JPS62269104A - Wavelength plate - Google Patents

Wavelength plate

Info

Publication number
JPS62269104A
JPS62269104A JP11288286A JP11288286A JPS62269104A JP S62269104 A JPS62269104 A JP S62269104A JP 11288286 A JP11288286 A JP 11288286A JP 11288286 A JP11288286 A JP 11288286A JP S62269104 A JPS62269104 A JP S62269104A
Authority
JP
Japan
Prior art keywords
grating
substrate
dielectric
refractive index
relief grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11288286A
Other languages
Japanese (ja)
Other versions
JPH0799402B2 (en
Inventor
Yasuo Kimura
靖夫 木村
Yuzo Ono
小野 雄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61112882A priority Critical patent/JPH0799402B2/en
Publication of JPS62269104A publication Critical patent/JPS62269104A/en
Publication of JPH0799402B2 publication Critical patent/JPH0799402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To facilitate the formation of a wavelength plate by including a substrate dielectric which has a substrate relief grating whose relation between the in-use wavelength and grating pitch is specified on the surface and a dielectric medium which has a surface relief grating formed in phase and at the same pitch with the substrate relief grating and is much larger in refractive index than the substrate dielectric. CONSTITUTION:The wavelength plate is constituted including the substrate dielectric 1 which is provided on the surface with the substrate relief grating 2 whose relation between the in-use wavelength lambda and grating pitch (d) is so specified that lambda/d>=1.472 and the dielectric medium 3 which has the surface relief grating formed on the surface in phase and at the same pitch (d) with the substrate relief grating 2 by being coated or charged on the substrate relief grating 2 and is much larger in refractive index than the substrate 1. Consequently, the groove depth of the grating formed on the dielectric substrate is reducible, so the formation of the grating is facilitated and the wavelength plate is mass-produced at low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、直交する2つの直線偏光の間に位相差音生
せしめる、174波長板、1/2tL長板、全波長板等
の波長板に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a wave plate such as a 174-wave plate, a 1/2tL long plate, a full-wave plate, etc., which generates phase difference sound between two orthogonal linearly polarized lights. It is related to.

〔従来の技術〕[Conventional technology]

従来、波長板に水晶の結晶を研磨して、常光と異常光の
位相差が、174波長板では(N+ 1/4)波長(N
は整数)、1/2波長板では(N+ 1/2)波長、全
波長板ではN波長になるような厚さに調整して製作され
ている。との工うな結晶研磨による方法以外に誘電体に
形成し几高密度の表面レリーフ格子が複屈折を示すこと
から格子を用いる方法も提案されている。表面レリーフ
格子金相いた波長板の提案と実験にアプライド・フィジ
ックス・レター(Applied  Physics 
 Letter )誌第42巻第6号(1983年3月
15日発行)第492=494頁掲載のり、C,Fla
nders著の論文、及び、アプライド・オプティクス
(Applied  −0ptics)誌第22巻第2
0号C1983年1110月15日発行)第3220〜
3228頁掲載のR,C。
Conventionally, the phase difference between ordinary light and extraordinary light is reduced to (N + 1/4) wavelength (N
is an integer), the thickness is adjusted so that the 1/2 wavelength plate has a wavelength of (N+1/2), and the full wavelength plate has a thickness of N wavelengths. In addition to the sophisticated method of crystal polishing, a method using a grating has also been proposed since a dense surface relief grating formed on a dielectric material exhibits birefringence. Applied Physics Letter on proposal and experiment of wave plate with surface relief grating gold phase.
Letter ) Magazine Vol. 42 No. 6 (published March 15, 1983) No. 492 = 494 pages Nori, C, Fla
and Applied Optics Vol. 22, No. 2.
Issue 0C1111 October 15, 1983) No. 3220~
R and C on page 3228.

EngerとS、に、 Ca5e著の論文に述べられて
いる。
Enger and S., in an article written by Ca5e.

格子を用いた波長板は、格子のピッチt” d s使用
波長をλとすると、λがdに比べて十分大きい領域では
格子の溝に平行な方向の屈折率n11 と格子の溝に直
交する方向の屈折率n工が異なることを利用しており、
前述のり、C,Flaれders著の論文によると格子
が矩形状の場合* flll l nlは・・・・・・
 (2) ここでnlに媒質1の屈折率、n2は媒質2の屈折率、
qは格子の1周期中に媒質1の占める割合で1≧9≧0
である。複屈折の大きさΔnは次式で与えられる。
In a wavelength plate using a grating, the pitch of the grating is t" d s. If the used wavelength is λ, in a region where λ is sufficiently large compared to d, the refractive index n11 in the direction parallel to the grooves of the grating is perpendicular to the grooves of the grating. It takes advantage of the fact that the refractive index n in the direction is different,
According to the above-mentioned paper by C. Fladers, if the lattice is rectangular, * flll l nl is...
(2) Here, nl is the refractive index of medium 1, n2 is the refractive index of medium 2,
q is the proportion of medium 1 in one period of the lattice, 1≧9≧0
It is. The magnitude of birefringence Δn is given by the following equation.

Δn=In  −n  I   ・・・・・几・ (j
II      L また、複屈折の大きさΔnを有する格子に入射し次光が
受ける位相差ΔΦは次式で与えられる。
Δn=In −n I ・・・・・・几・ (j
II L Furthermore, the phase difference ΔΦ experienced by the next light incident on the grating having the magnitude of birefringence Δn is given by the following equation.

jrD ΔΦ〔rad〕−一7−0Δa ・・・・・・・・・ 
(4)ここでDH格子の溝深さである。(4)式から、
大きな位相差△Φ七得るには溝深さDt−大きくするか
、ま九は複屈折の大きさΔnを大きくすればよい。この
関係は格子形状が矩形である場合に限らず、正弦波状、
三角板状等の場合でも成夕立つ0表面レリーフ格子にL
る波長板に主に次の2つの方法にエフ製造できる。
jrD ΔΦ[rad]-17-0Δa ・・・・・・・・・
(4) Here is the groove depth of the DH grating. From equation (4),
In order to obtain a large phase difference ΔΦ7, the groove depth Dt may be increased, or the magnitude of birefringence Δn may be increased. This relationship is valid not only when the grid shape is rectangular, but also when the grid shape is sinusoidal,
Even in the case of triangular plates etc., L is applied to the surface relief grating that stands out.
There are two main ways to manufacture wavelength plates:

第1の方法は干渉露光法にLクホトレジストに表面レリ
ーフ格子を形成し、その格子からニッケル電鋳法で金型
を製作し、熱可塑性樹脂にホットプレス法や射出底形法
で転写する。あるいは光硬化性樹脂に転写する方法であ
る。
The first method is to form a surface relief grating on an L photoresist using an interference exposure method, manufacture a mold from the grating using a nickel electroforming method, and transfer it to a thermoplastic resin using a hot press method or an injection bottom molding method. Alternatively, there is a method of transferring to a photocurable resin.

第2の方法に誘電体基板上に第1の方法と同様の方法で
ホトレジスト格子を形成し、ホトレジストをマスクとし
て誘電体基板をイオンエツチング法%Itは反応性イオ
ンエツチング法、ま之ハイオンビームエツチング法’!
7’CH反応注イオンエツチング法にエフエツチングし
1表面レリーフ格子を得る方法である。
The second method is to form a photoresist grid on a dielectric substrate in the same manner as the first method, and use the photoresist as a mask to ion-etch the dielectric substrate. Law'!
This is a method of obtaining a single surface relief grating by performing etching using a 7'CH reaction injection ion etching method.

〔発明が解決しょうとする問題点〕[Problem that the invention seeks to solve]

上述の従来の技術には格子の溝幅に対して溝深さが極端
に大きくなる問題点がある。友とえは、使用波長λ金H
e −N eレーザの632.85Im トする。
The above-mentioned conventional technique has a problem in that the groove depth of the grating is extremely large compared to the groove width. Tomoe uses the wavelength λ gold H
632.85Im of the e-N e laser.

この波長に対して前述の第1の製造方法で用いられる熱
可塑性樹脂、たとえばアクリル樹脂、光硬化性樹脂たと
えばスリーボンド社製のUVX−S S −89−1お
工び第2の製造方法において主に用いられる石英ガラス
の屈折率はお工そL5〜1.6である。以下では熱可塑
性樹脂、光硬化性樹脂お工び石英ガラスを媒質1とし、
その屈折率n1f。
For this wavelength, thermoplastic resins used in the first manufacturing method described above, such as acrylic resins, photocurable resins such as UVX-S S-89-1 manufactured by ThreeBond; The refractive index of the quartz glass used for this purpose is L5 to 1.6. In the following, thermoplastic resin, photocurable resin, and quartz glass are used as medium 1.
Its refractive index n1f.

1.55とする0まfc%媒質2t−空気としその屈折
率n!t1.00とする。格子形状が矩形の場合は、媒
質1が格子の1周期中に占める割合q t o、 sと
すれば、複屈折の大きさΔn tri (]) 、 (
2) 、 (3)式よシ0.116となる。したがって
(4)式!l/4波長板、1/2波長板、全波長板に必
要な溝深さDはそれぞれ1.36μm%2.738.5
.46μm になる。また、格子ピッチdに関して、高
密度性に基づく複屈折を得るにはλ/d≧1.475で
ある必要があるので、d≦0.43AImなる条件を満
足しなければならない。q = 0.5であるから格子
の溝幅WはW≦0.21μmとなる。したがって、溝幅
0.21/Jm以下、Saさ1.36 Am 〜5.4
6μmの格子を作製しなければならない。
1.55 and 0fc% medium 2t-air, its refractive index n! Let t1.00. When the grating shape is rectangular, if the proportion of the medium 1 in one period of the grating is q t o, s, then the magnitude of birefringence Δn tri (]), (
2) and (3), the result is 0.116. Therefore, equation (4)! The groove depth D required for the 1/4 wavelength plate, 1/2 wavelength plate, and full wavelength plate is each 1.36 μm%2.738.5
.. It becomes 46 μm. Further, regarding the grating pitch d, in order to obtain birefringence based on high density, it is necessary that λ/d≧1.475, so the condition d≦0.43AIm must be satisfied. Since q = 0.5, the groove width W of the grating is W≦0.21 μm. Therefore, the groove width is 0.21/Jm or less, and the Sa is 1.36 Am to 5.4
A 6 μm grid must be made.

この工うなtR+IAに対しyt深さが極めて大きい格
子を第1の製造方法工製造する場合、媒質1と電鋳金型
との実効的な接触表面積が著しく増大する友めに金型面
からはく離する時の引張りせん断力が大きくなる。この
ために、はく離時に硬化し几媒質1が基板からはがれ、
金型面に残留してしまい、表面レリーフ格子の転写が困
難になるという問題点がある。
When manufacturing a grating having an extremely large yt depth with respect to tR+IA using the first manufacturing method, the effective contact surface area between the medium 1 and the electroforming mold increases significantly, so that it is peeled off from the mold surface. The tensile shear force increases. For this reason, during peeling, the hardening medium 1 peels off from the substrate.
There is a problem that it remains on the mold surface, making it difficult to transfer the surface relief grating.

また、第2の製造方法では、エツチングに要する時間・
が数時間にも及び、エツチングに耐え得るホトレジスト
マスクは、厚さ数μmになることから、ホトレジストマ
スクの形成が困難である。ま次、ホトレジストに形成し
た格子をエツチング耐性の強い物質、友とえばクロムに
転写し、その物質をマスクとしてエツチングを行う場合
においても、格子溝深さの増加に伴い、一度エッチング
され7を誘電体の基板表面への再付層や、−溝底部への
活性種、イオン、中性粒子の到達粒子数の減少などにエ
クエッチン、グの進行が阻止され、所望の格子の形成が
困難である。この工うな問題は格子の形状によらず生じ
る。
In addition, in the second manufacturing method, the time required for etching
It is difficult to form a photoresist mask because the etching process lasts for several hours and a photoresist mask that can withstand etching is several micrometers thick. Next, even when the lattice formed in the photoresist is transferred to a material with strong etching resistance, such as chromium, and etching is performed using that material as a mask, as the depth of the lattice groove increases, once etched, the dielectric 7 becomes The progress of etching is inhibited by re-attaching the layer to the substrate surface and by reducing the number of active species, ions, and neutral particles reaching the groove bottom, making it difficult to form the desired lattice. . This problem occurs regardless of the shape of the grid.

以上述べ比重うに従来技術による表面レリーフ格子型の
波長板は製造が困難であるという欠点を有している。
As stated above, the surface relief grating type wave plate according to the prior art has the disadvantage that it is difficult to manufacture.

本発明の目的は、このような従来技術の問題点を解決し
、製造が容易な位相格子型の波長板を提供することにあ
る。
An object of the present invention is to solve the problems of the prior art and provide a phase grating type wave plate that is easy to manufacture.

〔問題点tS決する友めの手段〕[Friendly means to resolve the problem]

本発明の波長板は、使用波長λと格子ピッチdとの関係
がλ/d≧1.472なる基板レリーフ格子が表面に設
けられた基板誘電体と、前記基板レリーフ格子上に被覆
あるいは充てんされ表面に前記基板レリーフ格子と等し
い位相で等しいピッチdの表面レリーフ格子が形成され
〆前記基板誘電体の屈折率に比べて十分大きい屈折率を
有する誘電体媒質とを含んで構成される。
The wavelength plate of the present invention comprises a substrate dielectric material having a substrate relief grating on its surface in which the relationship between the used wavelength λ and the grating pitch d is λ/d≧1.472, and the substrate relief grating is coated or filled. A surface relief grating having the same phase and pitch d as the substrate relief grating is formed on the surface, and includes a dielectric medium having a refractive index sufficiently larger than the refractive index of the substrate dielectric.

〔作用〕[Effect]

本発明の作用を図面を参照しながら詳細に説明する。 The operation of the present invention will be explained in detail with reference to the drawings.

格子に入射する光が受ける位相差Δφは、格子の溝深さ
Dと複屈折の大きさΔnに比例する。
The phase difference Δφ experienced by light incident on the grating is proportional to the groove depth D of the grating and the magnitude of birefringence Δn.

本発明は蒋深さDを大きくせずに、複屈折の大きさΔn
?大きくすることにより、前述の問題点を解決しょうと
するものである。
In the present invention, the magnitude of birefringence Δn can be increased without increasing the depth D.
? By increasing the size, the above-mentioned problem is attempted to be solved.

屈折率n1を有する誘電体基板に矩形格子が形成されて
いる場合を考える。第2図は屈折率ni金有する誘電体
基板1の表面に設けられt矩形格子4が屈折率n1工り
も大きい屈折率n*?!する誘電体媒質3で被覆され几
場合を示す断面図である0この状態の格子は断面にそっ
て格子頂部から、誘電体媒質3と空気=り成る第1領域
5、誘電体基板1と誘電体媒質2と空気エフ成る第2領
域6お工び誘電体基板1と誘電体媒質3Lり成る第3領
域7の3つの領域に分けて考えられる。格子の1周期中
に誘電体媒質1が占める割合t”qt、誘電体媒質3が
占める割合’kqzs空気が占める割合′frq jL
irとする。ここでq1+q2+qair =1   
・・・・・・・・・(5)である。空気の屈折率を1.
00とすると(1) 、 (2) 。
Consider a case where a rectangular grating is formed on a dielectric substrate having a refractive index n1. FIG. 2 shows a rectangular grating 4 provided on the surface of a dielectric substrate 1 having a refractive index of ni gold and a refractive index of n1 and a large refractive index of n*? ! This is a cross-sectional view showing a case in which the lattice is covered with a dielectric medium 3. The lattice in this state is shown along the cross section from the top of the lattice to the first region 5 consisting of the dielectric medium 3 and air, the dielectric substrate 1 and the dielectric It can be considered to be divided into three regions: a second region 6 consisting of the body medium 2 and air F; and a third region 7 consisting of the dielectric substrate 1 and the dielectric medium 3L. The proportion occupied by dielectric medium 1 in one period of the grating t''qt, the proportion occupied by dielectric medium 3 'kqzs, the proportion occupied by air'frq jL
ir. Here q1+q2+qair=1
......(5). The refractive index of air is 1.
If it is 00, then (1), (2).

(3)式から第1領域5の複屈折の大きさΔn1は、・
・・・・・・・・ (6) となる。(1) 、 (2)式を拡張することにエフ第
2領域6の複屈折の大きさΔnz jfi 勾t=(nt”ql+n7勉+qairf’ ((1/
nt)2qx+(1/nz)2”   +qair)−
イ・・・・・・・・・′(7)となる。第3領域7の複
屈折の大きさΔ−は、藺= (n1%041+ nz”
qtl” −((L/nx)”qt +2 −号 (1/nz) Q* :l    ・・・・・・・・・
 (8)となる。複屈折の大きさΔnに隣接する媒質の
屈折率差に大きく依存し、Δnx>Δn宜〉Δn3とな
る。
From equation (3), the magnitude of birefringence Δn1 of the first region 5 is:
・・・・・・・・・(6) It becomes. Expanding equations (1) and (2), the magnitude of birefringence of the second region 6 Δnz jfi slope t = (nt"ql + n7 + qairf' ((1/
nt)2qx+(1/nz)2” +qair)−
A......'(7). The magnitude Δ- of the birefringence of the third region 7 is: = (n1%041+nz"
qtl” −((L/nx)”qt +2 −(1/nz) Q* :l ・・・・・・・・・
(8) becomes. The magnitude of birefringence Δn largely depends on the difference in refractive index between adjacent media, and Δnx>Δn>Δn3.

第1憤域5、第2領域6.第3領域7の各層厚をそれぞ
れ[)1  p Dt  e D! とすれば、格子を
通過する波長λが受ける位相差ΔΦハ(3)式エフとな
る。第3図ニ(9)式から位相差ΔΦと誘電体媒質3の
厚さの関係を誘電体媒質の屈折率をパラメータとして求
めた結果を示している。このとき、誘電体基板1に形成
され友格子はピッチd=λ/2、溝深さD=λ、屈折率
n t = 1.55とし、誘電体媒質3の厚さは格子
の頂部、底部、側面部とも等しいとした0図の左端は誘
電体媒fi3がなく誘電体基板1−に形成され次格子だ
けの場合であり、右端は格子の溝が誘電体媒質で完全に
埋められ次場合に対応している。
First area of anger 5, second area 6. The thickness of each layer in the third region 7 is [)1 p Dt e D! Then, the phase difference ΔΦ experienced by the wavelength λ passing through the grating becomes Equation (3). FIG. 3 shows the result of determining the relationship between the phase difference ΔΦ and the thickness of the dielectric medium 3 from equation (9) using the refractive index of the dielectric medium as a parameter. At this time, the friend grating formed on the dielectric substrate 1 has a pitch d = λ/2, a groove depth D = λ, a refractive index n t = 1.55, and the thickness of the dielectric medium 3 is the same at the top and bottom of the grating. The left end of the figure is the case where there is no dielectric medium fi3 and only the next lattice is formed on the dielectric substrate 1-, and the right end is the case where the grooves of the lattice are completely filled with the dielectric medium. It corresponds to

第3図から、誘電体基板1の格子表面を基板1の屈折率
りり十分高い屈折率を有する誘電体媒質3で被覆するこ
とにエフ入射光が受ける位相差を被覆が無い場合、ある
いは格子の湾部が完全に誘 −電体媒質3で埋められ友
場合に比べて大きくすることができることがわかる。
From FIG. 3, it can be seen that by coating the grating surface of the dielectric substrate 1 with the dielectric medium 3 having a refractive index sufficiently higher than that of the substrate 1, the phase difference that the incident light receives can be reduced in the case where there is no coating or when the grating is It can be seen that the bay part is completely filled with the dielectric medium 3 and can be made larger compared to the case where the bay part is completely filled with the dielectric medium 3.

第4図に誘電体媒質3の膜厚を大きくして第2図で示し
た第2領域6が消失した場合の格子形状全示す断面図で
ある。格子の溝部は誘電体媒質3で充てんされている。
FIG. 4 is a sectional view showing the entire lattice shape when the thickness of the dielectric medium 3 is increased and the second region 6 shown in FIG. 2 disappears. The grooves of the grating are filled with dielectric medium 3.

第1領域5と第3領域7がら成るので、格子に入射する
波長λの光が受ける位相差ΔΦは −2π ΔΦ−2(Dt、匈t+D3sΔns)・=−(9)で
与えられる。この場合sD3は訪亀体基板1に形成され
た表面レリーフ格子の溝深さDと等しい。誘電体媒質3
と空気との界面を平担とする場合に比べて厚さD!で発
生する位相差分だけ位相差をさらに大きくすることがで
きる0基板1の屈折率(11=l−55、溝深さD=λ
、 D、=λ15、誘電体媒質の屈折率n!を2.0,
22.!4とすると、ΔΦはそれぞれ0.753 、1
.227 、1.793[radlとな9、この工うな
構成の場合でも誘電体媒質が存在しない場合のΔΦ=0
.728(rad]エクも大きくなる。
Since it consists of the first region 5 and the third region 7, the phase difference ΔΦ experienced by the light of wavelength λ incident on the grating is given by −2π ΔΦ−2(Dt, t+D3sΔns)·=−(9). In this case, sD3 is equal to the groove depth D of the surface relief grating formed on the visiting body substrate 1. Dielectric medium 3
Thickness D! compared to when the interface between air and air is flat! The refractive index of substrate 1 (11=l-55, groove depth D=λ
, D, = λ15, refractive index of the dielectric medium n! 2.0,
22. ! 4, ΔΦ is 0.753 and 1, respectively.
.. 227, 1.793[radl9, Even in this unconventional configuration, ΔΦ=0 in the absence of dielectric medium.
.. 728 (rad) Ex is also larger.

し九がって、iix体基板基板作する格子の溝深さを小
さくすることができ、製作が容易な位相格子型の波長板
が得られる。
Therefore, the groove depth of the grating formed on the IIX body substrate can be reduced, and a phase grating type wave plate that is easy to manufacture can be obtained.

格子が矩形状でなく、正弦波状、三角波状等の場合も同
様で、誘電体基板の屈折率に対して十分大きい屈折率を
有する誘電体媒質で格子表面を被覆することにエフ大き
な複屈折が得られ、製作の容易な波長板が得られる0 〔実施例〕 以下、本発明の実施例について5図面を参照して説明す
る。
The same is true when the grating is not rectangular but sinusoidal, triangular, etc., and coating the grating surface with a dielectric medium that has a refractive index sufficiently larger than that of the dielectric substrate causes large birefringence. [Embodiments] Examples of the present invention will be described below with reference to five drawings.

第1図は本発明の第1の実施例を示す断面図で。FIG. 1 is a sectional view showing a first embodiment of the present invention.

わかりやすくするために格子を実fエクもはるかに拡大
しである。誘電体基板1に正弦波状格子2が形成されて
おり、格子2の表面が高屈折率誘電体媒質3で被覆され
て複屈折の大きさを大きくしている。実際の裏作には、
基板誘電体1として光硬化性樹脂であるスリーボンド社
製のUVX−8889−1を、高屈折率誘電体媒質3と
して新日曹化工社製のポリシラスチレンPSS75′t
−用いた。
For clarity, the grid has been greatly enlarged. A sinusoidal grating 2 is formed on a dielectric substrate 1, and the surface of the grating 2 is coated with a high refractive index dielectric medium 3 to increase the magnitude of birefringence. In the actual behind the scenes,
The substrate dielectric 1 is a photocurable resin UVX-8889-1 manufactured by Three Bond Co., Ltd., and the high refractive index dielectric medium 3 is polysilastyrene PSS75't manufactured by Nippon Sokako Co., Ltd.
-Used.

前者の屈折率は1.52%後者の屈折率は約2.5であ
る。使用波長はHe−Neレーザの63281111で
The refractive index of the former is 1.52%, and the refractive index of the latter is approximately 2.5. The wavelength used is He-Ne laser 63281111.

ある。光硬化性樹脂への格子パターンの転写は。be. Transfer of grid pattern to photocurable resin.

まずHe−Cdレーザの波長441.6tIIOft、
 ヒ−Aを用いて干渉計ヲ、溝成し、ホログラフィック
にJ/d 21.472 を満足するピッチdが9.3
μmの格子をホトレジストに形成し、ホトレジスト現象
後の正弦波状表面レリーフ格子からニッケル電鋳法で金
型t−製作し、この金型を用いて行った。光硬化性樹脂
である基板誘電体1に形成された格子上に液状のポリシ
ラスチレンを塗布し、溶剤を乾燥させることにより第1
図に示す波長板を形成した0 第5図は本発明の第2の実施1+11を示す断面図で。
First, the wavelength of the He-Cd laser is 441.6tIIOft,
The interferometer is grooved using H-A, and the pitch d that satisfies the holographic J/d 21.472 is 9.3.
A .mu.m grating was formed on a photoresist, and a mold was made using the nickel electroforming method from the sinusoidal surface relief grating after the photoresist phenomenon, and this mold was used. First, liquid polysilastyrene is applied onto the grid formed on the substrate dielectric 1, which is a photocurable resin, and the solvent is dried.
FIG. 5 is a sectional view showing a second embodiment 1+11 of the present invention, in which the wave plate shown in the figure is formed.

格子t−実実際ツクはるかに拡大しである0冥際の製作
は、第1図に示した第1の実施例の場合と同様の手法で
光硬化樹脂上に格子を形成した後、第1の実施例工9も
ポリシラスチレン#4を増加さは第1の実施例に比べて
大きくすることができる。
The fabrication of the lattice, which is much larger than the real one, is done by forming the lattice on the photocurable resin using the same method as in the first embodiment shown in FIG. In Example 9, the amount of polysilastyrene #4 can also be increased compared to the first example.

〔発明の効果〕〔Effect of the invention〕

本発明に工れば、誘電体基板に製作する格子の溝深さを
小さくできるので格子の製作が容易となり、シたがって
製作が容易、安価で1に酸性に富む波長板が得られる。
According to the present invention, the groove depth of the grating fabricated on the dielectric substrate can be made small, making it easy to fabricate the grating.Therefore, it is possible to obtain a wavelength plate that is easy to fabricate, inexpensive, and has high acidity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例t−模式的に示す断面図、第
2図お工び第4図は、本発明の詳細な説明するための誘
電体媒質が被覆あるいに充填された誘電体基板の模式的
な断面図、第3図は第2図に示す誘電体媒質3の厚さと
入射する光が受ける位相差の関係を示すグラフ、第5図
は本発明の他の実施例を模式的に示す断面図である。 図において、1は誘電体基板、2は格子部、3は誘電体
媒質、4は矩形格子、5は格子の第1領域、6は格子の
第2領域%7は格子の第3領域である。 茅 l  図 斗 2 間
Fig. 1 is a cross-sectional view schematically showing one embodiment of the present invention, Fig. 2 is a cross-sectional view showing an embodiment of the present invention, and Fig. 4 is a cross-sectional view showing an embodiment of the present invention. A schematic cross-sectional view of a dielectric substrate, FIG. 3 is a graph showing the relationship between the thickness of the dielectric medium 3 shown in FIG. 2 and the phase difference experienced by incident light, and FIG. 5 is another embodiment of the present invention. It is a sectional view showing typically. In the figure, 1 is a dielectric substrate, 2 is a lattice part, 3 is a dielectric medium, 4 is a rectangular lattice, 5 is a first region of the lattice, 6 is a second region of the lattice, and 7 is the third region of the lattice. . Kaya l Tuto 2 months

Claims (1)

【特許請求の範囲】[Claims] 使用波長λと格子ピッチdとの関係がλ/d≧1.47
2なる基板レリーフ格子が表面に設けられた基板誘電体
と、前記基板レリーフ格子上に被覆あるいは充てんされ
表面に前記基板レリーフ格子と等しい位相で等しいピッ
チdの表面レリーフ格子が形成され前記基板誘電体の屈
折率に比べて十分大きい屈折率を有する誘電体媒質とを
含むことを特徴とする波長板。
The relationship between the wavelength used λ and the grating pitch d is λ/d≧1.47
A substrate dielectric having two substrate relief gratings provided on its surface; and a substrate dielectric having a surface relief grating coated or filled on the substrate relief grating to form a surface relief grating having the same phase and pitch d as the substrate relief grating. a dielectric medium having a sufficiently larger refractive index than the refractive index of the wavelength plate.
JP61112882A 1986-05-16 1986-05-16 Wave plate Expired - Lifetime JPH0799402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61112882A JPH0799402B2 (en) 1986-05-16 1986-05-16 Wave plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61112882A JPH0799402B2 (en) 1986-05-16 1986-05-16 Wave plate

Publications (2)

Publication Number Publication Date
JPS62269104A true JPS62269104A (en) 1987-11-21
JPH0799402B2 JPH0799402B2 (en) 1995-10-25

Family

ID=14597884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61112882A Expired - Lifetime JPH0799402B2 (en) 1986-05-16 1986-05-16 Wave plate

Country Status (1)

Country Link
JP (1) JPH0799402B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005714A (en) * 1995-06-07 1999-12-21 Digital Optics Corporation Two layer optical elements
WO2000008496A1 (en) * 1998-08-07 2000-02-17 Shojiro Kawakami Polarizer
US7271956B2 (en) 1995-08-29 2007-09-18 Olympus Corporation Diffractive optical element
JP2007328128A (en) * 2006-06-08 2007-12-20 Ricoh Opt Ind Co Ltd Optical element and its manufacturing method
EP1939654A1 (en) 2006-12-27 2008-07-02 Canon Kabushiki Kaisha Waveplate utilizing form birefringence and waveplate manufacturing method
JP2009020383A (en) * 2007-07-13 2009-01-29 Seiko Epson Corp Retardation plate and projection display device
JP2010032659A (en) * 2008-07-28 2010-02-12 Ricoh Co Ltd Wavelength selection filter, filter unit, light source device, optical apparatus, and refractive index sensor
JPWO2011001641A1 (en) * 2009-06-29 2012-12-10 ナルックス株式会社 Optical element
WO2016056277A1 (en) * 2014-10-10 2016-04-14 Jx日鉱日石エネルギー株式会社 Optical phase difference component, composite optical component incorporating optical phase difference component, and method for manufacturing optical phase difference component
WO2017135220A1 (en) * 2016-02-03 2017-08-10 Jxエネルギー株式会社 Optical phase difference member, composite optical member comprising optical phase difference member, and method for producing optical phase difference member
WO2017159471A1 (en) * 2016-03-18 2017-09-21 Jxエネルギー株式会社 Optical phase difference member, composite optical member provided with optical phase difference member and manufacturing method for optical phase difference member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101034320B1 (en) * 2010-09-08 2011-05-16 주식회사 엘엠에스 Wave retardation plate and 3d display device
JP6903470B2 (en) * 2016-05-12 2021-07-14 Eneos株式会社 Optical retardation member and projector

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005714A (en) * 1995-06-07 1999-12-21 Digital Optics Corporation Two layer optical elements
US7271956B2 (en) 1995-08-29 2007-09-18 Olympus Corporation Diffractive optical element
WO2000008496A1 (en) * 1998-08-07 2000-02-17 Shojiro Kawakami Polarizer
US6977774B1 (en) 1998-08-07 2005-12-20 Autocloning Technology, Ltd. Polarizer
JP2007328128A (en) * 2006-06-08 2007-12-20 Ricoh Opt Ind Co Ltd Optical element and its manufacturing method
US8120848B2 (en) 2006-12-27 2012-02-21 Canon Kabushiki Kaisha Waveplate utilizing form birefringence and waveplate manufacturing method
EP1939654A1 (en) 2006-12-27 2008-07-02 Canon Kabushiki Kaisha Waveplate utilizing form birefringence and waveplate manufacturing method
JP2009020383A (en) * 2007-07-13 2009-01-29 Seiko Epson Corp Retardation plate and projection display device
JP2010032659A (en) * 2008-07-28 2010-02-12 Ricoh Co Ltd Wavelength selection filter, filter unit, light source device, optical apparatus, and refractive index sensor
JPWO2011001641A1 (en) * 2009-06-29 2012-12-10 ナルックス株式会社 Optical element
WO2016056277A1 (en) * 2014-10-10 2016-04-14 Jx日鉱日石エネルギー株式会社 Optical phase difference component, composite optical component incorporating optical phase difference component, and method for manufacturing optical phase difference component
JPWO2016056277A1 (en) * 2014-10-10 2017-07-20 Jxtgエネルギー株式会社 Optical retardation member, composite optical member including optical retardation member, and method of manufacturing optical retardation member
JP2019049717A (en) * 2014-10-10 2019-03-28 Jxtgエネルギー株式会社 Optical retardation member, composite optical member including optical retardation member, and manufacturing method of optical retardation member
US10408984B2 (en) 2014-10-10 2019-09-10 Jx Nippon Oil And Energy Corporation Optical phase difference component, composite optical component, incorporating optical phase difference component, and method for manufacturing optical phase difference component
WO2017135220A1 (en) * 2016-02-03 2017-08-10 Jxエネルギー株式会社 Optical phase difference member, composite optical member comprising optical phase difference member, and method for producing optical phase difference member
CN108603972A (en) * 2016-02-03 2018-09-28 Jxtg能源株式会社 The manufacturing method of optical phase difference component, the composite optical member for having optical phase difference component and optical phase difference component
JP2017138464A (en) * 2016-02-03 2017-08-10 Jxtgエネルギー株式会社 Optical retardation member, composite optical member including optical retardation member, and method for manufacturing optical retardation member
TWI711846B (en) * 2016-02-03 2020-12-01 日商捷客斯能源股份有限公司 Optical retardation member, composite optical member with optical retardation member, and manufacturing method of optical retardation member
CN108369311A (en) * 2016-03-18 2018-08-03 Jxtg能源株式会社 The manufacturing method of optical phase difference component, the composite optical member for having optical phase difference component and optical phase difference component
KR20180124010A (en) 2016-03-18 2018-11-20 제이엑스티지 에네루기 가부시키가이샤 Composite optical member including optical phase difference member, optical phase difference member, and manufacturing method of optical phase difference member
JPWO2017159471A1 (en) * 2016-03-18 2019-01-17 Jxtgエネルギー株式会社 Optical retardation member, composite optical member including optical retardation member, and method of manufacturing optical retardation member
WO2017159471A1 (en) * 2016-03-18 2017-09-21 Jxエネルギー株式会社 Optical phase difference member, composite optical member provided with optical phase difference member and manufacturing method for optical phase difference member
TWI698660B (en) * 2016-03-18 2020-07-11 日商捷客斯能源股份有限公司 Optical phase difference member, composite optical member with optical phase difference member, and method of manufacturing optical phase difference member
CN108369311B (en) * 2016-03-18 2021-07-16 Jxtg能源株式会社 Optical retardation member, composite optical member provided with optical retardation member, and method for producing optical retardation member

Also Published As

Publication number Publication date
JPH0799402B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
US7297386B2 (en) Antireflection structure
JP4999556B2 (en) Manufacturing method of optical element having fine irregularities on surface
JPS62269104A (en) Wavelength plate
EP1645903A1 (en) Wire grid polarizer and fabrication method thereof
KR20220056235A (en) Method of manufacturing waveguides and waveguide master grating tools
US4241109A (en) Technique for altering the profile of grating relief patterns
US6046851A (en) Polarization beam splitter and method for making the same
US5389313A (en) Method of producing a molding die for an information recording medium
US20040120644A1 (en) Method of making subwavelength resonant grating filter
JP2004219626A (en) Optical element
JP2007101859A (en) Polarized beam splitter and method of manufacturing same
JPH0950642A (en) Optical head device and its production
JP2006106749A (en) Method of manufacturing mold for patterning lower cladding layer of wavelength filter and of manufacturing waveguide-type wavelength filter using the mold
JP2010102008A (en) Photomask and method for making sawtooth pattern
JP4183526B2 (en) Surface microstructure optical element
JP4999401B2 (en) Manufacturing method of optical element having fine irregularities on surface
US5026510A (en) Mold for cast molding substrate having preformat with information pits and method of using same
JP2005099099A (en) Wavelength plate
JP2002040219A (en) Computer hologram, reflection plate using computer hologram, reflection type liquid crystal display device using computer hologram
JPS62289804A (en) Wavelength plate
JP3982025B2 (en) Manufacturing method of diffraction element
JPS60173736A (en) Manufacture of stamper for optical disk
JPS62269103A (en) Wavelength plate
JPH1130711A (en) Diffraction optical element and its manufacture, and optical equipment
JP6070023B2 (en) Optical element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term