JPS62268521A - Apparatus for measuring shape of cornea - Google Patents

Apparatus for measuring shape of cornea

Info

Publication number
JPS62268521A
JPS62268521A JP61112983A JP11298386A JPS62268521A JP S62268521 A JPS62268521 A JP S62268521A JP 61112983 A JP61112983 A JP 61112983A JP 11298386 A JP11298386 A JP 11298386A JP S62268521 A JPS62268521 A JP S62268521A
Authority
JP
Japan
Prior art keywords
light source
measuring device
corneal shape
shape measuring
corneal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61112983A
Other languages
Japanese (ja)
Other versions
JPH0420351B2 (en
Inventor
和浩 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61112983A priority Critical patent/JPS62268521A/en
Publication of JPS62268521A publication Critical patent/JPS62268521A/en
Publication of JPH0420351B2 publication Critical patent/JPH0420351B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、被検限の角膜に光源像を投影し、その角膜反
射像によって角膜形状を計測する角膜形状測定装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a corneal shape measuring device that projects a light source image onto the cornea of the object and measures the corneal shape based on the reflected corneal image.

[従来の技術] 従来、この種の角膜形状測定装置ではその測定結果が数
値で表示され、乱視方向も数値で読み取らなければなら
ないために、検者によっては読み誤りや勘違い等を起す
虞れがあった。また、眼科手術用の角膜形状J+1定装
置においては、一般に測定結果が手術者の視野外に表示
されるので、手術者がそれを見るためには接眼レンズか
ら目を離さなければならず、その間は手術を中断しなけ
ればならないという不便さがあった。更に従来の場合は
、角膜形状測定装置と被検眼の基準方向がずれていると
きには、乱視角度に誤差を生ずるという問題もあった。
[Prior Art] Conventionally, with this type of corneal shape measuring device, the measurement results are displayed numerically, and the direction of astigmatism must also be read numerically, so there is a risk of misreading or misunderstandings depending on the examiner. there were. In addition, in the corneal shape J+1 determination device for ophthalmic surgery, the measurement results are generally displayed outside the operator's field of view, so the operator must take his eyes off the eyepiece in order to see them. had the inconvenience of having to cancel the surgery. Furthermore, in the conventional case, when the reference direction of the corneal shape measuring device and the eye to be examined is misaligned, there is a problem that an error occurs in the astigmatism angle.

[発明の目的コ 本発明の目的は、このような従来の問題点を改善するた
めに、測定結果を顕微鏡の視野内に表示可能とし、また
角膜形状を怒覚的にも把え得るようにし、更に被検限の
基準方向と測定装置とのずれによって乱視角度に誤差を
生じないようにした角膜形状測定装置を提供することに
ある。
[Purpose of the Invention] In order to improve these conventional problems, the purpose of the present invention is to make it possible to display measurement results within the field of view of a microscope and to grasp the shape of the cornea visually. Another object of the present invention is to provide a corneal shape measuring device that does not cause an error in the astigmatic angle due to a deviation between the reference direction of the object and the measuring device.

[発明の概要コ 上述の目的を達成するための本発明の要旨は、角膜形状
を測定する手段と、円周上に配置した複数個の光源を前
記Jlllll設定よる測定結果に基づいて点灯制御す
る手段と、前記光源の点灯状態を視野内に表示する手段
とを備えたことを特徴とする角膜形状測定装置である。
[Summary of the Invention] The gist of the present invention for achieving the above-mentioned object is to provide a means for measuring the shape of the cornea and controlling the lighting of a plurality of light sources arranged on the circumference based on the measurement results based on the Jllllll settings. A corneal shape measuring device characterized by comprising: means for displaying a lighting state of the light source within a field of view.

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Embodiments of the invention] The present invention will be explained in detail based on illustrated embodiments.

第1図は本発明を手術用顕微鏡1に適用した実施例を示
すものであり、2は光源ボックス、3は光源点灯制御装
置、4は既知の角膜形状測定装置、5は測定スイッチ、
Kは被検眼の角膜を表している。そして光源ボックス2
には、第2図に例示するように多数個の光源A1、A2
、A3、・・・が同一円周上に等間隔で配列されている
FIG. 1 shows an embodiment in which the present invention is applied to a surgical microscope 1, in which 2 is a light source box, 3 is a light source lighting control device, 4 is a known corneal shape measuring device, 5 is a measurement switch,
K represents the cornea of the eye to be examined. And light source box 2
, a large number of light sources A1 and A2 are used as illustrated in FIG.
, A3, . . . are arranged at equal intervals on the same circumference.

角膜にの形状を測定するときには、これらの光源Aの全
部が点灯される。かくすることにより第3図に示すよう
に被検眼の角膜に上には、それらの光源像F1、F2、
F3、・・・が投影される。
When measuring the shape of the cornea, all of these light sources A are turned on. As a result, as shown in FIG. 3, these light source images F1, F2,
F3, . . . are projected.

そこで、手術用顕微鏡1を覗いて手術をしている手術者
が測定スイッチ5を踏むと、角膜形状測定装置4によっ
て測定が行われるが、このIII定結果に応じて光源点
灯制御装置3が乱視軸方向の光源Aを、第4図(a)〜
(d)に示すように乱視量に応じた速度で点滅させるよ
うになっている。
Therefore, when a surgeon looking through the surgical microscope 1 and performing a surgery steps on the measurement switch 5, the corneal shape measuring device 4 performs a measurement, and the light source lighting control device 3 controls the astigmatism according to the result of the III determination. The axial light source A is shown in Fig. 4(a)~
As shown in (d), the light blinks at a speed corresponding to the amount of astigmatism.

第4図(a)〜(d)は乱視度数に応じた点滅の様子を
示す光源制御電流波形を例示したものであり、(a)は
乱視量が大きい場合、(d)は乱視がないと見做してよ
い場合、(b) 、 (C)はその中間の場合を示して
いる。そして、角膜形状411定が連続的に行われる場
合には、光源Aの点滅方向、点滅速度も連続的に変化す
る。
Figures 4 (a) to (d) are examples of light source control current waveforms showing blinking conditions depending on the degree of astigmatism; (a) shows when the amount of astigmatism is large, and (d) shows when there is no astigmatism. If it can be considered, (b) and (C) indicate intermediate cases. When the corneal shape 411 is continuously determined, the blinking direction and blinking speed of the light source A also change continuously.

上述の実施例は、乱視軸方向の光源Aを点滅させる場合
を示したが、全ての経線方向について角膜にの曲率半径
に応じた速さで点滅させるようにすることもできる。ま
た、この実施例では乱視量に応じて光源Aの点滅の速さ
を変える場合を示したが、点滅する個数を変えるように
してもよいし、また光源Aの明るさを変化させてもよい
Although the above-mentioned embodiment shows the case where the light source A blinks in the astigmatic axis direction, it can also be made to blink at a speed corresponding to the radius of curvature of the cornea in all meridian directions. Furthermore, although this embodiment shows a case where the blinking speed of light source A is changed depending on the amount of astigmatism, the number of blinks may be changed, or the brightness of light source A may be changed. .

従って全ての経線方向1こついて、角膜にの曲率半径に
応じて光源Aの明るさを変化させるようにしてもよい。
Therefore, the brightness of the light source A may be changed in all meridian directions according to the radius of curvature of the cornea.

なお、各経線方向の曲率に応じた光源Aを遮蔽して光信
号を得ることもできる。更に、前述の実施例では、曲率
半径が一定値に近付くにつれて、点滅の速さが遅くなる
ようにしたが、その点滅が停止する曲率や速度変化の割
合を検者が設定できる手段を設けることもできるし、曲
率半径が一定値に近付くにつれて、点滅の速さを速くす
ることも可能である。また、上述の実施例では光信号に
より乱視軸方向を示すようにしているが、乱視軸方向に
対して一定の方向、例えば垂直方向を示すようにしても
よい。
Note that it is also possible to obtain an optical signal by shielding the light source A according to the curvature in each meridian direction. Furthermore, in the above-mentioned embodiment, as the radius of curvature approaches a constant value, the speed of blinking becomes slower, but it is possible to provide a means for the examiner to set the curvature and rate of change in speed at which the blinking stops. It is also possible to increase the blinking speed as the radius of curvature approaches a constant value. Further, in the above-described embodiment, the optical signal indicates the astigmatic axis direction, but the optical signal may indicate a fixed direction, for example, a perpendicular direction to the astigmatic axis direction.

第5図は本発明の他の実施例における光源部を示してい
る。前述の実施例では、第2図に示すように多数の光源
Aを使用しているが、第5図の場合は1つの円環状光源
6を使用して、測定結果に応じてその一部分を例えば液
晶シャッタ等のような光遮蔽手段によって遮蔽し、光信
号を発生させるようにしている。この第5図においては
、円環状光源6の各部分Bl、 B2、B3、・・・の
うちのB1と87部分が遮蔽された状態になっており、
第2図のものと同様な働きをしている。
FIG. 5 shows a light source section in another embodiment of the invention. In the embodiment described above, a large number of light sources A are used as shown in FIG. 2, but in the case of FIG. The light is shielded by a light shielding means such as a liquid crystal shutter, and an optical signal is generated. In FIG. 5, B1 and 87 of the sections B1, B2, B3, . . . of the annular light source 6 are in a shielded state.
It works in the same way as the one in Figure 2.

この第5図に示す実施例の場合は、遮蔽方向を乱視軸方
向とし、かつ遮蔽部分の大きさを乱視度数に応じて変化
させることも可能である。更に、遮蔽方向を乱視軸に対
して一定方向とし、また遮蔽を一定間隔ごとに緑り返し
、その繰り返し速度を乱視度数に応じて変化させるよう
にしてもよい、光信号を各経線方向の角膜にの曲率半径
に応じた光源6の遮蔽とすることも可能である。
In the case of the embodiment shown in FIG. 5, it is also possible to set the shielding direction in the astigmatic axis direction and to change the size of the shielding portion according to the astigmatic power. Furthermore, the shielding direction may be set in a constant direction with respect to the astigmatic axis, and the shielding may be repeated at regular intervals, and the repetition rate may be changed according to the astigmatic power. It is also possible to shield the light source 6 according to the radius of curvature.

第6図は更に他の実施例を示すものである。先に述べた
実施例では、検者の視野内の光信号に被検眼の角膜反射
像を用いているが、光源からの直接光により光信号を得
るようにしてもよい0例えば、第6図に示すように検者
の視野内に備えた光源C1,C2、C3、・・・を直接
観察するようにしてもよいし、或いは外部に設けたキャ
ラクタ表示を光偏向手段によって、検者の視野内に導く
こともできる。
FIG. 6 shows yet another embodiment. In the embodiment described above, the corneal reflection image of the eye to be examined is used as the optical signal within the visual field of the examiner, but the optical signal may also be obtained by direct light from the light source.For example, as shown in FIG. As shown in the figure, the examiner may directly observe the light sources C1, C2, C3, etc. provided within the examiner's field of view, or a character display provided outside may be used as a light deflector to direct the examiner's field of view. It can also be guided inward.

[発明の効果] 以上説明したように本発明に係る角膜形状測定装置は、
例えば手術用顕微鏡に組込んだ場合は、顕微鏡視野内に
測定結果を表示できるため、手術者は手術用顕微鏡を覗
き込んだまま、測定結果を見ながら手術を続行すること
が可能になる。また、被検者と角膜形状測定装置との傾
きによって乱視方向が変化することもないので、従来の
ような乱視角度の誤差を生ずることもない、更に、角膜
形状を感覚的に把えることが可能になり、乱視方向を数
値で読み取る場合に生じ易い読み誤りや勘違い等を防ぐ
ことができる。
[Effects of the Invention] As explained above, the corneal shape measuring device according to the present invention has the following effects:
For example, when incorporated into a surgical microscope, the measurement results can be displayed within the field of view of the microscope, allowing the surgeon to continue the surgery while viewing the measurement results while looking into the surgical microscope. Furthermore, since the direction of astigmatism does not change due to the tilt of the subject and the corneal shape measuring device, there is no error in the astigmatic angle as in the conventional method, and it is also possible to grasp the corneal shape intuitively. This makes it possible to prevent reading errors and misunderstandings that tend to occur when reading the astigmatism direction numerically.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る角膜形状測定装置の実施例を示すも
のであり、第1図は手術用顕微鏡に適用した実施例の概
略図、第2図は光源の配置例の説明図、第3図は角膜反
射像の説明図、第4図は光源制御電流の波形図、第5図
は光源の他の実施例の説明図、第6図は光源からの直接
光により光信号を得る場合の検者の視野内の説明図であ
る。 符号1は手術用顕微鏡、2は光源ボックス、3は光源点
灯制御装設、4は角膜形状測定装置、5l−)IId’
;:ボッノー二≦−C;ノ+coT!−テ→+−v−,
m^1^9^9・・・、C1、C2、C3、・・・は光
源である。 特許出願人   キャノン株式会社 第1図 第32 第5図 7  B6 笥2図 b 第4図 第6図 E’ C6
The drawings show an embodiment of the corneal shape measuring device according to the present invention, and FIG. 1 is a schematic diagram of the embodiment applied to a surgical microscope, FIG. 2 is an explanatory diagram of an example of arrangement of a light source, and FIG. 3 is an explanatory diagram of a corneal reflection image, Fig. 4 is a waveform diagram of the light source control current, Fig. 5 is an explanatory diagram of another embodiment of the light source, and Fig. 6 is a detection diagram when obtaining an optical signal by direct light from the light source. FIG. 1 is a surgical microscope, 2 is a light source box, 3 is a light source lighting control device, 4 is a corneal shape measuring device, 5l-)IId'
;:Bonno 2≦−C;ノ+coT! −te → +−v−,
m^1^9^9..., C1, C2, C3,... are light sources. Patent applicant: Canon Corporation Figure 1 Figure 32 Figure 5 7 B6 Shade 2 Figure b Figure 4 Figure 6 E' C6

Claims (1)

【特許請求の範囲】 1、角膜形状を測定する手段と、円周上に配置した複数
個の光源を前記測定手段による測定結果に基づいて点灯
制御する手段と、前記光源の点灯状態を視野内に表示す
る手段とを備えたことを特徴とする角膜形状測定装置。 2、前記光源は乱視軸に対し所定方向に点滅するように
した特許請求の範囲第1項に記載の角膜形状測定装置。 3、前記光源の点滅速度を乱視度数に応じて変化させる
ようにした特許請求の範囲第2項に記載の角膜形状測定
装置。 4、前記光源の点滅速度及び点滅速度の変化する割合を
検者が設定するようにした特許請求の範囲第2項に記載
の角膜形状測定装置。 5、前記光源は乱視度数に応じた個数を点滅するように
した特許請求の範囲第1項に記載の角膜形状測定装置。 8、前記光源は各経線方向の曲率半径に応じた点滅速度
とするようにした特許請求の範囲第1項に記載の角膜形
状測定装置。 7、前記光源の点滅の停止する角膜形状を検者が設定す
るようにした特許請求の範囲第6項に記載の角膜形状測
定装置。 8、前記光源は乱視軸に対応する乱視度数に応じた明る
さとした特許請求の範囲第1項に記載の角膜形状測定装
置。 9、前記光源は各経線方向の被検眼の角膜曲率半径に応
じた明るさとした特許請求の範囲第1項に記載の角膜形
状測定装置。 10、前記光源の明るさは前記光源を遮蔽することによ
って得るようにした特許請求の範囲第9項に記載の角膜
形状測定装置。 11、前記複数側の光源は1つの円環状光源を部分的に
遮蔽したものである特許請求の範囲第1項に記載の角膜
形状測定装置。 12、前記円環状光源を部分的に遮蔽する手段として液
晶シャッタを用いた特許請求の範囲第11項に記載の角
膜形状測定装置。 13、前記遮蔽部分の方向を乱視軸方向とし、かつ遮蔽
部分の大きさを乱視度数に応じて変化させるようにした
特許請求の範囲第11項に記載の角膜形状測定装置。 14、前記遮蔽を一定間隔で繰り返し、遮蔽方向を乱視
軸に対して一定方向とし、かつ繰り返し速さを乱視度数
に応じて変化させるようにした特許請求の範囲第11項
記載の角膜形状測定装置。
[Scope of Claims] 1. means for measuring the shape of the cornea; means for controlling the lighting of a plurality of light sources arranged on the circumference based on the measurement results by the measuring means; and controlling the lighting state of the light sources within the visual field. A corneal shape measuring device characterized by comprising: means for displaying. 2. The corneal shape measuring device according to claim 1, wherein the light source blinks in a predetermined direction with respect to the astigmatic axis. 3. The corneal shape measuring device according to claim 2, wherein the blinking speed of the light source is changed according to the astigmatic power. 4. The corneal shape measuring device according to claim 2, wherein the blinking rate of the light source and the rate at which the blinking rate changes are set by the examiner. 5. The corneal shape measuring device according to claim 1, wherein the light source blinks in number according to the astigmatic power. 8. The corneal shape measuring device according to claim 1, wherein the light source blinks at a blinking speed according to a radius of curvature in each meridian direction. 7. The corneal shape measuring device according to claim 6, wherein the corneal shape at which the light source stops blinking is set by the examiner. 8. The corneal shape measuring device according to claim 1, wherein the light source has a brightness corresponding to an astigmatic power corresponding to an astigmatic axis. 9. The corneal shape measuring device according to claim 1, wherein the light source has a brightness that corresponds to the radius of corneal curvature of the eye to be examined in each meridian direction. 10. The corneal shape measuring device according to claim 9, wherein the brightness of the light source is obtained by shielding the light source. 11. The corneal shape measuring device according to claim 1, wherein the light sources on the plurality of sides are one annular light source partially shielded. 12. The corneal shape measuring device according to claim 11, wherein a liquid crystal shutter is used as means for partially shielding the annular light source. 13. The corneal shape measuring device according to claim 11, wherein the direction of the shielding portion is in the astigmatic axis direction, and the size of the shielding portion is changed according to the astigmatic power. 14. The corneal shape measuring device according to claim 11, wherein the shielding is repeated at regular intervals, the shielding direction is set in a constant direction with respect to the astigmatic axis, and the repetition rate is changed according to the astigmatic power. .
JP61112983A 1986-05-17 1986-05-17 Apparatus for measuring shape of cornea Granted JPS62268521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61112983A JPS62268521A (en) 1986-05-17 1986-05-17 Apparatus for measuring shape of cornea

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61112983A JPS62268521A (en) 1986-05-17 1986-05-17 Apparatus for measuring shape of cornea

Publications (2)

Publication Number Publication Date
JPS62268521A true JPS62268521A (en) 1987-11-21
JPH0420351B2 JPH0420351B2 (en) 1992-04-02

Family

ID=14600466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61112983A Granted JPS62268521A (en) 1986-05-17 1986-05-17 Apparatus for measuring shape of cornea

Country Status (1)

Country Link
JP (1) JPS62268521A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030509A1 (en) * 2009-09-11 2011-03-17 株式会社トプコン Microscope for ophthalmic surgery
JP2016212252A (en) * 2015-05-08 2016-12-15 オリンパス株式会社 Microscope system and illumination operation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030509A1 (en) * 2009-09-11 2011-03-17 株式会社トプコン Microscope for ophthalmic surgery
JPWO2011030509A1 (en) * 2009-09-11 2013-02-04 株式会社トプコン Ophthalmic surgery microscope
JP2016212252A (en) * 2015-05-08 2016-12-15 オリンパス株式会社 Microscope system and illumination operation device

Also Published As

Publication number Publication date
JPH0420351B2 (en) 1992-04-02

Similar Documents

Publication Publication Date Title
US3969020A (en) Automatic refraction apparatus and method
JP4668204B2 (en) Ophthalmic binocular wavefront measurement system
US4105302A (en) Automatic refraction apparatus and method
US6234978B1 (en) Optical characteristic measuring apparatus
US4653881A (en) Apparatus for measuring the parameters required when mounting ophthalmic lenses upon a spectacles frame
JP5090807B2 (en) Surgical microscope equipment
Mura et al. Use of a new intra‐ocular spectral domain optical coherence tomography in vitreoretinal surgery
US20030063258A1 (en) Apparatus for examining an anterior-segment of an eye
JP3028421B2 (en) Surgical microscope
El Hage A computerized corneal topographer for use in refractive surgery
Maguire et al. Visual distortion after myopic keratomileusis: computer analysis of keratoscope photographs
JPS5949734A (en) Optical system for eye inspector with illumination
JPS62268521A (en) Apparatus for measuring shape of cornea
JPS62268523A (en) Ophthalmic apparatus
JPS60253429A (en) Ophthalmic examination apparatus
JP3501499B2 (en) Optometrist
US5731863A (en) Ophthalmic apparatus for inspecting a refractive power of an eye
JP2567642B2 (en) Pupillary distance meter
JP3254008B2 (en) Optometry device
DE10009532A1 (en) Quality assurance method for eye operations involves using binocular observation instrument to observe surface of eye and test card projected onto retina through eye lens
JP3335435B2 (en) Perimeter measurement device
Doshi et al. Assessment and investigative techniques
JP7249097B2 (en) Ophthalmic device and optometric system
JPH1170076A (en) Optometry device
JPH0622910A (en) Eyesight test device