JPS62270647A - Production of chlorinated vinyl chloride resin - Google Patents

Production of chlorinated vinyl chloride resin

Info

Publication number
JPS62270647A
JPS62270647A JP11432086A JP11432086A JPS62270647A JP S62270647 A JPS62270647 A JP S62270647A JP 11432086 A JP11432086 A JP 11432086A JP 11432086 A JP11432086 A JP 11432086A JP S62270647 A JPS62270647 A JP S62270647A
Authority
JP
Japan
Prior art keywords
slurry
vinyl chloride
chloride resin
chlorinated vinyl
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11432086A
Other languages
Japanese (ja)
Other versions
JPH0321574B2 (en
Inventor
Yoshiteru Tsubokura
坪倉 嘉昶
Takanori Kubota
窪田 任孝
Shinobu Ochikoshi
忍 落越
Takeshi Shimizu
武史 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP11432086A priority Critical patent/JPS62270647A/en
Publication of JPS62270647A publication Critical patent/JPS62270647A/en
Publication of JPH0321574B2 publication Critical patent/JPH0321574B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a chlorinated vinyl chloride resin having improved properties with respect to heat discoloration, by adding an alkali meal salt of a fatty acid to an acidic slurry of a chlorinated vinyl chloride resin after a chlorination reaction. CONSTITUTION:A chlorinated vinyl chloride resin is produced by adding 0.1-1.5 pts.wt. alkali metal salt of a fatty acid to 100pts.wt. chlorinated vinyl chloride resin in an acidic aq. suspension of the resin after a chlorination reaction. The addition of the alkali metal salt to the aq. suspension is carried out while retaining the suspension at a pH of not higher than 7, pref. 4 during the course of the addition. When the pH of the suspension is higher than 7, the effect of the addition can not be obtd., heat discoloration is promoted and quality is lowered. The concn. of the resin in the suspension is pref. 10-40wt% and it is preferred to keep the temp. at 50-80 deg.C.

Description

【発明の詳細な説明】 3、発明の詳細な説明 「産業上の利用分野」 本発明は、塩素化塩化ビニル樹脂の製造方法に関する。[Detailed description of the invention] 3. Detailed description of the invention "Industrial application field" The present invention relates to a method for producing chlorinated vinyl chloride resin.

更に詳しくは、塩素化塩化ビニル樹脂を製造するに当た
り、塩素化反応後の酸性スラリーに、特定の物質を添加
することにより熱着色性が顕著に改良された塩素化塩化
ビニル樹脂の製造方法に関する。
More specifically, the present invention relates to a method for producing a chlorinated vinyl chloride resin in which the heat colorability is significantly improved by adding a specific substance to the acidic slurry after the chlorination reaction.

「従来の技術・発明が解決しようとする問題点」塩素化
塩化ビニル樹脂(以下、cpvcと記す)は塩化ビニル
樹脂(以下、PvCと記す)を塩素化して作られる。c
pvcはPVcと比較して、軟化温度が高く、優れた耐
熱性をもつものである。更にcpvcはpvcのもつ優
れ矩剛性、耐クリープ性、耐薬品性を高温度領域に亘っ
て持続し、耐燃焼性、低発煙性にも優れていることがら
、ユニークな工業材料として知られている。
"Prior Art/Problems to be Solved by the Invention" Chlorinated vinyl chloride resin (hereinafter referred to as CPVC) is made by chlorinating vinyl chloride resin (hereinafter referred to as PvC). c.
PVC has a higher softening temperature and excellent heat resistance than PVc. Furthermore, CPVC is known as a unique industrial material because it maintains the excellent rectangular rigidity, creep resistance, and chemical resistance of PVC over a high temperature range, and also has excellent flame resistance and low smoke emission. There is.

しかしcpvcは、成形加工とする際に熱により黄褐色
に着色するという大きな欠点を有している為、用途が限
定される。この熱着色が大きいという欠点を改良する為
に、従来から種々の方法が提案されている。例えば、特
公昭59−46962には、塩素化前のpvcを重合す
るに際し、3.5−ジターシャリ−ブチル−4−ビトロ
キシフェニル基を持った化合物のアルキルエステルを塩
化ビニルモノマー100部に対して0.03部以上加え
ることにより塩素化後のcpvcの熱着色性を改良する
方法が提示されている。しかし、この方法によるcpv
cの熱着色性のレベルは過去のcpvcのそれと比較し
て改良されてはいるものの、その改良幅が小さく、Pv
Cのそれと比較すると尚格段の差を認めざるを得ないの
が実情である。
However, CPVC has a major drawback in that it is colored yellowish brown by heat during molding, so its uses are limited. Various methods have been proposed to overcome this drawback of large thermal coloring. For example, in Japanese Patent Publication No. 59-46962, when polymerizing PVC before chlorination, an alkyl ester of a compound having a 3,5-ditertiary-butyl-4-bitroxyphenyl group is added to 100 parts of vinyl chloride monomer. A method has been proposed for improving the thermal colorability of CPVC after chlorination by adding 0.03 parts or more. However, cpv by this method
Although the level of thermochromicity of Pvc has been improved compared to that of past cpvc, the improvement range is small and Pv
The reality is that when compared with that of C, there is a significant difference.

「問題点を解決するための手段」 本発明は上記実情に鑑み、cpvcO熱着色を大幅に抑
制し、PVCの熱着色性レベルに近づける為のを効な方
法を提供するものである。
"Means for Solving the Problems" In view of the above-mentioned circumstances, the present invention provides an effective method for significantly suppressing CPVCO thermal coloring and bringing it closer to the level of thermal coloring of PVC.

本発明者等は、塩素化反応後のスラリーへ種々の物質を
添加し、これを脱水乾燥して得られるCpvcの熱着色
性を調べた結果、ある特定の物質がcpvcの熱着色を
大幅に抑制しPvCの熱着色レベルに匹敵する程の顕著
な効果を与えるということを見出し、本発明を完成させ
た。
The present inventors added various substances to the slurry after the chlorination reaction, and as a result of investigating the thermal coloring properties of Cpvc obtained by dehydrating and drying the slurry, it was found that a certain substance significantly improved the thermal coloring of cpvc. The present invention was completed based on the discovery that it suppresses heat coloring and provides a remarkable effect comparable to the level of thermal coloring of PvC.

即ち、本発明は、塩素化反応後のcpvcの酸性スラリ
ーに、脂肪酸のアルカリ金属塩をCPVC100重量部
当たり0.1〜1.5重量部添加することを特徴とする
cpvcの製造方法を内容とする。
That is, the present invention includes a method for producing CPVC, which is characterized by adding 0.1 to 1.5 parts by weight of an alkali metal salt of a fatty acid per 100 parts by weight of CPVC to an acidic slurry of CPVC after a chlorination reaction. do.

本発明に採用される原料のPVCは、いわゆる塩化ビニ
ル系に属する重合体であり、塩化ビニル単独重合体、あ
るいはそれの優位量とそれと共重合可能な単量体(例え
ば、エチレン、プロピレン、塩化ビニリデン、アクリル
酸エステル類、メタクリル酸エステル類等)の劣位量と
の共重合体である。これらはどのような重合方法(例え
ば、懸濁重合法、塊状重合法、乳化重合法等)で得られ
たものであっても本発明の効果が発現され得るが、その
重合時に使用される添加剤(例えば、重合開始剤、分散
剤、乳化剤等)の混入ができるだけ少ない重合体である
こと、及びその重合体の粒子内部に多くの空隙をもつこ
とが、特に本発明の効果を最大級に発現させる上で必要
な要件となる。
The raw material PVC used in the present invention is a polymer belonging to the so-called vinyl chloride family, and is a vinyl chloride homopolymer or a predominant amount thereof and monomers copolymerizable with it (e.g., ethylene, propylene, chloride). It is a copolymer with a minor amount of vinylidene, acrylic esters, methacrylic esters, etc.). The effects of the present invention can be achieved even if these are obtained by any polymerization method (for example, suspension polymerization method, bulk polymerization method, emulsion polymerization method, etc.), but the additives used during the polymerization In particular, the effects of the present invention can be maximized if the polymer contains as few agents (e.g., polymerization initiators, dispersants, emulsifiers, etc.) as possible and has many voids inside the polymer particles. This is a necessary requirement for expression.

又、PVCの重合度は本発明の効果を左右しないが、通
常の成形方法(例えば、押出、射出、カレンダーロール
等)に使用され得る範囲、即ちJISK−6712の方
法で測定される重合度が40O〜1500のものが望ま
しい。
The degree of polymerization of PVC does not affect the effect of the present invention, but the degree of polymerization measured by the method of JISK-6712 is within the range that can be used in ordinary molding methods (for example, extrusion, injection, calender roll, etc.). 400 to 1500 is desirable.

本発明に採用される塩素化方法は特に限定されないが、
一般的には水懸濁系光塩素化法が用いられる。その方法
とは、イオン交換水を用いてPVCをスラリー化し、耐
蝕性の反応器内で予め系内の酸素を除去した後、塩素を
供給し、常圧もしくは微加圧下に紫外線又は可視光線を
照射して塩素化するものである。塩素化反応の進行は系
内の水に溶解した副生HCffの濃度を測定することで
追跡する。塩素化度が所望の値に達した時に、光源を切
断することで塩素化反応を停止させる。塩素化反応停止
後は速やかに反応系内に残存する塩素を除去することが
肝要であり、不活性ガスによる追い出し及び加熱による
追い出し促進等の手段がとられる。更にこの塩素追い出
し後のスラリーへ、特公昭45−3820に記載されて
いる様な還元剤を添加して粒子中に吸着された塩素を還
元処理する。
The chlorination method employed in the present invention is not particularly limited, but
Generally, a water suspension photochlorination method is used. The method involves slurrying PVC using ion-exchanged water, removing oxygen from the system in advance in a corrosion-resistant reactor, supplying chlorine, and exposing it to ultraviolet or visible light under normal or slightly pressurized conditions. It is chlorinated by irradiation. The progress of the chlorination reaction is monitored by measuring the concentration of by-product HCff dissolved in the water in the system. When the degree of chlorination reaches the desired value, the chlorination reaction is stopped by turning off the light source. After the chlorination reaction has stopped, it is important to promptly remove the chlorine remaining in the reaction system, and measures such as expulsion with an inert gas and promotion of expulsion by heating are taken. Furthermore, a reducing agent as described in Japanese Patent Publication No. 45-3820 is added to the slurry after chlorine has been driven out to reduce the chlorine adsorbed in the particles.

本発明は、上記の塩素化反応を行った後のCPVCの酸
性スラリーに、脂肪酸のアルカリ金属塩をCPVC10
0重量部当たり0.1〜1.5重量部添加するcpvc
の製造方法である。ここにいう脂肪酸のアルカリ金属塩
とは、飽和脂肪酸あるいは不飽和脂肪酸のモノカルボン
酸、ジカルボン酸及びトリカルボン酸のナトリウム塩並
びにカリウム塩を含む。又、その分子中に一〇H基を持
つものも含まれる。分子中のアルキル基は直鎖であって
も分岐していても同様の効果を発揮する。
In the present invention, alkali metal salts of fatty acids are added to the acidic slurry of CPVC after the above chlorination reaction.
0.1 to 1.5 parts by weight of CPVC added per 0 parts by weight
This is a manufacturing method. The alkali metal salts of fatty acids mentioned herein include sodium salts and potassium salts of monocarboxylic acids, dicarboxylic acids, and tricarboxylic acids of saturated fatty acids or unsaturated fatty acids. It also includes those having 10H group in the molecule. The alkyl group in the molecule exhibits the same effect whether it is linear or branched.

脂肪酸のアルカリ金属塩の添加量は、cpvc100重
量部当たり0.1〜1.5重量部の範囲に設定される。
The amount of the alkali metal salt of fatty acid added is set in the range of 0.1 to 1.5 parts by weight per 100 parts by weight of CPVC.

0.1重量部未満では熱着色性改良の効果が小さく、1
.5重量部を越える添加は、成形品の透明性と表面性を
損なう上に、cpvcの特徴である高い軟化)品度を大
きく低下させる。添加量と熱着色性改良効果とは、1.
5重量部までは相関性をもつが、1.5重量部以上では
さらなる効果の向上が見られな(なる。
If it is less than 0.1 part by weight, the effect of improving heat colorability is small;
.. Addition of more than 5 parts by weight not only impairs the transparency and surface properties of the molded product, but also greatly reduces the quality (high softening characteristic of CPVC). The amount added and the effect of improving thermal coloring property are as follows: 1.
There is a correlation up to 5 parts by weight, but no further improvement in effect is observed at 1.5 parts by weight or more.

脂肪酸のアルカリ金属塩の添加は酸性のスラリー中で行
われる。ここにいう酸性スラリーとは、pl+が7以下
の酸性度を示すスラリーのことである、脂肪酸のアルカ
リ金属塩は、水に溶解して一最に弱アルカリ性を与える
が、本発明における酸性スラリーへの添加は、その添加
開始から添加終了までの間、絶えずpHを7以下望まし
くは4以下に保持されることが必要である。スラリーp
Hが7を越え酸性でなくなる場合、本発明の効果が発現
されず、逆に熱着色を増大させ、品質の低下を来す。尚
添加時のスラリーは良好な攪拌状態に保たれることが必
要である。スラリー中のcpvcの比率は特に規定され
ないが、充分な攪拌と次に続く脱水時の経済性とを考慮
すると10〜40wt%の樹脂濃度が望ましい、又、ス
ラリーの温度は50〜80℃の範囲に保たれることが望
ましい。
The addition of alkali metal salts of fatty acids is carried out in an acidic slurry. The acidic slurry referred to herein refers to a slurry exhibiting acidity with a pl+ of 7 or less.Alkali metal salts of fatty acids dissolve in water and provide weak alkalinity, but they are not suitable for the acidic slurry in the present invention. It is necessary to constantly maintain the pH at 7 or less, preferably 4 or less, from the start of addition to the end of addition. slurry p
If H exceeds 7 and the product is no longer acidic, the effects of the present invention will not be achieved, and on the contrary, thermal coloring will increase and quality will deteriorate. It is necessary to keep the slurry in a good stirring state during addition. The ratio of CPVC in the slurry is not particularly specified, but considering sufficient stirring and economical efficiency during the subsequent dehydration, a resin concentration of 10 to 40 wt% is desirable, and the temperature of the slurry is in the range of 50 to 80°C. It is desirable that the

本発明は、脂肪酸のアルカリ金属塩を酸性スラリー中で
cpvcに添加し、その熱着色性を向上させる製造方法
であるが、脂肪酸のアルカリ金属塩を乾燥したcpvc
ヘトライブレンドしてその効果を調べたところ、成形品
の熱着色はそれを添加しないcpvcよりもはるかに大
きく、熱着色性が悪化することが認められた。脂肪酸の
アルカリ金属塩は酸性下で脂肪酸に変化するものである
が、この脂肪酸を乾燥したcpvcヘトライブレンドし
てその効果を調べたところ、熱着色の若干の改良効果は
認められたが、本発明の如き大幅な熱着色性の改良は達
成されなかった。
The present invention is a manufacturing method in which an alkali metal salt of a fatty acid is added to CPVC in an acidic slurry to improve its thermal coloring property.
When the effect of Hetriblending was investigated, it was found that the thermal coloring of the molded product was much greater than that of CPVC without it, and that the thermal coloring properties were deteriorated. Alkali metal salts of fatty acids change into fatty acids under acidic conditions, and when we investigated the effect of drying this fatty acid in CPVC hetriblend, we found that it slightly improved heat coloring. A significant improvement in thermochromic properties as in the invention was not achieved.

「作用・効果」 本発明において、脂肪酸のアルカリ金属塩が酸性スラリ
ー中で如何なる作用によりcpvcの熱着色性を改良す
るのかその機構は不明であるが、cpvcの熱着色性が
大幅に改良される。本発明  ′は全く新規なもので、
且つ工業的に極めて有用なものである。
"Action/Effect" In the present invention, the mechanism by which the alkali metal salt of a fatty acid improves the heat colorability of CPVC in an acidic slurry is unknown, but the heat colorability of CPVC is significantly improved. . The present invention' is completely new;
Moreover, it is extremely useful industrially.

「実施例」 以下、実施例及び比較例を挙げて本発明の効果を詳細に
説明するが、本発明はこれらにより限定されるものでは
ない。尚、実施例、比較例中において、塩素含有率、熱
着色性、透明性及びビカツト軟化温度の各特性が記入さ
れているが、それらはそれぞれ次のようにして測定され
たものである、又、以下で単に部と記載した場合はすべ
て重量部を意味する。
"Examples" Hereinafter, the effects of the present invention will be explained in detail with reference to Examples and Comparative Examples, but the present invention is not limited by these. In addition, in the Examples and Comparative Examples, the characteristics of chlorine content, thermal colorability, transparency, and Vikatto softening temperature are entered, but they were measured as follows, respectively. In the following, all references to "part" mean parts by weight.

塩素含有率はcpvcを酸素フラスコ内で燃焼させ+3
0−1158−1978年の方法に基づき測定し、cp
vcに対するwt%で表した。
The chlorine content is +3 by burning CPVC in an oxygen flask.
Measured based on the method of 0-1158-1978, cp
It was expressed as wt% with respect to vc.

熱着色性は次のようにして測定した。cpvc100部
に錫系安定剤(日東化成側、TVS8813/TVS8
831=1/1(7)混合品)2.0部、ステアリン酸
(日本油脂■、桜)1部、ホスタルブH−4(ベキスト
ジャパン−0,フ部、MBS樹脂(鐘渕化学(株、カネ
エースB−22)10部を混合して、190℃のロール
上で3分間混練し厚み0.8鶴のロールシートを作った
。このロールシートを重ね合わせ、195℃のプレスで
5分間予熱した後、圧力100kg/catで5分間プ
レス成形し、厚み3龍のプレス板を得た。このプレス板
を日本1色工業製の色差計Σ80にかけ色差(L値、a
値、L値)を求めた。
Thermal colorability was measured as follows. 100 parts of cpvc plus tin-based stabilizer (Nitto Kasei side, TVS8813/TVS8
831 = 1/1 (7) mixture) 2.0 parts, stearic acid (NOF■, Sakura) 1 part, Hostalb H-4 (Bext Japan-0, F part, MBS resin (Kanebuchi Chemical Co., Ltd.) , 10 parts of Kane Ace B-22) were mixed and kneaded for 3 minutes on a roll at 190°C to make a rolled sheet with a thickness of 0.8. The rolled sheets were overlapped and preheated on a press at 195°C for 5 minutes. After that, it was press-formed for 5 minutes at a pressure of 100 kg/cat to obtain a pressed plate with a thickness of 3 dragons.
value, L value).

透明性については上記プレス板を用い、Hazeメータ
ーでHaze(曇度%)を求めた。
Regarding transparency, using the above-mentioned press plate, Haze (cloudiness %) was determined using a Haze meter.

ビカツト軟化点は、上記プレス板を用いてJlS−に−
7206の方法により荷重5kgで測定した。
The Vikatsu softening point is determined by using the above press plate.
It was measured by the method of No. 7206 with a load of 5 kg.

実施例1 平均粒子径120μm、空隙率20vol %、重合度
700の懸濁重合法に基づ< pvc粉末1100gと
イオン交換水5010gとを内容量81の攪拌機付きパ
イレックスガラス製の反応器に仕込み充分攪拌してスラ
リーとした。次に反応器外部より加温して内温を50℃
に保持しつつ、この反応器内に窒素ガスを11部分の流
速で20分間吹込み、反応系内の酸素を置換した。その
後にこのスラリーへ塩素ガスを4人し反応系を塩素で飽
和させた後、塩素ガスを過剰に供給しつつ、外部から1
00Wの高圧水銀灯を照射して塩素化反応を開始させた
。内温を50°Cに保ちつつ塩素化反応を進行させ、2
.6時間後高圧水銀灯の照射と塩素の供給を停止して塩
素化反応を終了させた。続いて窒素ガスを117分の流
速で30分間吹込み系内の塩素を追い出した。更にこの
スラリーへ塩酸ヒドロキシルアミン10gを添加して1
0分間攪拌を続け、粒子に吸着されている塩素を完全に
除去した。この時のスラリーの一部をサンプリングして
酸性度を測定したところ1.4 Nの酸性度であった。
Example 1 Based on a suspension polymerization method with an average particle size of 120 μm, a porosity of 20 vol %, and a degree of polymerization of 700. 1100 g of PVC powder and 5010 g of ion-exchanged water were charged into a Pyrex glass reactor with an internal capacity of 81 mm and equipped with a stirrer. It was stirred to form a slurry. Next, heat the reactor from outside to bring the internal temperature to 50℃.
Nitrogen gas was blown into the reactor at a flow rate of 11 parts for 20 minutes to replace oxygen in the reaction system. After that, four people poured chlorine gas into this slurry to saturate the reaction system with chlorine, and while supplying excess chlorine gas,
The chlorination reaction was initiated by irradiation with a 00W high-pressure mercury lamp. The chlorination reaction was allowed to proceed while maintaining the internal temperature at 50°C, and 2
.. After 6 hours, the irradiation with the high-pressure mercury lamp and the supply of chlorine were stopped to complete the chlorination reaction. Subsequently, nitrogen gas was blown at a flow rate of 117 minutes for 30 minutes to drive out the chlorine in the system. Furthermore, 10 g of hydroxylamine hydrochloride was added to this slurry to obtain 1
Stirring was continued for 0 minutes to completely remove chlorine adsorbed on the particles. A part of the slurry at this time was sampled and its acidity was measured, and the acidity was 1.4N.

次に、この反応後の酸性スラリーへ試薬−級のステアリ
ン酸ナトリウムl1gを攪拌下に添加した。スラリ一温
度50℃で10分間攪拌を続行した後、スラリーを反応
器から取り出して濾過しだ。この時濾液は酸性を示した
。濾布上のケーキをイオン交換水201で水洗し、次に
このケーキをイオン交換水でスラリーとし、スラリ一温
度50℃で水酸化ナトリウムを用いてスラリーpHが7
になるよう中和した。その後スラリーを再度濾過し、得
られたケーキを上記と同様に水洗し、50℃の熱風乾燥
機で12時間静置乾燥した。乾燥後のcpvc製品はt
295gであった。
Next, 1 g of reagent-grade sodium stearate was added to the acidic slurry after this reaction while stirring. After continuing to stir the slurry at a temperature of 50° C. for 10 minutes, the slurry was taken out of the reactor and filtered. At this time, the filtrate showed acidity. The cake on the filter cloth was washed with ion-exchanged water 201, then this cake was made into a slurry with ion-exchanged water, and the slurry pH was adjusted to 7 using sodium hydroxide at a slurry temperature of 50°C.
It was neutralized to become Thereafter, the slurry was filtered again, and the resulting cake was washed with water in the same manner as above, and left to dry in a hot air dryer at 50° C. for 12 hours. The cpvc product after drying is
It was 295g.

この製品の塩素含有率を測定すると共にサンプル200
gを採って既述の試験配合の通りトライブレンドした上
で上記条件でロール、プレスで成形加工し、熱着色性、
透明性及びビカット軟化温度を測定した。測定結果を表
−1に示す。
In addition to measuring the chlorine content of this product, sample 200
g was taken and triblended according to the test formulation described above, and then molded using a roll or press under the above conditions to obtain heat coloring properties,
Transparency and Vicat softening temperature were measured. The measurement results are shown in Table-1.

比較例1〜2 実施例1と同じpvcを使用して実施例1と全く同じ操
作で2.6時間塩素化反応を行い、ステアリン酸ナトリ
ウムを添加しない他は全く同じ方法でcpvcの乾燥樹
脂を得た。乾燥樹脂の製品量゛は1290gであった。
Comparative Examples 1 to 2 Using the same PVC as in Example 1, a chlorination reaction was carried out for 2.6 hours in exactly the same manner as in Example 1, and dry resin of CPVC was prepared in the same manner except that sodium stearate was not added. Obtained. The product amount of dried resin was 1290 g.

この製品につき塩素含有率を測定すると共に、このうち
200gを採って実施例1と同様にトライブレンドした
後ロール、プレスで成形加工したものを比較例1とし、
別途200gを採ってステアリン酸ナトリウムの粉末2
gを添加し、その後実施例1と同様にトライブレンドし
た上でロール、プレスで成形加工したものを比較例2と
して、各々その熱着色性、透明性、ビカット軟化温度を
測定した。結果を表−1に示す。
The chlorine content of this product was measured, and 200g of it was tri-blended in the same manner as in Example 1, and then molded using rolls and presses as Comparative Example 1.
Separately take 200g of sodium stearate powder 2.
Comparative Example 2 was obtained by tri-blending the mixture in the same manner as in Example 1, and molding it by roll and press.Thermal colorability, transparency, and Vicat softening temperature of each were measured. The results are shown in Table-1.

比較例3 実施例1と同じpvcを使用して、実施例1と全く同じ
操作で2.6時間塩素化反応を行った。実施例1と同じ
操作で窒素ガスにより塩素を追い出し、塩酸ヒドロキシ
ルアミン10gを添加し、直ちにスラリーを脱水水洗し
た後イオン交換水でスラリーとし、スラリ一温度50℃
で水酸化ナトリウムを用いてpHが7になるよう中和し
た。
Comparative Example 3 Using the same PVC as in Example 1, a chlorination reaction was carried out in exactly the same manner as in Example 1 for 2.6 hours. Chlorine was expelled using nitrogen gas in the same manner as in Example 1, 10 g of hydroxylamine hydrochloride was added, and the slurry was immediately dehydrated and washed with water, made into a slurry with ion-exchanged water, and the temperature of the slurry was 50°C.
The solution was neutralized to pH 7 using sodium hydroxide.

このpiが7のスラリーへ攪拌下に試薬−級のステアリ
ン酸ナトリウムl1gを添加した。添加後10分経った
時点でスラリーのpHを測定したところ8.5であった
。このスラリーを脱水、水洗して、得られたケーキを5
0℃の熱風乾燥機で12時間静置乾燥した。乾燥後のc
pvc製品量は1298gであった。
To this pi 7 slurry was added 1 g of reagent-grade sodium stearate with stirring. The pH of the slurry was measured 10 minutes after the addition and found to be 8.5. This slurry was dehydrated and washed with water, and the resulting cake was
It was left to dry in a hot air dryer at 0° C. for 12 hours. c after drying
The amount of PVC product was 1298g.

この製品の塩素含有量を測定すると共に、サンプル20
0gを採って実施例1と同様に熱着色性、透明性及びビ
カット軟化温度を測定した。測定結果を表−1に示す。
In addition to measuring the chlorine content of this product, sample 20
0 g was taken and the thermochromic property, transparency, and Vicat softening temperature were measured in the same manner as in Example 1. The measurement results are shown in Table-1.

表−1 備考 1)明度  L値は数値大の方が明るく良好4)
!性うシキング 良好なものから順にAASA、B、C
,D、E 5)透明性  Hazeは数値大の方が濁り大で不良6
) ピカフト軟イ慮    炙々イ儂)(の方力15十
声オ4住じ(で効子表−1より明らかなように、本発明
法に基づ〈実施例1における熱着色性は、比較例1〜3
のいずれよりも優れている。
Table-1 Notes 1) Brightness The higher the L value, the brighter the better 4)
! Performance ranking AASA, B, C from best to worst
,D,E 5) Transparency For Haze, the higher the number, the more turbidity and poor 6
) As is clear from Table 1, the thermal coloring properties in Example 1 based on the method of the present invention were as follows: Examples 1-3
better than either.

実施例2〜5、比較例4 実施例1と同しpvcを使用して実施例と全く同じ操作
で2.6時間塩素化反応を行い、ステアリン酸ナトリウ
ムを添加せずにスラリーを脱水し、ケーキをイオン交換
水201で水洗してcpvcの未乾燥樹脂(以下、ウェ
ットレジンと称す)1610gを得た。このウェットレ
ジン中の水分を測定したところ、20.2wt%(ウェ
ットレジンベース)であった。
Examples 2 to 5, Comparative Example 4 Using the same PVC as in Example 1, a chlorination reaction was carried out for 2.6 hours in exactly the same manner as in Example, and the slurry was dehydrated without adding sodium stearate. The cake was washed with 201 g of ion-exchanged water to obtain 1610 g of undried CPVC resin (hereinafter referred to as wet resin). When the moisture content in this wet resin was measured, it was 20.2 wt% (wet resin base).

このウェットレジンから313g (乾燥樹脂250g
相当量)ずつ5点のサンプルを採り、それぞれ21のビ
ーカー中でイオン交換水1000gを用いてスラリーと
し、攪拌しつつ外部より加熱して50℃とした。これら
のスラリーpHは2.0〜2.2であった。
313g from this wet resin (250g dry resin)
Five samples (equivalent amount) were taken, each made into a slurry in 21 beakers using 1000 g of ion-exchanged water, and heated to 50° C. from the outside while stirring. The pH of these slurries was 2.0-2.2.

この攪拌中の各スラリー試薬−級のステアリン酸ナトリ
ウムを0.5.1.25.2.5.3.75及び5g添
加して10分間攪拌を続けた。10分間撹拌後のスラリ
ーのpHはいずれも2.2〜2.7であった。
During this stirring, 0.5, 1, 25, 2, 5, 3.75 and 5 g of each slurry reagent grade sodium stearate were added and stirring was continued for 10 minutes. The pH of each slurry after stirring for 10 minutes was 2.2 to 2.7.

次に、各スラリーへ水酸化ナトリウムの水溶液を滴下し
てpHが7になるように中和した。その後各スラリーを
脱水、水洗し、得られたケーキを50℃の熱風乾燥機で
12時間静置乾燥した。乾燥後の製品5点には、ステア
リン酸ナトリウムの添加量の増大に従い、実施例2.3
.4.5及び比較例4と命名した。
Next, an aqueous solution of sodium hydroxide was added dropwise to each slurry to neutralize it to pH 7. Thereafter, each slurry was dehydrated and washed with water, and the resulting cake was left to dry in a hot air dryer at 50° C. for 12 hours. The five products after drying were treated with Example 2.3 according to the increasing amount of sodium stearate added.
.. 4.5 and Comparative Example 4.

各製品から200gのサンプルを採って、実施例1と同
様に成形加工して熱着色性、透明性及びビカット軟化温
度を測定した。ステアリン酸ナトリウムのスラリーへの
添加量と各測定値を表−2に示した。
A 200 g sample was taken from each product, molded and processed in the same manner as in Example 1, and the thermochromic properties, transparency, and Vicat softening temperature were measured. Table 2 shows the amount of sodium stearate added to the slurry and each measured value.

表−2より、ステアリン酸ナトリウムの添加部数を大き
くするに従い熱着色性が向上することが理解できる。し
かし比較例4で示されるように、1.5部を越え2.0
部にすると透明性の著しい低下及びビカット軟化温度の
大幅な低下が生じる。
From Table 2, it can be seen that as the number of parts of sodium stearate added increases, the thermal colorability improves. However, as shown in Comparative Example 4, more than 1.5 parts and 2.0 parts
%, a significant decrease in transparency and a significant decrease in Vicat softening temperature occur.

比較例5〜8 実施例1と同じPvCを使用して実施例1と全く同じ操
作で2.6時間塩素化反応を行い、ステアリン酸ナトリ
ウムを添加せずに他は全く同じ方法で1290gCPV
Cの乾燥樹脂を得た。この製品の一部を採取し塩素含有
率を測定したところ、65.3wt%でった。
Comparative Examples 5 to 8 Using the same PvC as in Example 1, a chlorination reaction was carried out for 2.6 hours in the same manner as in Example 1, and 1290 g CPV was produced in the same manner as in Example 1 without adding sodium stearate.
A dried resin of C was obtained. When a part of this product was sampled and the chlorine content was measured, it was found to be 65.3 wt%.

この製品から200gずつ4点のサンプルを採り、それ
ぞれに試薬−級のステアリン酸を0.4.1.2、及び
3g添加して順次比較例5.6.7及び8とし、実施例
1と同様にそれぞれ成形加工し、熱着色性、透明性及び
ビカット軟化温度を測定した。結果を表−3に示す。
Four samples of 200 g each were taken from this product, and 0.4, 1.2, and 3 g of reagent-grade stearic acid were added to each sample to form Comparative Examples 5, 6, 7, and 8. Each sample was molded in the same manner, and the thermocolorability, transparency, and Vicat softening temperature were measured. The results are shown in Table-3.

表−3より、ステアリン酸のトライブレンド添加はcp
vc熱着色性を若干向上させるが、その向上の度合は前
記実施例2〜5の場合と比較して。
From Table 3, the addition of stearic acid triblend is cp
VC thermal colorability is slightly improved, but the degree of improvement is compared to the cases of Examples 2 to 5.

小さく、しかもビカツト軟化点の低下度合が大きく、好
ましくない方法であることが判る。
It can be seen that this is an unfavorable method because the Vicat softening point is small and the degree of decrease in the Vicat softening point is large.

前記実施例2〜5及び比較例5〜8のb値及びビカット
軟化温度を添加部数に対してプロットすれば、それぞれ
第1図及び第2図となる。
If the b values and Vicat softening temperatures of Examples 2 to 5 and Comparative Examples 5 to 8 are plotted against the number of parts added, FIGS. 1 and 2 are obtained, respectively.

実施例6〜lO 実施例1と同じpvcを使用して実施例と同じ操作で2
.6時間塩素化反応を行い、ステアリン酸ナトリウムを
添加せずにスラリーを脱水し、ケーキをイオン交換水2
06で水洗してCPVCのウェットレジン1620gを
得た。このウェットレジン中の水分を測定したところ、
20.1wt%(ウェットレジンベース)であった。
Example 6 ~ IO 2 using the same PVC as Example 1 and the same operation as Example 1
.. The chlorination reaction was carried out for 6 hours, the slurry was dehydrated without adding sodium stearate, and the cake was washed with deionized water for 2 hours.
06 to obtain 1620 g of CPVC wet resin. When we measured the water content in this wet resin, we found that
It was 20.1 wt% (wet resin base).

このウェットレジンから313g (乾燥樹脂250g
相当量)ずつ5点サンプルを採りそれに21のビーカー
中でイオン交換水1000gを用いてスラリーとし、撹
拌しつつ外部より加熱して50℃とした。これらのスラ
リーのpHは2.0〜2.2であった。
313g from this wet resin (250g dry resin)
Five samples (equivalent amount) were taken and slurried in 21 beakers with 1000 g of ion-exchanged water, and heated to 50° C. from the outside while stirring. The pH of these slurries was 2.0-2.2.

この攪拌中のスラリー5点のうち1点には試薬−級のラ
ウリン酸ナトリウムを、別の1点には同じく試薬−級の
オレイン酸ナトリウムを同様に残る3点にはりンノール
酸ナトリウム、イソステアリン酸ナトリウム及びラウリ
ン酸カリウムをそれぞれ2gずつ添加して順次実施例6
.7.8.9及びlOとし、更に10分間撹拌を続けた
。、攪拌後のいずれのスラリーのpHも2.2〜2.5
の範囲でありた。
One of the five parts of the slurry being stirred contains reagent-grade sodium laurate, another one contains reagent-grade sodium oleate, and the remaining three parts contain sodium phosphonolate and isostearate. Example 6 by adding 2 g each of sodium and potassium laurate
.. 7.8.9 and lO and continued stirring for an additional 10 minutes. , the pH of any slurry after stirring is 2.2 to 2.5.
It was within the range of

次に各スラリーへ水酸化ナトリウムの水溶液を滴下して
piが7になるように中和した。その後各スラリーを脱
水、水洗し、得られたケーキを50℃の熱風乾燥機で1
2時間静置乾燥した。
Next, an aqueous solution of sodium hydroxide was added dropwise to each slurry to neutralize it to a pi of 7. After that, each slurry was dehydrated and washed with water, and the resulting cake was dried in a hot air dryer at 50℃ for 1 hour.
It was left to dry for 2 hours.

乾燥後の各製品から20Qgずつのサンプルを採り、実
施例1と同様に成形加工をして、熱着色性、透明性及び
ビカット軟化温度を測定した。結果を表−4に示す。
Samples of 20 Qg were taken from each product after drying, molded in the same manner as in Example 1, and thermochromic, transparency, and Vicat softening temperature were measured. The results are shown in Table 4.

表−4より、用いた5点の脂肪酸アルカリ金属塩は酸性
スラリー中で添加される場合、いずれもcpvcの熱着
色性を大幅に改良する効果を有していることが理解され
る。
From Table 4, it is understood that all of the five fatty acid alkali metal salts used have the effect of significantly improving the thermal colorability of CPVC when added in an acidic slurry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例2〜5と比較例5〜8における添加物の
添加部数と熱着色性(b値)との関係を示すグラフ、第
2図は同添加部数とビカフト軟化温度との関係を示すグ
ラフである。 −I:1づ(傘t)
Figure 1 is a graph showing the relationship between the number of additives added and thermal colorability (b value) in Examples 2 to 5 and Comparative Examples 5 to 8, and Figure 2 is the relationship between the number of additives added and Vikaft softening temperature. This is a graph showing. -I: 1zu (umbrella t)

Claims (1)

【特許請求の範囲】 1、塩素化反応後の塩素化塩化ビニル樹脂に対し、脂肪
酸のアルカリ金属塩を該樹脂の酸性の水性懸濁液(以下
、スラリーと称す)中で該樹脂100重量部当たり0.
1〜1.5重量部添加することを特徴とする塩素化塩化
ビニル樹脂の製造方法。 2、脂肪酸のアルカリ金属塩がC_2〜C_3_2の脂
肪酸のアルカリ金属塩である特許請求の範囲第1項記載
の製造方法。 3、スラリーのpHが4以下である特許請求の範囲第1
項又は第2項記載の製造方法。
[Claims] 1. After the chlorination reaction, chlorinated vinyl chloride resin is mixed with an alkali metal salt of a fatty acid in an acidic aqueous suspension (hereinafter referred to as slurry) of the resin in an amount of 100 parts by weight. Hit 0.
A method for producing a chlorinated vinyl chloride resin, which comprises adding 1 to 1.5 parts by weight. 2. The manufacturing method according to claim 1, wherein the alkali metal salt of fatty acid is an alkali metal salt of C_2 to C_3_2 fatty acids. 3. Claim 1 in which the pH of the slurry is 4 or less
The manufacturing method described in item 1 or 2.
JP11432086A 1986-05-19 1986-05-19 Production of chlorinated vinyl chloride resin Granted JPS62270647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11432086A JPS62270647A (en) 1986-05-19 1986-05-19 Production of chlorinated vinyl chloride resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11432086A JPS62270647A (en) 1986-05-19 1986-05-19 Production of chlorinated vinyl chloride resin

Publications (2)

Publication Number Publication Date
JPS62270647A true JPS62270647A (en) 1987-11-25
JPH0321574B2 JPH0321574B2 (en) 1991-03-25

Family

ID=14634892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11432086A Granted JPS62270647A (en) 1986-05-19 1986-05-19 Production of chlorinated vinyl chloride resin

Country Status (1)

Country Link
JP (1) JPS62270647A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359011A (en) * 1992-10-14 1994-10-25 The B.F. Goodrich Company Process for the complete neutralization of chlorinated polyvinyl chloride and product resulting therefrom
JP2002060420A (en) * 2000-08-18 2002-02-26 Kanegafuchi Chem Ind Co Ltd Method for producing chlorinated vinyl chloride resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359011A (en) * 1992-10-14 1994-10-25 The B.F. Goodrich Company Process for the complete neutralization of chlorinated polyvinyl chloride and product resulting therefrom
JP2002060420A (en) * 2000-08-18 2002-02-26 Kanegafuchi Chem Ind Co Ltd Method for producing chlorinated vinyl chloride resin

Also Published As

Publication number Publication date
JPH0321574B2 (en) 1991-03-25

Similar Documents

Publication Publication Date Title
EP3521327B1 (en) Modified vinyl alcohol polymer powder having reduced methanol content and production method therefor, and water-soluble film and packaging material
JP6724230B2 (en) Method for providing polyvinyl chloride particles for producing chlorinated polyvinyl chloride
DE60205836T2 (en) Dispersion stabilizer for the suspension polymerization of a vinyl compound
JP7375808B2 (en) Polyvinyl alcohol resin, manufacturing method of polyvinyl alcohol resin, dispersant, and dispersant for suspension polymerization
TWI815920B (en) Modified vinyl alcohol polymer and its manufacturing method, as well as dispersion stabilizer for suspension polymerization and vinyl polymer's manufacturing method
KR100478969B1 (en) Method for producing polyvinyl ester resin emulsion
JPH08503015A (en) Slightly swellable insoluble polymer with amino groups, process for its production and its use
JPH08208724A (en) Dispersant for suspension polymerization and production of polymer using the same
JPS582962B2 (en) Manufacturing method of vinyl chloride resin
CN107501461B (en) Special copolymerization type PVC (polyvinyl chloride) auxiliary agent with heat stabilizer and plasticizing functions
JPS62270647A (en) Production of chlorinated vinyl chloride resin
US3282879A (en) Process for treating iminated vinyl acetate emulsion polymers with water-soluble bisulfites
TWI321137B (en) Co-metering of organic initiators and protective colloids during polymerization reactions
CN105504108A (en) Preparation method for high-chlorinated polyethylene
KR101411098B1 (en) Method of preparing polyvinyl chloride comprising butyl acrylate
JPH05239132A (en) Production of polyvinyl butyral
JPH03166205A (en) Production of chlorinated vinyl chloride polymer
CN1040442C (en) Polymer scale preventive agent, polymer ization vessel effective in preventing polymer scale deposition, and process of producing polymer using said vessel
US3851016A (en) Process for the production of transparent,impact-resistant polymers of vinyl chloride
KR101443844B1 (en) Method for preparing vinyl chloride based resin having superior heat-resistance
JPH0534363B2 (en)
KR20210034418A (en) preparation method of vinyl chloride-based polymer
EP1585774B1 (en) Aqueous emulsions of polyvinyl esters containing hydroxypropylguar
CN111039889B (en) Water-soluble polymer containing 1,3,4-oxadiazole fluorescent group and synthetic method thereof
JPS58103507A (en) Production of chlorinated vinyl chloride resin

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term