JPH0799402B2 - Wave plate - Google Patents

Wave plate

Info

Publication number
JPH0799402B2
JPH0799402B2 JP61112882A JP11288286A JPH0799402B2 JP H0799402 B2 JPH0799402 B2 JP H0799402B2 JP 61112882 A JP61112882 A JP 61112882A JP 11288286 A JP11288286 A JP 11288286A JP H0799402 B2 JPH0799402 B2 JP H0799402B2
Authority
JP
Japan
Prior art keywords
grating
dielectric
substrate
lattice
wave plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61112882A
Other languages
Japanese (ja)
Other versions
JPS62269104A (en
Inventor
靖夫 木村
雄三 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61112882A priority Critical patent/JPH0799402B2/en
Publication of JPS62269104A publication Critical patent/JPS62269104A/en
Publication of JPH0799402B2 publication Critical patent/JPH0799402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、直交する2つの直線偏光の間に位相差を生
ぜしめる、1/4波長板、1/2波長板、全波長板等の波長板
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a quarter-wave plate, a half-wave plate, a full-wave plate, etc., which causes a phase difference between two orthogonal linearly polarized lights. It relates to a wave plate.

〔従来の技術〕[Conventional technology]

従来、波長板は水晶の結晶を研磨して、常光と異常光の
位相差が、1/4波長板では(N+1/4)波長(Nは整
数)、1/2波長板では(N+1/2)波長、全波長板ではN
波長になるような厚さに調整して製作されている。この
ような結晶研磨による方法以外に誘電体に形成した高密
度の表面レリーフ格子が複屈折を示すことから格子を用
いる方法も提案されている。表面レリーフ格子を用いた
波長板の提案と実験はアプライド・フィジックス・レタ
ー(Applied Physics Letter)誌第42巻第6号(1983年
3月15日発行)第492〜494頁掲載のD.C.Flanders著の論
文、及び、アプライド・オプティクス(Applied-Optic
s)誌第22巻第20号(1983年・10月15日発行)第3220〜3
228頁掲載のR.C.EngerとS.K.Case著の論文に述べられて
いる。
Conventionally, the wave plate is made by polishing a crystal of quartz, and the phase difference between ordinary and extraordinary light is (N + 1/4) wavelength (N is an integer) in the 1/4 wave plate and (N + 1/2) in the 1/2 wave plate. ) Wavelength, N for all wave plates
It is manufactured by adjusting the thickness to the wavelength. In addition to such a method by crystal polishing, a method using a grating has been proposed because a high-density surface relief grating formed on a dielectric exhibits birefringence. A proposal and experiment of a wave plate using a surface relief grating is made by DC Flanders in Applied Physics Letter, Vol. 42, No. 6 (published on Mar. 15, 1983), pages 492-494. , And Applied-Optic
s) Magazine Vol. 22 No. 20 (Published October 15, 1983) No. 3220-3
It is described in a paper by RC Enger and SK Case on page 228.

格子を用いた波長板は、格子のピッチをd1使用波長をλ
とすると、λがdに比べて十分大きい領域では格子の溝
に平行な方向の屈折率nIIと格子の溝に直交する方向の
屈折率nが異なることを利用しており、前述のD.C.Fla
nders著の論文によると格子が矩形状の場合、nII,n
は次式で与えられる。
A wave plate using a grating has a grating pitch of d 1
Then, in the region where λ is sufficiently larger than d, the fact that the refractive index n II in the direction parallel to the groove of the lattice and the refractive index n ⊥ in the direction orthogonal to the groove of the lattice are different is utilized.
According to the paper by nders, if the lattice is rectangular, then n II , n
Is given by

nII=〔n1 2q+n2 2(1−q)〕1/2……(1) n=〔(1/n12q+(1/n22(1−q)〕-1/2……
(2) ここでn1は媒質1の屈折率、n2は媒質2の屈折率、qは
格子の1周期中に媒質1の占める割合で1q0であ
る。複屈折の大きさΔnは次式で与えられる。
n II = [n 1 2 q + n 2 2 (1-q)] 1/2 (1) n = [(1 / n 1 ) 2 q + (1 / n 2 ) 2 (1-q)] - 1/2 ......
(2) Here, n 1 is the refractive index of the medium 1, n 2 is the refractive index of the medium 2, and q is the ratio of the medium 1 in one period of the grating, which is 1q0. The birefringence magnitude Δn is given by the following equation.

Δn=|nII−n|……(3) また、複屈折の大きさはΔnを有する格子に入射した光
が受ける位相差ΔΦは次式で与えられる。
Δn = | n II −n | (3) Further, the phase difference ΔΦ received by the light incident on the grating having the magnitude of birefringence is Δn is given by the following equation.

ここでDは格子の溝深さである。(4)式から、大きな
位相差ΔΦを得るには溝深さDを大きくするか、または
複屈折の大きさΔnを大きくすればよい。この関係は格
子形状が矩形である場合に限らず、正弦波状、三角波状
等の場合でも成り立つ。
Here, D is the groove depth of the lattice. From the equation (4), in order to obtain a large phase difference ΔΦ, the groove depth D may be increased or the birefringence size Δn may be increased. This relationship is not limited to the case where the lattice shape is rectangular, and holds even when the shape is sinusoidal, triangular, or the like.

表面レリーフ格子による波長板は主に次の2つの方法に
より製造できる。
A wave plate with a surface relief grating can be manufactured mainly by the following two methods.

第1の方法は干渉露光法によりホトレジストに表面レリ
ーフ格子を形成し、その格子からニッケル電鋳法で金型
を製作し、熱可塑性樹脂にホットプレス法や射出成形法
で転写する、あるいは光硬化性樹脂に転写する方法であ
る。
The first method is to form a surface relief grating on a photoresist by interference exposure method, and then manufacture a mold by nickel electroforming from the grating, and transfer it to a thermoplastic resin by a hot press method or an injection molding method, or photocuring. It is a method of transferring to a resin.

第2の方法は誘電体基板上に第1の方法と同様の方法で
ホトレジスト格子を形成し、ホトレジストをマスクとし
て誘電体基板をイオンエッチング法、または反応性イオ
ンエッチング法、またはイオンビームエッチング法また
は反応性イオンエッチング法によりエッチングし、表面
レリーフ格子を得る方法である。
The second method is to form a photoresist grid on the dielectric substrate by the same method as the first method, and use the photoresist as a mask to etch the dielectric substrate by an ion etching method, a reactive ion etching method, an ion beam etching method or It is a method of obtaining a surface relief lattice by etching by a reactive ion etching method.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述の従来の技術には格子の溝幅に対して溝深さが極端
に大きくなる問題点がある。たとえば、使用波長λをHe
-Neレーザの632.8mmとする。この波長に対して前述の第
1の製造方法で用いられる熱可塑性樹脂、たとえばアク
リル樹脂、光硬化性樹脂たとえばスリーボンド社製のUV
X-SS-89-1および第2の製造方法において主に用いられ
る石英ガラスの屈折率はおよそ1.5〜1.6である。以下で
は熱可塑性樹脂、光硬化製造樹脂および石英ガラスを媒
質1とし、その屈折率n1を1.55とする。また、媒質2を
空気としその屈折率n2を1.00とする。格子形状が矩形の
場合は、媒質1が格子の1周期中に占める割合qを0.5
とすれば、複屈折の大きさΔnは(1),(2),
(3)式より0.116となる。したがって(4)式より1/4
波長板、1/2波長板、全波長板に必要な溝深さDはそれ
ぞれ1.36μm、2.73μm,5.46μmになる。また、格子ピ
ッチdに関して、高密度性に基づく複屈折を得るにはλ
/d1.475である必要があるので、dμmなる条件を
満足しなければならない。q=0.5であるから格子の溝
幅WはW0.21μmとなる。したがって、溝幅0.21μm
以下、溝深さ1.36μm〜5.46μmの格子を作製しなれば
ならない。
The above-mentioned conventional technique has a problem that the groove depth becomes extremely large with respect to the groove width of the grating. For example, if the used wavelength λ is He
-632.8 mm for Ne laser. For this wavelength, the thermoplastic resin used in the first manufacturing method described above, such as an acrylic resin, a photocurable resin such as UV manufactured by ThreeBond Co., Ltd.
The refractive index of silica glass mainly used in X-SS-89-1 and the second manufacturing method is approximately 1.5 to 1.6. In the following, the thermoplastic resin, the photocurable resin and quartz glass are used as medium 1, and the refractive index n 1 thereof is 1.55. Further, the medium 2 is air, and its refractive index n 2 is 1.00. When the lattice shape is rectangular, the ratio q of the medium 1 to one period of the lattice is 0.5.
Then, the birefringence magnitude Δn is (1), (2),
It becomes 0.116 from the formula (3). Therefore, from equation (4), 1/4
The groove depths D required for the wave plate, the half wave plate, and the whole wave plate are 1.36 μm, 2.73 μm, and 5.46 μm, respectively. For the grating pitch d, to obtain birefringence based on high density, λ
Since it needs to be /d1.475, the condition of dμm must be satisfied. Since q = 0.5, the groove width W of the lattice is W0.21 μm. Therefore, the groove width is 0.21 μm
Hereinafter, a grating having a groove depth of 1.36 μm to 5.46 μm must be manufactured.

このような溝幅に対し溝深さが極めて大きい格子を第1
の製造方法で製造する場合、媒質1と電鋳金型との実効
的な接触表面積が著しく増大するために金型面からはく
離する時の引張りせん断力が大きくなる。このために、
はく離時に硬化した媒質1が基板からはがれ、金型面に
残留してしまい、表面レリーフ格子の転写が困難になる
という問題点がある。
First, a grid having a groove depth extremely large with respect to the groove width
In the case of manufacturing by the manufacturing method of 1, the effective contact surface area between the medium 1 and the electroformed mold remarkably increases, so that the tensile shearing force at the time of peeling from the mold surface becomes large. For this,
There is a problem that the medium 1 which is hardened at the time of peeling is peeled off from the substrate and remains on the mold surface, making it difficult to transfer the surface relief grating.

また、第2の製造方法では、エッチングに要する時間が
数時間にも及び、エッチングに耐え得るホトレジストマ
スクは、厚さ数μmになることから、ホトレジストマス
クの形成が困難である。また、ホトレジストに形成した
格子をエッチング耐性の強い物質、たとえばクロムに転
写し、その物質をマスクとしてエッチングを行う場合に
おいても、格子溝深さの増加に伴い、一度エッチングさ
れた誘電体の基板表面への再付着や、溝底部への活性
種、イオン、中性粒子の到達粒子数の減少などによりエ
ッチングの進行が阻止され、所望の格子の形成が困難で
ある。このような問題は格子の形状によらず生じる。
Further, in the second manufacturing method, the time required for etching is several hours, and the photoresist mask that can withstand etching has a thickness of several μm. Therefore, it is difficult to form the photoresist mask. In addition, when the lattice formed on the photoresist is transferred to a substance having strong etching resistance, for example, chromium, and etching is performed using the substance as a mask, the substrate surface of the dielectric substrate once etched is increased as the lattice groove depth increases. It is difficult to form a desired lattice due to re-deposition onto the groove and reduction of the number of active particles, ions and neutral particles reaching the bottom of the groove. Such a problem occurs regardless of the shape of the lattice.

以上述べたように従来技術による表面レリーフ格子型の
波長板は製造が困難であるという欠点を有している。
As described above, the surface relief grating type wave plate according to the prior art has a drawback that it is difficult to manufacture.

本発明の目的は、このような従来技術の問題点を解決
し、製造が容易な位相格子型の波長板を提供することに
ある。
An object of the present invention is to solve the above problems of the prior art and to provide a phase grating type wave plate which is easy to manufacture.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の波長板は、使用波長λと格子ピッチdとの関係
がλ/d1.472なる基板レリーフ格子が表面に設けられ
た基板誘電体と、前記基板レリーフ格子上に被覆あるい
は充てんされ表面に前記基板レリーフ格子と等しい位相
で等しいピッチdの表面レリーフ格子が形成され前記基
板誘電体の屈折率に比べて十分大きい屈折率を有する誘
電体媒質とを含んで構成される。
The wave plate of the present invention comprises a substrate dielectric provided on the surface thereof with a substrate relief grating having a relationship between the wavelength λ used and the grating pitch d of λ / d1.472, and a surface coated or filled on the substrate relief grating. A surface relief grating having the same phase and the same pitch d as the substrate relief grating is formed, and includes a dielectric medium having a refractive index sufficiently higher than that of the substrate dielectric.

〔作用〕[Action]

本発明の作用を図面を参照しながら詳細に説明する。 The operation of the present invention will be described in detail with reference to the drawings.

格子に入射する光が受ける位相差ΔΦは、格子の溝深さ
Dと複屈折の大きさΔnに比例する。
The phase difference ΔΦ received by the light incident on the grating is proportional to the groove depth D of the grating and the magnitude Δn of the birefringence.

本発明は溝深さDを大きくせずに、複屈折の大きさΔn
を大きくすることにより、前述の問題点を解決しようと
するものである。
In the present invention, the birefringence magnitude Δn can be obtained without increasing the groove depth D.
It is intended to solve the above-mentioned problems by increasing.

屈折率n1を有する誘電体基板に矩形格子が形成されてい
る場合を考える。第2図は屈折率n1を有する誘電体基板
1の表面に設けられた矩形格子4が屈折率n1よりも大き
い屈折率n2を有する誘電体媒質3で被覆された場合を示
す断面図である。この状態の格子は断面にそって格子頂
部から、誘電体媒質3と空気より成る第1領域5、誘電
体基板1と誘電体媒質2と空気より成る第2領域6およ
び誘電体基板1と誘電体媒質3より成る第3領域7の3
つの領域に分けて考えられる。格子の1周期中に誘電体
媒質1が占める割合をq1、誘電体媒質3が占める割合を
q2、空気が占める割合をq airとする。ここで q1+q2+q air=1……(5) である。空気の屈折率を1.00とすると(1),(2),
(3)式から第1領域5の複屈折の大きさΔn1は、 Δn1=〔▲n2 2▼q2+q air〕1/2-〔(1/n2)2q2+q air〕
-1/2……(6) となる。(1),(2)式を拡張することにより第2領
域6の複屈折の大きさΔn2は Δn2=〔n1 2q1+n2 2q2+q air〕1/2-〔(1/n1)2q1+(1/n2)2
+q air〕-1/2……(7) となる。第3領域7の複屈折の大きさΔn3は、 Δn3=〔n1 2q1+n2 2q21/2-〔(1/n1)2q1+(1/n2)2+q2
-1/2……(8) となる。複屈折の大きさΔnは隣接する媒質の屈折率差
に大きく依存し、Δn1>Δn2>Δn3となる。第1領域
5、第2領域6、第3領域7の各層厚をそれぞれD1,D2,
D3とすれば、格子を通過する波長λが受ける位相差ΔΦ
は(3)式より となる。第3図は(9)式から位相差ΔΦと誘電体媒質
3の厚さの関係を誘電体媒質の屈折率をパラメータとし
て求めた結果を示している。このとき、誘電体基板1に
形成された格子はピッチd=λ/2、溝深さD=λ、屈折
率n1=1.55とし、誘電体媒質3の厚さは格子の頂部、底
部、側面部とも等しいとした。図の左端は誘電体媒質3
がなく誘電体基板1に形成された格子だけの場合であ
り、右端は格子の溝が誘電体媒質で完全に埋められた場
合に対応している。
Consider a case where a rectangular lattice is formed on a dielectric substrate having a refractive index n 1 . Sectional view FIG. 2 showing a case in which a rectangular grating 4 formed on the surface of the dielectric substrate 1 having a refractive index n 1 is covered with a dielectric medium 3 having a refractive index n 2 greater than the refractive index n 1 Is. In this state, the lattice has a first region 5 composed of the dielectric medium 3 and air, a second region 6 composed of the dielectric substrate 1 and the dielectric medium 2 and air, and a dielectric substrate 1 and the dielectric substrate 1 from the top of the lattice along the cross section. 3 of the third region 7 composed of the body medium 3
It can be divided into two areas. The ratio occupied by the dielectric medium 1 in one period of the lattice is q 1 , and the ratio occupied by the dielectric medium 3 is
q 2 , and the ratio of air is q air. Here, q 1 + q 2 + q air = 1 (5). If the refractive index of air is 1.00, (1), (2),
From the equation (3), the magnitude of birefringence Δn 1 in the first region 5 is Δn 1 = [▲ n 2 2 ▼ q 2 + q air] 1/2 -[(1 / n 2 ) 2 q 2 + q air]
-1/2 ... (6) By expanding the equations (1) and (2), the birefringence magnitude Δn 2 of the second region 6 is Δn 2 = [n 1 2 q 1 + n 2 2 q 2 + q air] 1/ 2- [ (1 / n 1 ) 2 q 1 + (1 / n 2 ) 2
+ q air] -1/2 ... (7). The birefringence magnitude Δn 3 of the third region 7 is Δn 3 = [n 1 2 q 1 + n 2 2 q 2 ] 1/2 -[(1 / n 1 ) 2 q 1 + (1 / n 2 ) 2 + q 2 )
-1/2 ... (8) The magnitude of birefringence Δn greatly depends on the difference in refractive index between adjacent media, and is Δn 1 > Δn 2 > Δn 3 . The layer thicknesses of the first region 5, the second region 6, and the third region 7 are respectively set to D 1 , D 2 ,
D 3 is the phase difference ΔΦ that the wavelength λ passing through the grating receives.
Is from equation (3) Becomes FIG. 3 shows the result of the relationship between the phase difference ΔΦ and the thickness of the dielectric medium 3 obtained from the equation (9) using the refractive index of the dielectric medium as a parameter. At this time, the grating formed on the dielectric substrate 1 has a pitch d = λ / 2, a groove depth D = λ, and a refractive index n 1 = 1.55, and the thickness of the dielectric medium 3 is the top, bottom, and side surfaces of the grating. It was assumed that the division was the same. The left end of the figure is the dielectric medium 3
This is the case where there is only the grating formed on the dielectric substrate 1, and the right end corresponds to the case where the groove of the grating is completely filled with the dielectric medium.

第3図から、誘電体基板1の格子表面を基板1の屈折率
より十分高い屈折率を有する誘電体媒質3で被覆するこ
とにより入射光が受ける位相差を被覆が無い場合、ある
いは格子の溝部が完全に誘電体媒質3で埋められた場合
に比べて大きくすることができるわかる。
From FIG. 3, when the grating surface of the dielectric substrate 1 is covered with the dielectric medium 3 having a refractive index sufficiently higher than that of the substrate 1, the phase difference received by the incident light is not covered, or the groove portion of the grating is formed. It can be seen that can be increased as compared with the case where is completely filled with the dielectric medium 3.

第4図は誘電体媒質3の膜厚を大きくして第2図で示し
た第2領域6が消失した場合の格子形状を示す断面図で
ある。格子の溝部は誘電体媒質3で充てんされている。
第1領域5と第3領域7から成るので、格子に入射する
波長λの光が受ける位相差ΔΦは で与えられる。この場合、D3は誘電体基板1に形成され
た表面レリーフ格子の溝深さDと等しい。誘電体媒質3
と空気との界面を平坦とする場合に比べて厚さD1で発生
する位相差分だけ位相差をさらに大きくすることができ
る。基板1の屈折率n1=1.55、溝深さD=λ、D1=λ/
5、誘電体媒質の屈折率n2を2.0,2.2,2.4とすると、ΔΦ
はそれぞれ0.753,1.227,1.793〔rad〕となり、このよう
な構成の場合でも誘電体媒質が存在しない場合のΔΦ=
0.728〔rad〕よりも大きくなる。
FIG. 4 is a sectional view showing a lattice shape when the film thickness of the dielectric medium 3 is increased and the second region 6 shown in FIG. 2 disappears. The grooves of the lattice are filled with the dielectric medium 3.
Since it is composed of the first region 5 and the third region 7, the phase difference ΔΦ received by the light of wavelength λ entering the grating is Given in. In this case, D 3 is equal to the groove depth D of the surface relief grating formed on the dielectric substrate 1. Dielectric medium 3
The phase difference can be further increased by the phase difference generated at the thickness D 1 as compared with the case where the interface between air and air is made flat. Refractive index of substrate 1 n 1 = 1.55, groove depth D = λ, D 1 = λ /
5. If the refractive index n 2 of the dielectric medium is 2.0, 2.2, 2.4, ΔΦ
Are 0.753, 1.227, and 1.793 [rad], respectively, and ΔΦ = when there is no dielectric medium even with such a configuration.
It will be larger than 0.728 [rad].

したがって、誘電体基板に製作する格子の溝深さを小さ
くすることができ、製作が容易な位相格子型の波長板が
得られる。
Therefore, the groove depth of the grating manufactured on the dielectric substrate can be reduced, and a phase grating type wave plate which is easy to manufacture can be obtained.

格子が矩形状でなく、正弦波状、三角波状等の場合も同
様で、誘電体基板の屈折率に対して十分大きい屈折率を
有する誘電体媒質で格子表面を被覆することにより大き
な複屈折が得られ、製作の容易な波長板が得られる。
The same applies when the grating is not rectangular but sinusoidal or triangular, and a large birefringence can be obtained by coating the grating surface with a dielectric medium that has a refractive index sufficiently higher than that of the dielectric substrate. Thus, a wave plate that is easy to manufacture can be obtained.

〔実施例〕〔Example〕

以下、本発明の実施例について、図面を参照して説明す
る。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例を示す断面図で、わかり
やすくするために格子を実際よりもはるかに拡大してあ
る。誘電体基板1に正弦波状格子2が形成されており、
格子2の表面が高屈折率誘電体媒質3で被覆されて複屈
折の大きさを大きくしている。実際の製作には、基板誘
電体1として光硬化性樹脂であるスリーボンド社製のUV
X-SS89-1を、高屈折率誘電体媒質3として新日曹化工社
製のポリシラスチレンPSS75を用いた。前者の屈折率は
1.52、後者の屈折率は約2.5である。使用波長はHe-Neレ
ーザの632.8mmである。光硬化性樹脂への格子パターン
の転写は、まずHe-Cdレーザの波長441.6mmの光ビームを
用いて干渉計を構成し、ホログラフィックにλ/d21.472
を満足するピッチdが0.3μmの格子をホトレジストに
形成し、ホトレジスト現象後の正弦波状表面レリーフ格
子からニッケル電鋳法で金型を製作し、この金型を用い
て行った。光硬化性樹脂である基板誘電体1に形成され
た格子上に液状ポリシラスチレンを塗布し、溶剤を乾燥
させることにより第1図に示す波長板を形成した。
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention, in which a lattice is enlarged much more than the actual size for the sake of clarity. The sinusoidal grating 2 is formed on the dielectric substrate 1,
The surface of the grating 2 is covered with a high-refractive-index dielectric medium 3 to increase the magnitude of birefringence. For the actual fabrication, the UV light manufactured by ThreeBond, which is a photo-curable resin, is used as the substrate dielectric 1.
X-SS89-1 was used as the high-refractive-index dielectric medium 3 made of polysilastyrene PSS75 manufactured by Shin Nisso Kako. The refractive index of the former is
The refractive index of the latter is 1.52, which is about 2.5. The wavelength used is 632.8 mm for He-Ne laser. To transfer the grating pattern to the photo-curable resin, first configure an interferometer using the He-Cd laser light beam with a wavelength of 441.6 mm, and holographically display λ / d21.472.
A grating having a pitch d of 0.3 μm that satisfies the above condition was formed in a photoresist, and a mold was manufactured from a sinusoidal surface relief grating after the photoresist phenomenon by a nickel electroforming method, and this mold was used. Liquid polysilastyrene was applied onto the lattice formed on the substrate dielectric 1 which was a photocurable resin, and the solvent was dried to form the wave plate shown in FIG.

第5図は本発明の第2の実施例を示す断面図で、格子を
実際よりもはるかに拡大してある。実際の製作は、第1
図に示した第1の実施例の場合と同様の手法で光硬化性
樹脂上に格子を形成した後、第1の実施例よりもポリシ
ラスチレン膜厚を増加させることにより行う。複屈折の
大きさが最も大きい第1領域の層厚さD1が大きくなるた
め、位相差ΔΦは第1の実施例に比べて大きくすること
ができる。
FIG. 5 is a cross-sectional view showing a second embodiment of the present invention, in which the lattice is enlarged much more than it actually is. The actual production is the first
This is performed by forming a lattice on the photocurable resin by the same method as in the case of the first embodiment shown in the figure and then increasing the polysilastyrene film thickness as compared with the first embodiment. Since the layer thickness D 1 of the first region having the largest birefringence becomes large, the phase difference ΔΦ can be made larger than that of the first embodiment.

〔発明の効果〕 本発明によれば、誘電体基板に製作する格子の溝深さを
小さくできるので格子の製作が容易となり、したがって
製作が容易、安価で量産性に富む波長板が得られる。
[Effects of the Invention] According to the present invention, since the groove depth of the grating formed on the dielectric substrate can be made small, the grating can be easily manufactured, and thus, the wavelength plate which is easy to manufacture, inexpensive and highly producible can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例を模式的に示す断面図、第2
図および第4図は、本発明の原理を説明するための誘電
体媒質が被覆あるいは充填された誘電体基板の模式的な
断面図、第3図は第2図に示す誘電体媒質3の厚さと入
射する光が受ける位相差の関係を示すグラフ、第5図は
本発明の他の実施例を模式的に示す断面図である。 図において、1は誘電体基板、2は格子部、3は誘電体
媒質、4は矩形格子、5は格子の第1領域、6は格子の
第2領域、7は格子の第3領域である。
FIG. 1 is a sectional view schematically showing an embodiment of the present invention, and FIG.
FIGS. 4 and 5 are schematic sectional views of a dielectric substrate coated or filled with a dielectric medium for explaining the principle of the present invention, and FIG. 3 is a thickness of the dielectric medium 3 shown in FIG. And FIG. 5 is a cross-sectional view schematically showing the relationship between the phase difference between the incident light and the incident light, and FIG. In the figure, 1 is a dielectric substrate, 2 is a lattice part, 3 is a dielectric medium, 4 is a rectangular lattice, 5 is a first region of the lattice, 6 is a second region of the lattice, and 7 is a third region of the lattice. .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】使用波長λと格子ピッチdとの関係がλ/d
1.472なる基板レリーフ格子が表面に設けられた基板
誘電体と、前記基板レリーフ格子上に被覆あるいは充て
んされ表面に前記基板レリーフ格子と等しい位相で等し
いピッチdの表面レリーフ格子が形成され前記基板誘電
体の屈折率に比べて十分大きい屈折率を有する誘電体媒
質とを含むことを特徴とする波長板。
1. The relationship between the used wavelength λ and the grating pitch d is λ / d.
1.472 a substrate dielectric provided with a substrate relief grating on its surface, and a substrate dielectric coated or filled on the substrate relief grating and having a surface relief grating formed on the surface at the same phase as the substrate relief grating and at the same pitch d. And a dielectric medium having a refractive index sufficiently higher than that of the wave plate.
JP61112882A 1986-05-16 1986-05-16 Wave plate Expired - Lifetime JPH0799402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61112882A JPH0799402B2 (en) 1986-05-16 1986-05-16 Wave plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61112882A JPH0799402B2 (en) 1986-05-16 1986-05-16 Wave plate

Publications (2)

Publication Number Publication Date
JPS62269104A JPS62269104A (en) 1987-11-21
JPH0799402B2 true JPH0799402B2 (en) 1995-10-25

Family

ID=14597884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61112882A Expired - Lifetime JPH0799402B2 (en) 1986-05-16 1986-05-16 Wave plate

Country Status (1)

Country Link
JP (1) JPH0799402B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033354A2 (en) * 2010-09-08 2012-03-15 주식회사 엘엠에스 Phase retardation plate and 3d display device comprising same
CN107367784A (en) * 2016-05-12 2017-11-21 Jxtg能源株式会社 Optical phase difference component and projector
US10408984B2 (en) 2014-10-10 2019-09-10 Jx Nippon Oil And Energy Corporation Optical phase difference component, composite optical component, incorporating optical phase difference component, and method for manufacturing optical phase difference component

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5694230A (en) * 1995-06-07 1997-12-02 Digital Optics Corp. Diffractive optical elements as combiners
US6781756B1 (en) 1995-08-29 2004-08-24 Olympus Corporation Diffractive optical element
JP3288976B2 (en) * 1998-08-07 2002-06-04 彰二郎 川上 Polarizer and its manufacturing method
JP2007328128A (en) * 2006-06-08 2007-12-20 Ricoh Opt Ind Co Ltd Optical element and its manufacturing method
JP2008164680A (en) 2006-12-27 2008-07-17 Canon Inc Optical wavelength plate and manufacturing method of same
JP2009020383A (en) * 2007-07-13 2009-01-29 Seiko Epson Corp Retardation plate and projection display device
JP5256906B2 (en) * 2008-07-28 2013-08-07 株式会社リコー Wavelength selection filter, filter device, light source device, optical device, and refractive index sensor
JP4491555B1 (en) * 2009-06-29 2010-06-30 ナルックス株式会社 Optical element and manufacturing method thereof
JP6564714B2 (en) * 2016-02-03 2019-08-21 Jxtgエネルギー株式会社 Optical retardation member, composite optical member including optical retardation member, and method of manufacturing optical retardation member
KR102255039B1 (en) 2016-03-18 2021-05-21 에네오스 가부시키가이샤 Optical retardation member, composite optical member including optical retardation member, and manufacturing method of optical retardation member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033354A2 (en) * 2010-09-08 2012-03-15 주식회사 엘엠에스 Phase retardation plate and 3d display device comprising same
WO2012033354A3 (en) * 2010-09-08 2012-06-14 주식회사 엘엠에스 Phase retardation plate and 3d display device comprising same
US10408984B2 (en) 2014-10-10 2019-09-10 Jx Nippon Oil And Energy Corporation Optical phase difference component, composite optical component, incorporating optical phase difference component, and method for manufacturing optical phase difference component
CN107367784A (en) * 2016-05-12 2017-11-21 Jxtg能源株式会社 Optical phase difference component and projector
CN107367784B (en) * 2016-05-12 2020-11-24 Jxtg能源株式会社 Optical phase difference member and projector

Also Published As

Publication number Publication date
JPS62269104A (en) 1987-11-21

Similar Documents

Publication Publication Date Title
US7129183B2 (en) Method of forming grating microstrutures by anodic oxidation
GB2589686A (en) Waveguide and method for fabricating a waveguide master grating tool
US6958207B1 (en) Method for producing large area antireflective microtextured surfaces
EP1645903A1 (en) Wire grid polarizer and fabrication method thereof
JPH0799402B2 (en) Wave plate
JP2008299084A (en) Method of manufacturing optical element having fine irregular shape on the surface
Lee et al. Imaging with blazed-binary diffractive elements
JP3442004B2 (en) Optical element manufacturing method
US6046851A (en) Polarization beam splitter and method for making the same
JP2006084776A (en) Wire-grid polarizer and its manufacturing method
US20040120644A1 (en) Method of making subwavelength resonant grating filter
Knop Reflection grating polarizer for the infrared
US8092701B2 (en) Grating, negative and replica gratings of the grating, and method of manufacturing the same
Kipfer et al. Infrared optical components based on a microrelief structure
JP4507928B2 (en) Holographic grating manufacturing method
JP2010102008A (en) Photomask and method for making sawtooth pattern
JP4999401B2 (en) Manufacturing method of optical element having fine irregularities on surface
JP2008203812A (en) Moth-eye structure and manufacturing method of moth-eye structure
JP4183526B2 (en) Surface microstructure optical element
JPH0616121B2 (en) Fresnel lens and manufacturing method thereof
JPH0799403B2 (en) Wave plate
EP1635199A1 (en) Wire grid polarizer and manufacturing method thereof
JP4178583B2 (en) Anti-reflection coating
TW200933223A (en) Method for preparing photonic crystal slab waveguides
JPH041703A (en) Production of phase shift type diffraction grating

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term