of O-nitrochlorobenzene, US Pat. No. 3,156,724 describes a method in which the target product is reduced all at once in the presence of an alkaline aqueous solution. has been done. According to this method, the selectivity to the target product is only about 90% at maximum. The main by-product in that case is O-chloroaniline. The present inventors investigated in detail the catalytic reduction reaction of O-nitrochlorobenzene in the presence of an aqueous alkaline solution, and found that this reaction is a step in which O-nitrochlorobenzene is converted to the intermediate 2,2'-dichloroazoxybenzene. Furthermore, we discovered that there is a clear separation between this intermediate and the stage of converting it to the target product, and as a result of intensive investigation into the optimal conditions for each stage, we found that:
By appropriately selecting the reaction conditions of each step, 2.
The present invention was achieved by discovering that the selectivity to 2'-dichlorohydrazobenzene can be dramatically improved. That is, an object of the present invention is to provide an improved method for catalytically reducing O-nitrochlorobenzene to obtain 2,2'-dichlorohydrazobenzene in high yield. The present inventors have discovered that the catalytic reduction of O-nitrochlorobenzene in the presence of an aqueous alkaline solution can be clearly divided into two stages as shown in reaction formulas (1) and (2) below. That is, while the raw material O-nitrochlorobenzene is present, only 2,2'-dichloroazoxybenzene is accumulated, almost no 2,2'-dichlorohydrazobenzene is produced, and O-nitrochlorobenzene is The catalytic reduction of 2,2'-dichloroazoxybenzene begins only when The by-product was primarily O-chloroaniline in both stages. Next, we tried the reaction by changing the concentration of the alkaline aqueous solution, and found that the yield of 2,2'-dichloroazoxybenzene in the first stage reaction shown in reaction formula (1) was lower as the concentration of the alkaline aqueous solution was higher. It was found that the yield of 2,2'-dichlorohydrazobenzene in the second stage reaction shown in reaction formula (2) reaches its maximum value in a range where the concentration of the alkaline aqueous solution is rather low. That is, in contrast to known methods in which the reaction proceeds until no hydrogen absorption is observed without any intervention during the process, the concentration of the aqueous alkali solution in the first and second stage reaction mixtures is adjusted separately. It has been found that the yield of the target product can be significantly improved by this. The alkalis used in the method of the invention include caustic soda and caustic potash. The concentration of the alkaline aqueous solution in the first stage reaction is maintained at 3N to 5N, preferably around 4.0 to 4.5N. Even if the reaction is carried out at a high concentration of 5N or higher, there is almost no difference in yield, and the reaction time is long, which is disadvantageous from an industrial perspective. In addition, if it is less than 3N, the selectivity to the target product tends to decrease. The weight ratio of the alkaline aqueous solution to the raw material O-nitrochlorobenzene is preferably 0.3 to 3.0. The concentration of the alkaline aqueous solution in the second stage reaction is carried out in the range of 1.0N to 2.5N, and is adjusted by newly adding water to maintain this range. If carried out outside this range, by-product O
-This is not preferable because it increases the amount of chloroaniline, etc., and the optimum concentration is preferably around 1.5N.
In the second stage reaction, the weight ratio of the aqueous alkali solution to the organic layer is preferably 0.3 to 3.0. A catalyst containing palladium or platinum is effective, and for example, one supported on activated carbon is used. The catalyst amount is 0.00005 for O-nitrochlorobenzene as palladium or platinum metal.
% to 0.02% is usually used, but preferably
0.0001% to 0.01% is good. Furthermore, it is known that the selectivity of this type of reaction can be improved by adding a small amount of a naphthoquinone derivative such as 2,3-dichloronaphthoquinone or 2,3-dihydroxynaphthoquinone as a cocatalyst.
Such substances can also be used in the method of the present invention. The amount of naphthoquinone derivative added is O
- 0.01% to 2% by weight, preferably 0.02% to 1% by weight, based on nitrochlorobenzene. Although it is not necessary to use an organic solvent, benzene, toluene, xylene, etc. can be added as necessary depending on the intended use of the product. To carry out the method of the present invention, O-nitrochlorobenzene, an aqueous caustic solution, a catalyst, and a cocatalyst are mixed and hydrogenated at a predetermined temperature and hydrogen pressure, and after most of the raw material O-nitrochlorobenzene has been consumed. Either remove part or all of the aqueous layer (i.e., when the first stage reaction is almost completed) and add water or a low concentration aqueous caustic solution to a predetermined concentration, or simply add water. The concentration of caustic alkali in the aqueous layer can be adjusted by adding it, and then hydrogenation can be carried out. Since the reactant consists of two layers of oil and water, organic sulfonic acids, organic phosphonic acids, and other surfactants may be added to improve contact. The reaction temperature is preferably 40°C to 120°C, preferably 65°C to 110°C. Hydrogen partial pressure is preferably 0.02 to 50Kg/cm 2 G, preferably 1 to 25G.
Kg/cm 2 G is good. According to the method of the present invention, the yield of 2,2'-dichlorohydrazobenzene reaches 93-97%. Next, the method of the present invention will be explained in more detail with reference to Examples. Example 1 In a stainless steel autoclave with an internal volume of 1, 250 g of O-nitrochlorobenzene, 0.32 g of 5% platinum carbon catalyst, 0.27 g of 2,3-dichloronaphthoquinone, 1.25 g of dodecylbenzenesulfonic acid sodium salt, and 5.0 N aqueous sodium hydroxide solution.
397 g was added and catalytic reduction was carried out at 90° C. and a hydrogen pressure of 8 Kg/cm 2 G. The reaction was stopped after 95 minutes when 2.65 moles of hydrogen had been absorbed. During this time, about 48 g of water was produced, and the concentration of the caustic soda aqueous solution in the reaction system was about 4.5N. After removing 297g of the aqueous layer and adding the same amount of 297g of water again to adjust the concentration of the caustic soda aqueous solution in the reaction system to approximately 1.5N, the temperature was again 90°C and the hydrogen pressure was 8.
The reaction was continued until no hydrogen absorption was observed at Kg/cm 2 G. This took 110 minutes. As a result of analyzing the reaction product by gas chromatography, 2.
The yields of 2'-dichlorohydrazobenzene and O-chloroaniline were 96.4% and 2.4%, respectively. Example 2 In a stainless steel autoclave with an internal volume of 1, 250 g of O-nitrochlorobenzene, 0.32 g of 5% platinum carbon catalyst, 0.27 g of 2,3-dichloronaphthoquinone, 1.25 g of dodecylbenzenesulfonic acid sodium salt, and 4.3N aqueous sodium hydroxide solution.
188.6g was added and catalytic reduction was carried out at 90°C and hydrogen pressure of 8Kg/cm 2 G. The reaction was stopped when 2.65 moles of hydrogen had been absorbed. During this time, about 48 g of water was produced, and the concentration of the caustic soda aqueous solution in the reaction system was about 3.5N. After adding 265.9 g of water to adjust the concentration of the caustic soda aqueous solution in the reaction system to approximately 1.6N,
Reduction was continued at a hydrogen pressure of 8 kg/cm 2 G until no hydrogen absorption was observed. Analysis of the reaction products by gas chromatography revealed that the yield of 2,2'-dichlorohydrazobenzene was 93.6% and the yield of O-chloroaniline was 4.3%. The time required for reaction was 94 minutes in the first half and 90 minutes in the second half. Comparative example 1 Instead of 17% caustic soda aqueous solution equivalent to about 5.0N
The same raw materials as in Example 1 were used except that 355 g of 3.5N caustic soda aqueous solution was used, and the temperature was 90°C and the hydrogen pressure was 8 Kg/cm 2
Catalytic reduction was carried out with G until no hydrogen absorption was observed. During this time, the concentration of the caustic soda aqueous solution in the reaction system was approximately 3.1N due to the produced water, and the reaction required 120 minutes. Analysis of the reaction product by gas chromatography revealed that the yields of 2,2'-dichlorohydrazobenzene and O-chloroaniline were 89.4% and 8.5%, respectively. Example 3 The reaction was carried out in exactly the same manner as in Example 1 except that 5% palladium carbon was used instead of the 5% platinum carbon catalyst, and the reaction time was the same as that of the first stage.
105 minutes, second stage 130 minutes, yields of 2,2'-dichlorohydrozobenzene and O-chloroaniline, respectively.
They were 94.2% and 3.0%. Comparative Example 2 The reaction was carried out in exactly the same manner as in Comparative Example 1 except that 5% palladium carbon was used instead of the 5% platinum carbon catalyst. As a result, the reaction time was 165
min, 2,2'-dichlorohydrazobenzene and O
-Yield of chloroaniline is 87.4% and 8.6 respectively
It was %. Examples 4 to 7 Table 1 shows the results of reactions carried out in the same manner as in Example 2 except that the reaction temperature or hydrogen pressure was changed.

【表】 実施例 8 内容積1のステンレススチール製オートグレ
ーブにO−ニトロクロロベンゼン250g、5%白
金カーボン触媒0.32g、2・3−ジクロロナフト
キノン0.27g、アルキルナフタリンスルホン酸ナ
トリウム1.25g、6.0N苛性ソーダ水溶液87.5gお
よびトルエン210gを仕込み、80℃、水素圧8
Kg/cm2Gで接触還元した。 70分後、2.65モルの水素が吸収された時点で反
応を中断した。反応系中の苛性ソーダ水溶液濃度
は約3.9Nとなつた。水110gを追加し、水素吸収
が認められなくなるまで反応を続けた。この間
105分を要した。反応系中の苛性ソーダ水溶液の
濃度は約2.1Nとなつた。反応生成物をガスクロ
マトグラフ法で分析した結果、2・2′−ジクロロ
ヒドラゾベンゼンおよびO−クロロアニリンの収
率は夫々93.6%および4.9%であつた。 比較例 3 実施例1において、5.0N苛性ソーダ水溶液397
gにかえて、6.0Nの苛性ソーダ水溶液300gを用
いた以外は実施例1と全く同様にして1段目の反
応を行つた。但し、2.65モルの水素が吸収される
まで110分を要し、第1段目を中断した時点での
反応系中の苛性ソーダの濃度は約5.1Nとなつ
た。次に第2段目の反応においては実施例1の水
層を297g排除して同量の水を入れ替えたのに対
し、250g排除して同量の水を加え苛性ソーダの
濃度を約1.4Nに調節した以外は全く同様にして
2段目反応を行つた。反応生成物は2・2′−ジク
ロロヒドラゾベンゼンの収率96.2%、O−クロロ
アニリン副生物2.5%であり、目的物の選択率は
ほとんど同じだつたが、第1段目の反応時間が若
干長くかかつた。 比較例 4 内容積1.5のステンレススチール製オートク
レーブを用い、実施例2において第2段目の反応
で追加した水265.9gにかえて、水600gを追加し
た以外は、実施例2と全く同様にして反応を行つ
た。反応系中の苛性ソーダ水溶液の濃度は1段目
が約3.5N、2段目は約0.9Nに維持された。反応
終了後の反応生成物は、2・2′−ジクロロヒドラ
ゾベンゼンの収率90.2%、O−クロロアニリンの
副生物7.6%であつた。
[Table] Example 8 In a stainless steel autograve with an internal volume of 1, 250 g of O-nitrochlorobenzene, 0.32 g of 5% platinum carbon catalyst, 0.27 g of 2,3-dichloronaphthoquinone, 1.25 g of sodium alkylnaphthalene sulfonate, and 6.0N caustic soda. Prepare 87.5g of aqueous solution and 210g of toluene, 80℃, hydrogen pressure 8
Catalytic reduction was carried out at Kg/cm 2 G. After 70 minutes, the reaction was stopped when 2.65 moles of hydrogen had been absorbed. The concentration of the caustic soda aqueous solution in the reaction system was approximately 3.9N. 110 g of water was added and the reaction was continued until no hydrogen absorption was observed. During this time
It took 105 minutes. The concentration of the caustic soda aqueous solution in the reaction system was approximately 2.1N. Analysis of the reaction product by gas chromatography revealed that the yields of 2,2'-dichlorohydrazobenzene and O-chloroaniline were 93.6% and 4.9%, respectively. Comparative Example 3 In Example 1, 5.0N caustic soda aqueous solution 397
The first reaction was carried out in exactly the same manner as in Example 1, except that 300 g of a 6.0 N aqueous sodium hydroxide solution was used instead of 300 g of 6.0 N aqueous sodium hydroxide solution. However, it took 110 minutes for 2.65 moles of hydrogen to be absorbed, and the concentration of caustic soda in the reaction system was approximately 5.1N when the first stage was interrupted. Next, in the second stage reaction, 297g of the aqueous layer in Example 1 was removed and the same amount of water was replaced, whereas 250g was removed and the same amount of water was added to bring the concentration of caustic soda to about 1.4N. The second stage reaction was carried out in exactly the same manner except for the following adjustments. The reaction products were 96.2% yield of 2,2'-dichlorohydrazobenzene and 2.5% O-chloroaniline byproduct, and the selectivity of the target product was almost the same, but the first reaction time was It took a little longer. Comparative Example 4 A stainless steel autoclave with an internal volume of 1.5 was used, and the procedure was exactly the same as in Example 2, except that 600 g of water was added instead of the 265.9 g of water added in the second stage reaction in Example 2. The reaction was carried out. The concentration of the caustic soda aqueous solution in the reaction system was maintained at approximately 3.5N in the first stage and approximately 0.9N in the second stage. After completion of the reaction, the reaction products were 2,2'-dichlorohydrazobenzene in a yield of 90.2% and an O-chloroaniline by-product in a yield of 7.6%.

Claims (1)

【特許請求の範囲】[Claims] 1 O−クロロニトロベンゼンをパラジウムまた
は白金を含有する触媒及び苛性アルカリ水溶液の
存在下、ナフトキノン系化合物および/または不
活性有機溶媒の共存または非共存下に分子状水素
で還元するに当り、2・2′−ジクロロアゾキシベ
ンゼンの生成が実質的に完結するまでは苛性アル
カリ水溶液濃度を3N以上5Nの間に維持して反応
を行い、ついで苛性アルカリ水溶液濃度を1.0N
以上2.5N未満の間に水を加えて調整した後、さ
らに接触水素化反応を行うことを特徴とする2・
2′−ジクロロヒドラゾベンゼンの製造方法。
1. In reducing O-chloronitrobenzene with molecular hydrogen in the presence of a catalyst containing palladium or platinum and an aqueous caustic solution in the presence or absence of a naphthoquinone compound and/or an inert organic solvent, 2.2 The reaction is carried out by maintaining the concentration of the caustic aqueous solution between 3N and 5N until the production of '-dichloroazoxybenzene is substantially completed, and then the concentration of the caustic aqueous solution is increased to 1.0N.
2. characterized by further performing a catalytic hydrogenation reaction after adjusting by adding water to a temperature of less than 2.5N.
Method for producing 2'-dichlorohydrazobenzene.
JP15815978A 1978-12-23 1978-12-23 Preparation of 2,2-dichlorohydrazobenzene Granted JPS5585554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15815978A JPS5585554A (en) 1978-12-23 1978-12-23 Preparation of 2,2-dichlorohydrazobenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15815978A JPS5585554A (en) 1978-12-23 1978-12-23 Preparation of 2,2-dichlorohydrazobenzene

Publications (2)

Publication Number Publication Date
JPS5585554A JPS5585554A (en) 1980-06-27
JPS6227066B2 true JPS6227066B2 (en) 1987-06-12

Family

ID=15665551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15815978A Granted JPS5585554A (en) 1978-12-23 1978-12-23 Preparation of 2,2-dichlorohydrazobenzene

Country Status (1)

Country Link
JP (1) JPS5585554A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3156724A (en) * 1962-10-25 1964-11-10 Sterling Drug Inc Preparation of 2, 2'-dichlorohydrazobenzene
JPS4828433A (en) * 1971-08-14 1973-04-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3156724A (en) * 1962-10-25 1964-11-10 Sterling Drug Inc Preparation of 2, 2'-dichlorohydrazobenzene
JPS4828433A (en) * 1971-08-14 1973-04-14

Also Published As

Publication number Publication date
JPS5585554A (en) 1980-06-27

Similar Documents

Publication Publication Date Title
USRE44175E1 (en) Process for preparing 4-aminodiphenylamines
JPH107627A (en) Preparation of 4-aminodiphenylamines, as necessary, substituted
US4217307A (en) Process for the preparation of 2,2'-dichloro-hydrazobenzene
US20020013500A1 (en) Process for producing trifluoromethylbenzylamines
JPH0446264B2 (en)
JPS6227066B2 (en)
JP2001354598A (en) Method of producing adamantane
JP3895372B2 (en) Method for producing 3-phenylpropionaldehyde
JP2984047B2 (en) Method for producing 1-amino-4-alkoxybenzenes
JP3759328B2 (en) Method for producing an aqueous solution of betaine
EP1437340A1 (en) Process for the preparation of aminodiphenylamines
SU1199199A3 (en) Method of producing 3,5-dichloraniline
JP2836706B2 (en) Method for producing ethylbenzene from 4-vinylcyclohexene
TW550261B (en) Production of butyrolactones
JPS6311346B2 (en)
JP2537528B2 (en) Process for producing 2- (0-aminophenyl) ethanol
US3132180A (en) Catalytic reduction of aromatic mononitro compounds
JPS5867637A (en) Preparation of hydroxybenzyl alcohol compound
US3267142A (en) Process for preparing oximes using a silver chromate and/or silver dichromate catalyst
JPS62169751A (en) Production of 2-amino-1,3-propanediol
JP2965354B2 (en) Method for producing trans-3,3,5-trimethylcyclohexylethyl ether
JPS591246B2 (en) Method for producing cyclohexylbenzenes
SU696007A1 (en) Method of preparing 4 -aminodiphenylamine
JPH05331076A (en) Production of cyclododecene
JPH0737411B2 (en) Method for producing methyl isobutyl ketone