JPS62268178A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS62268178A
JPS62268178A JP11216686A JP11216686A JPS62268178A JP S62268178 A JPS62268178 A JP S62268178A JP 11216686 A JP11216686 A JP 11216686A JP 11216686 A JP11216686 A JP 11216686A JP S62268178 A JPS62268178 A JP S62268178A
Authority
JP
Japan
Prior art keywords
modulation
layer
region
laser
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11216686A
Other languages
Japanese (ja)
Inventor
Naoya Henmi
直也 逸見
Koichi Minemura
峰村 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11216686A priority Critical patent/JPS62268178A/en
Publication of JPS62268178A publication Critical patent/JPS62268178A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1025Extended cavities

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve oscillation spectral purity by forming a modulation region optically coupled with one of a laser region and an optical guide layer optically coupled with the other of an active layer and increasing the reflectivity of the emission end surface of the optical guide layer. CONSTITUTION:A diffraction grating 10 is shaped only on the surface of a section as a laser region 22 on an N-InP substrate l, and an N-InGaAsP optical guide layer 12, an InGaAsP active layer 13 and a P-InP clad layer 30 are grown. An SiO2 film is prepared so as to coat the whole surface on the layer 30 and patterned, the SiO2 film except the upper sections of the laser region 22 and a modulation region 23 is removed, and the P-InP layer 30 and the InGaAsP active layer 13 are etched selectively. An InGaAsP optical guide layer 50 is grown, the SiO2 film is etched, a P-InP clad layer 31 is grown on the layer 50 and flattened, and a P<+>-InGaAsP cap layer 20 is grown in an epitaxial manner in order. Accordingly, spectral purity is improved, the efficiency of frequency modulation is enhanced, and the frequency characteristics of the laser are flattened.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光へテロダイン検波、光ホモダイン検波を用
いる光通信システムや光計測システム等に用いられる半
導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser used in optical communication systems, optical measurement systems, etc. that use optical heterodyne detection or optical homodyne detection.

(従来の技術) 近年、光通信のひとつとして光の周波数や位相の情報を
用いるフヒーレント光伝送方式の検討が各所で進められ
ている。特に、光の周波数情報を用いる周波数偏移(F
SX)光ヘテロダイン光通信方式の場合、その周波数変
調を半導体レーザの注入電流の微小変化によって実現す
ることができるので、変調のために外部変調器を用いる
必要がなく、損失の小さいシステムを構成することがで
きるという特徴がある。
(Prior Art) In recent years, studies on coherent optical transmission systems that use information on the frequency and phase of light have been progressing in various places as one type of optical communication. In particular, the frequency shift (F
SX) In the case of the optical heterodyne optical communication system, the frequency modulation can be achieved by minute changes in the injection current of the semiconductor laser, so there is no need to use an external modulator for modulation, and a system with low loss can be constructed. It has the characteristic of being able to

しかし、このFSK光ヘテロダイン通信方式において高
受信感度を実現するには、光;原のスペクトル純度が十
分に高いことが必要であり、現状の半導体レーザては、
この要求を必すしも1悶だしていないという問題点があ
る。
However, in order to achieve high reception sensitivity in this FSK optical heterodyne communication system, the spectral purity of the light source must be sufficiently high, and current semiconductor lasers
The problem is that this demand is not necessarily met.

このスペクトル純度の問題を解決する方法として、半導
体レーザに光学的に結合している光導波路層を設け、そ
の出射端面の反射率を高くすることで外部鏡を付加した
構造とし、スペクトル純度を高くする方法が考えられて
いる。(村田他、昭和60年応用物理学術講演会(秋)
講演予稿集IP−M−6)(本発明の解決しようとする
問題点) しかし、この光導波路層を設けた構造の半導体レーザは
、レーザ光周波数を圧入電流を直接変調することで、周
波数変調する際、周波数変調効率が単体の半導体レーザ
に比べて大幅に劣化する欠点や、周波数変調効率の周波
数特性が周波数依存性を持つため、周波数変調を行なう
原変調に歪みを生ずる欠点があった。
As a way to solve this problem of spectral purity, an optical waveguide layer is provided that is optically coupled to the semiconductor laser, and by increasing the reflectance of the output end face, a structure is added with an external mirror, which increases the spectral purity. A method is being considered. (Murata et al., 1985 Applied Physics Academic Lecture (Autumn)
Lecture Proceedings IP-M-6) (Problems to be Solved by the Present Invention) However, the semiconductor laser with this structure provided with an optical waveguide layer does not allow frequency modulation by directly modulating the laser light frequency with the press-in current. When doing so, there are disadvantages in that the frequency modulation efficiency is significantly degraded compared to a single semiconductor laser, and the frequency characteristics of the frequency modulation efficiency are frequency dependent, causing distortion in the original modulation that performs frequency modulation.

(問題を解決するための手段) 本発明は、活性層内に回折格子を有するレーザ領域と、
前記レーザ領域の一方に光学的に結合している制御領域
を有し、前記活性層の他方に光学的に結合している光導
波路層を備え、前記光導波路層の出射端面の反射率を高
反射率とする構造を持ち、さらに、前記光導波路層の長
さを前記レーザ領域と前記変調領域の長さの和よりも長
くした構成となっている。
(Means for solving the problem) The present invention provides a laser region having a diffraction grating in an active layer;
a control region optically coupled to one of the laser regions, an optical waveguide layer optically coupled to the other of the active layers, and the reflectance of the output end face of the optical waveguide layer is increased. The optical waveguide layer has a structure with a reflectance, and the length of the optical waveguide layer is longer than the sum of the lengths of the laser region and the modulation region.

(作用) 以下、本発明の原理について説明する。ここでは、まず
集積型レーザ素子として、レーザの活性層の近くに回折
格子からなる分布帰還構成となったレーザ領域を持ち、
変調領域を持たずに、前記活性層の一方に光学的に結合
している長い光導波路層と前記光導波路層の出力端面の
反射率を高反射率のミラーとした構造のものを考える。
(Operation) The principle of the present invention will be explained below. First, the integrated laser device has a laser region with a distributed feedback configuration consisting of a diffraction grating near the active layer of the laser.
Consider a structure that does not have a modulation region but has a long optical waveguide layer optically coupled to one of the active layers and a mirror with high reflectance at the output end face of the optical waveguide layer.

この型の集積型レーザ素子では、長い光導波路層の出力
端面のミラーが外部鏡となるため、光導波路層を持たな
い単体の半導体レーザに比ベスペクトル純度が大幅に改
善されることが知られている。(村田他、昭和60年応
用物理学術講演会(秋)講演予稿集IP−M−6) また、この集積型半導体レーザ素子はレーザ領域が分布
帰還構成になっているので回折格子の波長選択性に合っ
た波長で単一軸モード発振する。
In this type of integrated laser device, the mirror at the output end face of the long optical waveguide layer serves as an external mirror, so it is known that the spectral purity is significantly improved compared to a single semiconductor laser without an optical waveguide layer. ing. (Murata et al., 1985 Applied Physics Conference (Autumn) Lecture Proceedings IP-M-6) In addition, since this integrated semiconductor laser device has a distributed feedback configuration in the laser region, the wavelength selectivity of the diffraction grating is It oscillates in a single axis mode at a wavelength that matches the wavelength.

この集積型半導体レーザ素子のレーザ領域を閾値以上に
バイアスし、さらにその沈入電流の大きさを微小に変化
させるとレーザ媒質内のキャリア密度の変動によりレー
ザ媒質内の屈折率が変化してレーザ出力光に周波数変調
がかかる。これは通常の半導体レーザで行なわれている
従来の直接周波数変調方法と同じである。この場合のキ
ャリア密度変動は半導体レーザの緩和振動に1影響され
るから、変調周波数によってキャリアの変動量に違いが
生じる。従って、直接周波数変調時の変調特性も不均一
になり10MHz〜数GHzの範囲では変調周波数が高
いほど周波数偏移が太きいという現象が観測される。こ
の場合の周波数偏移の周波数特性の一例を第2図に示す
。このためレーザ領域に加える電流をパルスでAM変調
しFM変調したレーザ光を得て、このレーザ光を復調す
る場合には波形歪が生じていた。
When the laser region of this integrated semiconductor laser device is biased above the threshold value and the magnitude of the sinking current is slightly changed, the refractive index within the laser medium changes due to fluctuations in the carrier density within the laser medium, causing the laser to emit light. Frequency modulation is applied to the output light. This is the same as the conventional direct frequency modulation method used in ordinary semiconductor lasers. Since the carrier density fluctuation in this case is influenced by the relaxation oscillation of the semiconductor laser, the amount of carrier fluctuation varies depending on the modulation frequency. Therefore, the modulation characteristics during direct frequency modulation also become non-uniform, and in the range of 10 MHz to several GHz, a phenomenon is observed in which the higher the modulation frequency, the wider the frequency shift. An example of the frequency characteristics of the frequency shift in this case is shown in FIG. For this reason, waveform distortion occurs when the current applied to the laser region is AM-modulated with pulses to obtain FM-modulated laser light and this laser light is demodulated.

これに対し、ニス、ヤマザキ他のエレクトロニクスレー
タース1985年21巻7号の283〜285ページの
変調領域を設けたレーザでは、レーザ領域に発振しきい
値以−ヒの一定値のバイアス電流を印加しておき、変調
領域に加える゛電流の大きさを変調信号で微小に変化さ
せると、出力光に周波数変調をかけることができる。し
かもこの時変調効率が変調領域を持たない半導体レーザ
に比べ大きくかつ変調周波数依存性が平坦となることが
知られてし)る。この場合の周波数変調は、次のような
原理により実現されている。
On the other hand, in a laser with a modulation region as described in Niss, Yamazaki et al., Electronics Raters, Vol. 21, No. 7, 1985, pages 283-285, a bias current of a constant value below the oscillation threshold is applied to the laser region. Then, by slightly changing the magnitude of the current applied to the modulation region using a modulation signal, it is possible to frequency modulate the output light. Furthermore, it is known that at this time, the modulation efficiency is greater than that of a semiconductor laser without a modulation region, and the dependence on the modulation frequency is flat. Frequency modulation in this case is realized by the following principle.

一般に、分布帰還型半導体レーザの発振周波数を決める
要因のひとつとして半導イ本レーザの共振器端面と回折
格子の位相関係があげられる。本発明で用いる集積型半
導体レーザ索子の変調領域に電流を)主人すると変調領
域のキャリア密度が変化する。これにより、等測的に、
分布帰還領域(!111から見た変調領域側端面の位相
条件がかわったことになり発振周波数が変化し、ひいて
は出力光に周波数変調がかかる。このとき変調領域はレ
ーザ領域のような活性領域ではなく、キャリア密度変動
の;影響を受けないから、均一な周波数変調特性が得ら
れる。また、レーザ領域てはキャリア密度はレーザ発振
閾値状態にクランプされるのて電流:を人に対するキャ
リア密度変動は小さい。これに対し変調領域では;を人
された゛電流のほとんどがキャリア密度変動に寄与する
ので効率の良い周波数変調を実現することができる。
Generally, one of the factors that determines the oscillation frequency of a distributed feedback semiconductor laser is the phase relationship between the resonator end face of the semiconductor laser and the diffraction grating. When a current is applied to the modulation region of the integrated semiconductor laser probe used in the present invention, the carrier density in the modulation region changes. This gives us, isometrically,
As the phase condition of the modulation region side end face as seen from the distributed feedback region (!111) changes, the oscillation frequency changes, and as a result, frequency modulation is applied to the output light.At this time, the modulation region is not an active region such as a laser region. Uniform frequency modulation characteristics can be obtained because the carrier density is not affected by carrier density fluctuations.Also, in the laser region, the carrier density is clamped to the laser oscillation threshold state, so the carrier density fluctuations for humans are On the other hand, in the modulation region, most of the applied current contributes to carrier density fluctuations, making it possible to realize efficient frequency modulation.

本発明の集積型半導体レーザ素子ても、レーザ領域に光
学的に結合している変調領域を有しているため、変調領
域を有しない集積型半導体レーザ素子に比較し、変調効
率が高くなると同時にその周波数依存性を平坦とするこ
とができる。また本発明の半導体レーザ素子では、長い
光導波路層を有するため、発振スペクトルの純度も高く
なる。
Since the integrated semiconductor laser device of the present invention also has a modulation region optically coupled to the laser region, the modulation efficiency is higher than that of an integrated semiconductor laser device that does not have a modulation region. Its frequency dependence can be made flat. Furthermore, since the semiconductor laser device of the present invention has a long optical waveguide layer, the purity of the oscillation spectrum is also increased.

ここで、発振スペクトルの純度は集積型半導体レーザの
長さに比例して高くなるので、光導波路層の長さを変調
領域とレーザ領域の長さの和よりも長くすれば、発振ス
ペクトルの純度は光導波路層が無い場合に比べて2倍以
上改善される。
Here, the purity of the oscillation spectrum increases in proportion to the length of the integrated semiconductor laser, so if the length of the optical waveguide layer is made longer than the sum of the lengths of the modulation region and the laser region, the purity of the oscillation spectrum increases. is improved by more than twice compared to the case without the optical waveguide layer.

(実施例) 以下に、本発明の実施例を図面を用いて説明する。第1
図は、本発明の一実施例で使用するレーザ光直接周波数
変調装置のブロック図、第2図は第1図の集積型半導体
レーザ素子から変調領域を取りさった構造の従来のレー
ザの変調特性を示す図、第3図は本発明の実施例により
変調領域で周波数変調を行なった場合の変調特性を示す
図である。
(Example) Examples of the present invention will be described below with reference to the drawings. 1st
The figure is a block diagram of a laser beam direct frequency modulator used in an embodiment of the present invention, and Figure 2 shows the modulation characteristics of a conventional laser with a structure in which the modulation region is removed from the integrated semiconductor laser device of Figure 1. FIG. 3 is a diagram showing modulation characteristics when frequency modulation is performed in the modulation region according to an embodiment of the present invention.

この実施例で用いた集積型半導体レーザ素子21は次の
ようにして構成した。まず、n−InP基板1の上にレ
ーザ領域22となる部分の表面にのみ周期約2400人
の回折格子10を形成した。その後n−InGaAsP
光導波路層12を0.2pm、 InGaAsP活性層
13を0.1pm、 p−InPクラッド層30を0.
2pm成長させる。この上に全面を覆うようにSiO2
膜を作成しフォトレジストを用いてパターニングを行な
い、レーザ領域22、および変調領域23上以外のSi
O2膜を除去し、p−InP層30およびInGaAs
P活性層13を選択的にエツチングする。この後InG
aAsPの光導波路層50(発光波長にして1.15p
mjll成)を0.2μm成長し、5i02膜をエツチ
ングしその上にp−InPクランド帰31を0.8pm
成長し平坦としだ後p+−InGaAsPキャップ層2
0を順次エピタキシャル成長させる。さらに、レーザ領
域22および変調領域23のキャップ層20上に駆動電
極61、変調電極62をそれぞれ形成し、InP基板1
の下にはn側電極8を形成した。また駆動電極61と変
調電極62の間には両電極間の電気的アイソレーション
をよくするためにキャップ層20より深い溝90を形成
した。さらに光導波路層50の出射端に絶縁膜であるS
i○2膜91と、その上にAu膜92を形成することに
よって光の反射率を95%以上とした。以上の工程によ
り第1図のような半導体レーザ21が製作できる。
The integrated semiconductor laser device 21 used in this example was constructed as follows. First, a diffraction grating 10 with a period of about 2400 was formed only on the surface of the portion that would become the laser region 22 on the n-InP substrate 1 . Then n-InGaAsP
The thickness of the optical waveguide layer 12 is 0.2 pm, the thickness of the InGaAsP active layer 13 is 0.1 pm, and the thickness of the p-InP cladding layer 30 is 0.2 pm.
Grow 2pm. SiO2 is placed on top of this to cover the entire surface.
A film is created and patterned using a photoresist, and the Si is removed in areas other than the laser area 22 and modulation area
The O2 film is removed and the p-InP layer 30 and InGaAs
The P active layer 13 is selectively etched. After this InG
aAsP optical waveguide layer 50 (1.15p in terms of emission wavelength)
5i02 film was etched, and p-InP ground film 31 was grown to 0.8 pm on top of the 5i02 film.
After growing and flattening the p+-InGaAsP cap layer 2
0 is sequentially epitaxially grown. Furthermore, a drive electrode 61 and a modulation electrode 62 are formed on the cap layer 20 of the laser region 22 and the modulation region 23, respectively, and the InP substrate 1
An n-side electrode 8 was formed below. Further, a groove 90 deeper than the cap layer 20 was formed between the drive electrode 61 and the modulation electrode 62 in order to improve electrical isolation between the two electrodes. Further, an insulating film S is provided at the output end of the optical waveguide layer 50.
By forming the i○2 film 91 and the Au film 92 thereon, the light reflectance was made 95% or more. Through the above steps, a semiconductor laser 21 as shown in FIG. 1 can be manufactured.

なお、レーザ領域22、変調領域23、および光導波路
層50の長さは、それぞれ3009m、300Pm、2
mmとなっている。
The lengths of the laser region 22, modulation region 23, and optical waveguide layer 50 are 3009 m, 300 Pm, and 2.0 m, respectively.
mm.

また周辺回路として、レーザ領域22に電流を注入する
ための駆動回路11と変調領j或に電流を注入するため
の変調回路42、周波数変調を行なうための変調信号を
発生する信号発生器43を用意した。
Further, as peripheral circuits, a drive circuit 11 for injecting current into the laser region 22, a modulation circuit 42 for injecting current into the modulation region j, and a signal generator 43 for generating a modulation signal for frequency modulation are provided. Prepared.

レーザ領域22は発振閾値具」二の一定値にバイアスし
ておき、信号発生器43からの信号を、変調回路42を
介して変調領域23に加えて周波数変調を行なう。その
変調特性を第3図に示す。変調領域23での周波数変調
はその変調効率がよく、また変調特性に変調周波数依存
性はなかった。
The laser region 22 is biased to a constant value of the oscillation threshold value, and a signal from a signal generator 43 is applied to the modulation region 23 via the modulation circuit 42 to perform frequency modulation. The modulation characteristics are shown in FIG. Frequency modulation in the modulation region 23 had good modulation efficiency, and the modulation characteristics had no modulation frequency dependence.

次に、信号発生器43で100Mb/sのNRZランダ
ム信号を発生し、変調回路42を介して変調領域23に
加え、2値FM変調を行なった。ここで集積型半導体レ
ーザ素子21からの被変調出力光24をファブリ・ペロ
ー、エタロンを通すことで直接光周波数弁別検波し、出
力波形を観測した。得られた波形は変調波形をほぼ忠実
に再生しており、変調領域23での周波数変調による波
形歪はなかった。またこの時のスペクトル幅をヘテロダ
イン検波することで測定した結果、IMHz程度となっ
ていた。
Next, a 100 Mb/s NRZ random signal was generated by the signal generator 43 and added to the modulation area 23 via the modulation circuit 42 to perform binary FM modulation. Here, the modulated output light 24 from the integrated semiconductor laser device 21 was directly subjected to optical frequency discrimination detection by passing through a Fabry-Perot etalon, and the output waveform was observed. The obtained waveform almost faithfully reproduced the modulated waveform, and there was no waveform distortion due to frequency modulation in the modulation region 23. Further, the spectral width at this time was measured by heterodyne detection and was found to be approximately IMHz.

本発明には以上の実施例の他にも様々な変形例が考えら
れる。たとえば、本実施例てはレーザ領域22において
分布j帰還用の回折格子10が活性層2の上側にある集
積型半導体レーザ素子21を用いてもよい。また、本発
明ては、レーザ領域22において回折格子10は一部に
のみ溝成し、回折格子]0のある領域を非注入領域とし
た、すなわち、レーザ領j422が分布反射型のレーザ
により構成される集積型半導体レーザ素子も使用できる
。集積型半導体レーザ素子21のスイライプ溝造は本実
施例の埋め込みへテロ構造に限らず、プレーナストライ
プ構造、トランスバースジャンクションストライプ構造
等様々な構造をとることができる。また、集積型半導体
レーザ素子21の発振波長は1.55pmt:限定され
ず、例えば1.3pm等様々な波長にすることが可能で
ある。また、集積型半導体レーザ素子21として変調領
域23の側の端面に反射率を低減させるコーティングを
施したものを使用してもよい。この場合には、被変調出
力光24の光パワーを高めることが出来る。
In addition to the above-described embodiments, various modifications of the present invention can be considered. For example, in this embodiment, an integrated semiconductor laser device 21 may be used in which the diffraction grating 10 for distributed j feedback is located above the active layer 2 in the laser region 22. In addition, in the present invention, the diffraction grating 10 is formed into grooves only in a part of the laser region 22, and the region where the diffraction grating]0 is set as a non-injected region, that is, the laser region j422 is constituted by a distributed reflection type laser. An integrated semiconductor laser device can also be used. The swipe groove structure of the integrated semiconductor laser device 21 is not limited to the buried heterostructure of this embodiment, but can take various structures such as a planar stripe structure and a transverse junction stripe structure. Further, the oscillation wavelength of the integrated semiconductor laser device 21 is not limited to 1.55 pm, and can be set to various wavelengths such as 1.3 pm, for example. Alternatively, the integrated semiconductor laser device 21 may be one in which the end face on the modulation region 23 side is coated to reduce reflectance. In this case, the optical power of the modulated output light 24 can be increased.

(発明の効果) 以上のように本発明の構造の半導体レーザを用いると、
スペクトル純度が高く、しがち周波数変調効率が高くそ
の周波数特性が平坦である特性を提供できる。
(Effects of the Invention) As described above, when the semiconductor laser having the structure of the present invention is used,
It is possible to provide characteristics such as high spectral purity, high frequency modulation efficiency, and flat frequency characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例で使用するレーザ光直接周波
数変調装置のブロフク図、第2図は従来レーザの変調特
性を示す図、第3図は本発明の実施例により変調領域で
周波数変調を行なった場合の変調特性を示す図である。 13:活性層 21:集積型半導体レーザ素子 22:レーザ領域 23:変調領域 50:光導波踏射 92:Au月莫 第2図 [GHz/mA l 1M  10M  100M  iG  iOG変調周
波数  (Hzl 第3図 1M  iOM  ioOM  iG  IOG変調周
波敬 f Hz l
Fig. 1 is a block diagram of a laser beam direct frequency modulation device used in an embodiment of the present invention, Fig. 2 is a diagram showing the modulation characteristics of a conventional laser, and Fig. 3 is a diagram showing the frequency in the modulation region according to an embodiment of the present invention. FIG. 7 is a diagram showing modulation characteristics when modulation is performed. 13: Active layer 21: Integrated semiconductor laser element 22: Laser region 23: Modulation region 50: Optical waveguide traversing 92: Au Moon Figure 2 [GHz/mA l 1M 10M 100M iG iOG modulation frequency (Hzl) Figure 3 1M iOM ioOM iG IOG modulation frequency f Hz l

Claims (1)

【特許請求の範囲】[Claims] 活性層に沿って回折格子を有するレーザ領域と、前記レ
ーザ領域の一方に光学的に結合している変調領域と前記
活性層の他方に光学的に結合している光導波路層とを有
し、前記光導波路層の出射端面の反射率を高反射率とす
る構造としたことを特徴とする半導体レーザ。
a laser region having a diffraction grating along an active layer, a modulation region optically coupled to one of the laser regions, and an optical waveguide layer optically coupled to the other of the active layer; A semiconductor laser characterized by having a structure in which the output end face of the optical waveguide layer has a high reflectance.
JP11216686A 1986-05-15 1986-05-15 Semiconductor laser Pending JPS62268178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11216686A JPS62268178A (en) 1986-05-15 1986-05-15 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11216686A JPS62268178A (en) 1986-05-15 1986-05-15 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS62268178A true JPS62268178A (en) 1987-11-20

Family

ID=14579894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11216686A Pending JPS62268178A (en) 1986-05-15 1986-05-15 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS62268178A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1154531A2 (en) * 2000-04-28 2001-11-14 Agere Systems Optoelectronics Guardian Corporation Semiconductor optical devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1154531A2 (en) * 2000-04-28 2001-11-14 Agere Systems Optoelectronics Guardian Corporation Semiconductor optical devices
EP1154531A3 (en) * 2000-04-28 2002-01-30 Agere Systems Optoelectronics Guardian Corporation Semiconductor optical devices

Similar Documents

Publication Publication Date Title
EP0169567A2 (en) Semiconductor laser device
JPH0256837B2 (en)
JPS6154690A (en) Semiconductor laser device
JP2001320124A (en) Modulator integrated light source and module for optical communication
JPH06103778B2 (en) Optical device including semiconductor distributed feedback laser and method of driving the same
US5914977A (en) Semiconductor laser having a high-reflectivity reflector on the laser facets thereof, an optical integrated device provided with the semiconductor laser, and a manufacturing method therefor
JPH0732279B2 (en) Semiconductor light emitting element
JPH03256386A (en) Semiconductor laser, its manufacture and optical communication system
JPH0626276B2 (en) Laser optical direct frequency modulation method
US4644552A (en) Semiconductor laser
EP0411145A1 (en) Integrated optical semiconductor device and method of producing the same
JPS62268178A (en) Semiconductor laser
JPH0470794B2 (en)
JPS6170779A (en) Optical transmitter
JPH11330624A (en) Semiconductor device
JP2658547B2 (en) Semiconductor laser
JPH06196799A (en) Distributed-feedback semiconductor laser
JP2002033551A (en) Device and system for optical transmission
JP2002064241A (en) Optical transmitter and optical transmission system
JP2776381B2 (en) Semiconductor laser device
JPS63147387A (en) Semiconductor laser device
JPH06326410A (en) Integrated semiconductor laser beam source
JPH1187853A (en) Optical semiconductor device
JPH11121861A (en) Distributed feed back laser
JPS594870B2 (en) semiconductor light emitting device