JPS62267690A - Fast breeding type reactor - Google Patents

Fast breeding type reactor

Info

Publication number
JPS62267690A
JPS62267690A JP61110774A JP11077486A JPS62267690A JP S62267690 A JPS62267690 A JP S62267690A JP 61110774 A JP61110774 A JP 61110774A JP 11077486 A JP11077486 A JP 11077486A JP S62267690 A JPS62267690 A JP S62267690A
Authority
JP
Japan
Prior art keywords
primary
vessel
coolant
container
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61110774A
Other languages
Japanese (ja)
Other versions
JPH0579156B2 (en
Inventor
禎男 服部
忠 後藤
孝志 池田
山川 正剛
昇 中尾
北沢 計
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Hitachi Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Hitachi Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP61110774A priority Critical patent/JPS62267690A/en
Publication of JPS62267690A publication Critical patent/JPS62267690A/en
Publication of JPH0579156B2 publication Critical patent/JPH0579156B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Cultivation Of Seaweed (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高速増殖型原子炉に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to fast breeder nuclear reactors.

〔従来の技術〕[Conventional technology]

本発明に近い従来技術として特開昭60−57289号
公報に開示されたものがある。
A conventional technique close to the present invention is disclosed in Japanese Unexamined Patent Publication No. 60-57289.

この従来例によると高速増殖型原子炉の蒸気発生系と二
次冷却系とを一次冷却系廻りに接近集約することにより
高集約型の原子炉となっている。
According to this conventional example, the steam generation system and secondary cooling system of a fast breeder nuclear reactor are closely integrated around the primary cooling system, resulting in a highly intensive nuclear reactor.

しかしながら、一次冷却系が包含される一次容器内の構
成は、炉心の外周に配置されて一次容器内をホットプレ
ナムとコールドプレナムに区画する水平隔壁と、一次容
器内の一次冷却材を流動させる機械式の一次冷却材駆動
ポンプと、一次冷却材と二次冷却材との間の熱交換を行
う中間熱交換器とを一次容器内壁沿いに互い違いに配置
して備える構成である。又、本願発明に関連する観点で
、電熱面を内蔵する電磁フローカプラーの基本的機能に
ついては特開昭61−29688号に開示されてる。
However, the structure inside the primary vessel, which includes the primary cooling system, consists of a horizontal bulkhead placed around the outer periphery of the core that divides the inside of the primary vessel into a hot plenum and a cold plenum, and a machine that flows the primary coolant inside the primary vessel. The primary coolant-driven pump and intermediate heat exchangers for exchanging heat between the primary coolant and the secondary coolant are arranged alternately along the inner wall of the primary container. Further, from a perspective related to the present invention, the basic function of an electromagnetic flow coupler incorporating an electrothermal surface is disclosed in Japanese Patent Laid-Open No. 61-29688.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術においては、集約化が一次容器内にまで及んで
おらず、一層の集約化が望まれる。
In the prior art, the concentration has not extended to the inside of the primary container, and further consolidation is desired.

本願発明の目的は、従来よりも集約化が図られたより一
層簡素な原子炉プラントを提供することにある。
An object of the present invention is to provide a simpler nuclear reactor plant that is more integrated than the conventional one.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を解決するための構成要件は、炉心と一次冷却
材とを内蔵した一次容器と、前記一次容器内をホットプ
レナムとコールドプレナムとに区画する隔壁と、前記−
大容器を内包する二次容器と、前記一次と二次の両容器
間隔間にいれた二次冷却材と二次冷却材の駆動ポンプと
蒸気発生器とを備え、前記両容器間隔間を前記二次冷却
材の流路とした原子炉において、前記コールドプレナム
内であって前記炉心の外周囲に、一次流路と二次流路と
を備え前記両流路間の伝熱面を備えた電磁フローカプラ
ーを設け、前記駆動ポンプの吐出口と前記二次流路の入
り口とを配管にて連通し、前記二次流路の出口と前記蒸
気発生器の二次冷却材入り口とを配管にて連通し、前記
一次流路の入り口を前記ホットプレナムに、出口を前記
コールドプレナムにそれぞれ連通し、前記駆動ポンプの
吸い込み口と前記蒸気発生器の二次冷却材出口とを前記
両容器間隔間に連通したことを特徴としたことにある。
The structural requirements for solving the above object are: a primary vessel containing a reactor core and a primary coolant; a partition wall that partitions the inside of the primary vessel into a hot plenum and a cold plenum;
A secondary refrigerant containing a large container, a secondary refrigerant placed between the primary and secondary containers, a secondary refrigerant driving pump, and a steam generator. In a nuclear reactor with a secondary coolant flow path, a primary flow path and a secondary flow path are provided in the cold plenum and around the outer periphery of the core, and a heat transfer surface is provided between the two flow paths. An electromagnetic flow coupler is provided, the discharge port of the driving pump and the inlet of the secondary flow path are connected through piping, and the outlet of the secondary flow path and the secondary coolant inlet of the steam generator are connected through piping. The inlet of the primary flow path is in communication with the hot plenum, and the outlet is in communication with the cold plenum, and the suction port of the drive pump and the secondary coolant outlet of the steam generator are connected between the two containers. It is characterized by being connected to.

〔作用〕[Effect]

上記の構成要件によれば、駆動ポンプにより二次冷却材
を二次流路を通して蒸気発生器に入れ、蒸気発生器から
二次容器内に戻すようにすると、電磁フローカプラーの
機能により一次流路内の一次冷却材に流動力を与えるこ
とが出来、一次容器内に駆動ポンプが無くとも一次冷却
材をコールドプレナムから炉心を通してホットプレナム
に、そしてホットプレナムから一次流路内を通してコー
ルドプレナムにもどる一次循環系の流動状態が成立する
とともに電磁フローカプラー内で伝熱面を利用して一次
と二次の両流体間で熱交換を行い炉心の熱を二次冷却材
で蒸気発生器にまで取り出せるに至る。
According to the above configuration requirements, if the driven pump introduces the secondary coolant through the secondary flow path into the steam generator and returns from the steam generator into the secondary vessel, the electromagnetic flow coupler function will cause the secondary coolant to pass through the primary flow path. Even without a driving pump in the primary vessel, the primary coolant can be transferred from the cold plenum through the core to the hot plenum, and from the hot plenum through the primary flow path and back to the cold plenum. When the fluid state of the circulation system is established, heat is exchanged between the primary and secondary fluids using the heat transfer surface within the electromagnetic flow coupler, and heat from the reactor core can be taken out to the steam generator using the secondary coolant. reach.

〔実施例〕〔Example〕

以下に本願発明の一実施例を図面に基づいて説明する。 An embodiment of the present invention will be described below based on the drawings.

第1図のごとく、一次官器1内底部に設置した架台2上
には炉心部3が設置される。−大容器1内は隔壁4によ
り上部のホットプレナム5と下部のコールドプレナム6
とに区画される。この架台2上には炉心部3の外周囲を
囲む配置で電磁フローカプラー7が設置される。このよ
うな配置により電磁フローカプラー7はコールドプレナ
ム6内に置かれる6 一次容器1の底部は部分球面状に湾曲しており、上端部
には水平なフランジ8が形成されている。
As shown in FIG. 1, a reactor core 3 is installed on a pedestal 2 installed at the bottom of the primary organ 1. - Inside the large container 1, there is a hot plenum 5 in the upper part and a cold plenum 6 in the lower part by the partition wall 4.
It is divided into An electromagnetic flow coupler 7 is installed on the pedestal 2 so as to surround the outer periphery of the reactor core 3. With this arrangement, the electromagnetic flow coupler 7 is placed in the cold plenum 6. The bottom of the primary vessel 1 is curved in a partially spherical shape, and a horizontal flange 8 is formed at the upper end.

このフランジ8は、二連のルーフスラブ9,10゜11
の内のルーフスラブ10.11によりはさみこまれて取
り付いている。このような取付けによりルーフスラブと
一次容器1との取付けにさいして面倒な異材溶接継手の
採用を避けることができる。
This flange 8 connects two roof slabs 9, 10° 11
It is sandwiched between the roof slabs 10 and 11 and attached. Such attachment makes it possible to avoid the use of troublesome welded joints of dissimilar materials when attaching the roof slab to the primary vessel 1.

一次容器1内には一次冷却材12として液体金属のナト
リュウムが入れられている。そして一次官器1内の一次
冷却材12の液面13とルーフスラブ9,1oとの間の
空間には不活性なカバーガス14が充満している。
Liquid metal sodium is contained in the primary container 1 as a primary coolant 12 . The space between the liquid level 13 of the primary coolant 12 in the primary organ 1 and the roof slabs 9, 1o is filled with an inert cover gas 14.

一次容器1は二次容器15に包含されており、この二次
容器15はその上端部をルーフスラブ11に固定される
。この固定に際しては二次容器15側は一次容器1側よ
りも低温の傾向にあるので溶接によって行ってもよい。
The primary container 1 is enclosed in a secondary container 15, which is fixed at its upper end to the roof slab 11. This fixing may be done by welding since the secondary container 15 side tends to be lower in temperature than the primary container 1 side.

二次容器15の形状は、下部を部分球面状にしてその部
分球面の途中を絞り込んだ状態の段付形状にしである。
The shape of the secondary container 15 is a stepped shape in which the lower part is partially spherical and the partially spherical surface is narrowed in the middle.

このような段付形状にすることにより一次容器1の底部
湾曲部と二次容器15の底部内壁面との間の隙間りを他
の部分における隙間よりも狭くしである。この隙間りの
大きさについては、原子炉の運転時の一次容器1の熱膨
張後にあって、二次容器15内の二次冷却材16により
一次容器1にたいして流体制振効果が十分与えることの
出来る大きさに設定する。このような設定によれば、地
震等の外力を受けても一次容器1と一次容器1内の機器
の安全が図れ、補強の増加無くして軽量化に貢献できる
By adopting such a stepped shape, the gap between the curved bottom portion of the primary container 1 and the inner wall surface of the bottom portion of the secondary container 15 is made narrower than the gap in other portions. The size of this gap is determined to ensure that the secondary coolant 16 in the secondary vessel 15 exerts a sufficient fluid vibration effect on the primary vessel 1 after thermal expansion of the primary vessel 1 during operation of the reactor. Set it to the size you can. According to such a setting, the safety of the primary container 1 and the equipment within the primary container 1 can be ensured even if external forces such as earthquakes are applied, and it is possible to contribute to weight reduction without increasing reinforcement.

前述の二次冷却材16は一次冷却材12と同様に液体金
属であるナトリュウムが採用される。この二次冷却材1
6の液面17とルーフスラブ11との間の空間にも不活
性なカバーガス18が充填されている。
As with the primary coolant 12, the aforementioned secondary coolant 16 uses sodium, which is a liquid metal. This secondary coolant 1
The space between the liquid level 17 of 6 and the roof slab 11 is also filled with an inert cover gas 18.

一次容器1と二次容器15との間には、二次冷却材16
に流動力を与える二次冷却材16の駆動ポンプ19と、
二次冷却材16と水との間の熱交換を行う蒸気発生器2
0とがルーフスラブ11から懸垂支持されて入れられて
いる。
A secondary coolant 16 is provided between the primary container 1 and the secondary container 15.
a drive pump 19 for the secondary coolant 16 that provides a flow force to the
Steam generator 2 for heat exchange between secondary coolant 16 and water
0 and is suspended and supported from the roof slab 11.

駆動ポンプ19と蒸気発生器20との平面レイアウトは
第2図の如く環状にて互い違いにされて両者の間で二次
冷却材16が均等に出入りしやすい配置とする。
The planar layout of the driving pump 19 and the steam generator 20 is annular and staggered as shown in FIG. 2, so that the secondary coolant 16 can easily flow in and out evenly between them.

駆動ポンプ19の二次冷却材16吸い込み口21は二次
容器15内に開口し、吐出口22には配管23の一端が
接続され、他端は電磁フローカプラー7に接続される。
A suction port 21 of the secondary coolant 16 of the drive pump 19 opens into the secondary container 15, one end of a pipe 23 is connected to the discharge port 22, and the other end is connected to the electromagnetic flow coupler 7.

一方、下端部に二次冷却材16の吐出口24を有する蒸
気発生器20の二次冷却材16の入り口25には配管2
6が接続され、その一端は蒸気発生器20の胴体27内
に開口しており、他端は電磁フローカプラー7に接続さ
れる。これら両配管23.26は一次容器1の上部位の
壁を貫通して一次容器1内と二次容器15内との間にと
おされる。このような通し方によれば、配管23.26
が外の外気(空気)中を通ること無く各容器1,15な
いであって、且つ不活性なカバーガス14.18内を通
るので配管経路の短縮化と配管破断時のナトリュウム火
災の防止と。
On the other hand, a piping 2
6 is connected, one end of which opens into the body 27 of the steam generator 20, and the other end connected to the electromagnetic flow coupler 7. Both pipes 23 and 26 pass through the wall of the upper portion of the primary container 1 and run between the interior of the primary container 1 and the interior of the secondary container 15. According to this way of passing, the pipe 23.26
Since the water does not pass through the outside air (air) and instead passes through the inert cover gas 14, 18, the piping route can be shortened and sodium fires can be prevented when the piping breaks. .

配管からの漏洩ナトリュウムの回収容易化とを達成して
いる。又、配管経路が短いことは、原子炉の小型化に貢
献する。特に配管23.26の貫通の為に一次容器1に
設けた貫通孔をカバーガスが通れる余裕のある大きさに
すれば、両容器1,15内のカバーガスが連通しあい圧
力バランスがとれる。蒸気発生器20の胴体27内には
、配管28.29に接続された伝熱管30が二次冷却材
16中に没して設けられている。
This facilitates the recovery of sodium leaking from piping. Furthermore, the short piping route contributes to the downsizing of the reactor. In particular, if the through hole provided in the primary container 1 for the passage of the pipes 23 and 26 is made large enough to allow the cover gas to pass through, the cover gas in both containers 1 and 15 will communicate with each other and the pressure will be balanced. Heat exchanger tubes 30 connected to pipes 28 and 29 are provided in the body 27 of the steam generator 20 and submerged in the secondary coolant 16.

ルーフスラブ9,10.11は、ルーフスラブ11がコ
ンクリート構造物31に支持されることにより設置され
る。このコンクリート構造物31と二次容器との間には
、ライナー付きの保温材32が設けられる。この保温材
32は原子炉運転時の環境下でライナーが二次容器15
の外壁面にジャストフィツトする形状と厚みにする。こ
のようtこすれば、保温手段が二次容器の耐震サポート
の役目も兼ねるので安全で小型軽量化に貢献できる。
The roof slabs 9, 10.11 are installed by the roof slab 11 being supported by the concrete structure 31. A heat insulating material 32 with a liner is provided between the concrete structure 31 and the secondary container. This heat insulating material 32 is used when the liner is in the secondary container 15 under the environment during reactor operation.
The shape and thickness should be a perfect fit for the exterior wall surface. By rubbing in this manner, the heat retaining means also serves as an earthquake-resistant support for the secondary container, making it safe and contributing to miniaturization and weight reduction.

電磁フローカプラー7は、第3図、第4図、第5図に示
され、次に述べる構成を備える。
The electromagnetic flow coupler 7 is shown in FIGS. 3, 4, and 5, and has the configuration described below.

即ち、環状の内周磁極41と環状の外周磁極42との間
に内周壁43と外周壁44とで囲われた環状の流路を形
成し、この環状の流路空間を第5図の如く伝熱面45で
複数の区画に分かち、一次流路46と二次流路47とを
交互に形成する。両流路46,47の内一次流路46は
第3図の如く上端部がホットプレナムS内に開口し、下
端部がコールドプレナム6内の配管48の一端が接続さ
れる。この配管48の他端は架台2内に形成されて炉心
部3への冷却材分配手段49と接続される。
That is, an annular flow path surrounded by an inner peripheral wall 43 and an outer peripheral wall 44 is formed between an annular inner circumferential magnetic pole 41 and an annular outer circumferential magnetic pole 42, and this annular flow path space is defined as shown in FIG. It is divided into a plurality of sections at the heat transfer surface 45, and primary channels 46 and secondary channels 47 are formed alternately. As shown in FIG. 3, the primary flow path 46 of the two flow paths 46 and 47 opens into the hot plenum S at its upper end, and is connected to one end of a pipe 48 in the cold plenum 6 at its lower end. The other end of this pipe 48 is formed within the pedestal 2 and connected to a coolant distribution means 49 to the reactor core 3 .

二次流路47は上端部が上部リングヘッダー50に連通
し、下端部が下部リングヘッダー51に連通しており1
両リングヘッダー50.51と一次流路46とは第4図
の如く伝熱面45と外周壁44の上部あるいは下部への
延長部により区画されている。下部リングヘッダー51
には配管23の他端が第3図の如く接続され、上部リン
グヘッダー50には配管26の他端が接続される。内周
磁極41と外周磁極42とは第3図の如く上下多段に配
置される。これらの各磁極は永久磁石であっても、電磁
石であってもよい。
The upper end of the secondary flow path 47 communicates with the upper ring header 50 and the lower end communicates with the lower ring header 51.
Both ring headers 50, 51 and the primary flow path 46 are separated by a heat transfer surface 45 and an upper or lower extension of the outer peripheral wall 44, as shown in FIG. Lower ring header 51
The other end of the pipe 23 is connected to the upper ring header 50 as shown in FIG. 3, and the other end of the pipe 26 is connected to the upper ring header 50. The inner circumferential magnetic pole 41 and the outer circumferential magnetic pole 42 are arranged vertically in multiple stages as shown in FIG. Each of these magnetic poles may be a permanent magnet or an electromagnet.

このような構成の高速増殖型原子炉によれば次に述べる
作用が得られる。
A fast breeder nuclear reactor with such a configuration provides the following effects.

即ち、駆動ポンプ19を稼働すると吸い込み口21から
二次冷却材16をすいこみ、高圧にて吐出口22から配
管22内に吐出する。このため、二次冷却材16は配管
23を通り下部リングヘッダー51に入り、二次流路4
7内を上昇して流動する。二次冷却材16が二次流路4
7内を上昇流動するときにはその二次冷却材16が内外
両磁極41.42間の放射状磁界52を横切ることと成
る。このため、内外両路壁43,44で囲われた環状の
領域にはたとえば第5図に示す矢印の如く環状の電流が
誘起される。この電流を放射状磁界52の環境下で一次
流路46内の一次冷却材12が受けるとその一次冷却材
16は二次冷却材16の流れとは逆の方向である下向き
に流動する。これらの原理はフレミング右手及び左手の
法則により成立している。
That is, when the drive pump 19 is operated, the secondary coolant 16 is sucked in through the suction port 21 and is discharged into the pipe 22 from the discharge port 22 at high pressure. Therefore, the secondary coolant 16 passes through the pipe 23 and enters the lower ring header 51, and the secondary coolant 16 enters the lower ring header 51 and enters the secondary flow path 4.
It rises and flows within 7. The secondary coolant 16 is in the secondary flow path 4
7, the secondary coolant 16 crosses the radial magnetic field 52 between the inner and outer magnetic poles 41, 42. Therefore, an annular current is induced in the annular region surrounded by the inner and outer walls 43 and 44, as indicated by the arrow in FIG. 5, for example. When the primary coolant 12 in the primary flow path 46 receives this current under the environment of the radial magnetic field 52, the primary coolant 16 flows downward, which is the opposite direction to the flow of the secondary coolant 16. These principles are established by Fleming's right-hand and left-hand rules.

このように電磁フローカプラー7内で一次冷却材12が
駆動ポンプ無しに流動すると、第1図中で黒塗り太矢印
で示すように、−大流路46から一次冷却材12は配管
48を通り分配手段49から炉心部3に通され、炉心部
3で加熱されホットプレナムS内にだされ、再度−大流
路内に入って行く循環を繰り返す、この循環により加熱
された一次冷却材16は一次流路46を通過中において
二次流路47内を流動する二次冷却材16に熱を伝熱面
45を介して伝達する。
When the primary coolant 12 flows in the electromagnetic flow coupler 7 in this way without a driving pump, the primary coolant 12 flows from the large flow path 46 through the pipe 48, as shown by the thick black arrow in FIG. The primary coolant 16 is passed from the distribution means 49 to the core 3, heated in the core 3, discharged into the hot plenum S, and then re-entered into the large flow path, repeating the cycle. While passing through the primary flow path 46 , heat is transferred to the secondary coolant 16 flowing in the secondary flow path 47 via the heat transfer surface 45 .

熱の伝達を受けて高温になった二次冷却材16は駆動ポ
ンプ19の駆動力により上部リングヘッダー50に抜は
出て配管26を通って蒸気発生器20の胴体27内に放
出され胴体27の下方から二次容器15内に抜は出、そ
の後に再度駆動ポンプ19に吸い込まれて第1図中の白
抜き太矢印から細矢印の如く循環を繰り返す、この循環
途中において、高温と成った二次冷却材16を受は入れ
た胴体27内では、第1図中の矢印aの如く配管28か
ら伝熱管30に入って来た水に二次冷却材16の熱を伝
えてその水を蒸気と化して配管29を矢印すの方向へ出
す作業が成され、熱を失って低温と成った二次冷却材1
6は胴体27から二次容器15内に出される。このよう
に原子炉から作り出された蒸気は発電機を駆動する蒸気
タービンなどに送給されて動力源として消費される。
The secondary coolant 16, which has become high in temperature due to heat transfer, is drawn out to the upper ring header 50 by the driving force of the drive pump 19, passes through the pipe 26, and is discharged into the body 27 of the steam generator 20. The water is drawn out from below into the secondary container 15, and is then sucked into the drive pump 19 again, where it repeats circulation as indicated by the thick white arrows to the thin arrows in Figure 1.During this circulation, it reaches a high temperature. Inside the body 27 that receives the secondary coolant 16, the heat of the secondary coolant 16 is transferred to the water entering the heat transfer tube 30 from the pipe 28 as shown by arrow a in FIG. The secondary coolant 1 has been turned into steam and discharged through the pipe 29 in the direction of the arrow, losing heat and becoming low temperature.
6 is discharged from the body 27 into the secondary container 15. The steam produced from the nuclear reactor in this way is sent to a steam turbine that drives a generator and is consumed as a power source.

本実施例では比較的低温なコールドプレナム6内に磁極
41.42の部分を配置できるので高温による磁石等の
性能劣化の恐れも少なく、確実な性能が得やすい状況を
得れる。
In this embodiment, since the magnetic poles 41 and 42 can be placed in the relatively low temperature cold plenum 6, there is little fear that the performance of the magnets etc. will deteriorate due to high temperatures, and a situation in which reliable performance can be easily obtained can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明によれば、二次冷却系と蒸気発生系
とをコンパクトに纏めた上に一次冷却系においても一次
冷却材の駆動ポンプと中間熱交換器との機能をコンパク
トに集約できるので、従来よりも一層集約された原子炉
プラントが提供できるという効果が得られる。
As described above, according to the present invention, not only can the secondary cooling system and the steam generation system be consolidated in a compact manner, but also in the primary cooling system, the functions of the primary coolant drive pump and the intermediate heat exchanger can be consolidated in a compact manner. Therefore, it is possible to provide a nuclear reactor plant that is more integrated than before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による高速増殖型原子炉の縦
断面図、第2図は第1図のA−A矢視より見た主要機器
の平面レイアウト図、第3図は第1図で採用した電磁フ
ローカプラーの縦断面図であって第4図のB−B矢視に
相当する図、第4図は第3図のC−C矢視図、第5図は
第3図のD−り矢視図である。 1・・・一次官器、3・・・炉心部、4・・・隔壁、5
・・・ホットプレナム、6・・・コールドプレナム、7
・・・電磁フローカプラー、8・・・フランジ、9.1
0.11・・・ルーフスラブ、12・・・一次冷却材、
14.18・・・カバーガス、15・・・二次容器、1
6・・・二次冷却材、19・・・駆動ポンプ、20・・
・蒸気発生器、21・・・吸い込み口、22・・・吐出
口、23,26.28゜29.48・・・配管、25・
・・二次冷却材入口、30・・・伝熱管、31・・・コ
ンクリート構造物、32・・・保温材、41・・・内周
磁極、42・・・外周磁極、45・・・伝熱面、46・
・・−大流路、47・・・二次流路、50・・・上部リ
ングヘッダー、51・・・下部リングヘッダ図fの浄書
(内容に変更なし) 第20 1・、一次岩器、3山スyl兄一部、7・・・1.磁フ
ローカプラー、」2・・・一次桧#肩、15・・・二次
券翼、16・・・二犬冷唖幇、19・・・馬t(jボノ
ズ、20・・・五気光ユ界、23.、l・・・配9゜ 察3腸 7ろ 419.−1’l m H1A@     4’l −
= ンZ ;* u4′L・・・外廟蒲l鮎   50
・・一部寄り〉7人ツデゝ4≦・・・伝熱面    訓
01.下酵り〉ゲヘツデー4・6 ・・・ −ンIニジ
L”jj(≦、手続補正書(方式) 昭和61年 8月 21
FIG. 1 is a longitudinal cross-sectional view of a fast breeder nuclear reactor according to an embodiment of the present invention, FIG. 4 is a longitudinal cross-sectional view of the electromagnetic flow coupler employed in the figure, and corresponds to the BB arrow view in FIG. 4, FIG. 4 is a CC arrow view in FIG. 3, and FIG. FIG. 1... Primary organ, 3... Reactor core, 4... Bulkhead, 5
...Hot plenum, 6...Cold plenum, 7
...Electromagnetic flow coupler, 8...Flange, 9.1
0.11... Roof slab, 12... Primary coolant,
14.18...Cover gas, 15...Secondary container, 1
6...Secondary coolant, 19...Drive pump, 20...
・Steam generator, 21... Suction port, 22... Discharge port, 23, 26.28° 29.48... Piping, 25.
... Secondary coolant inlet, 30 ... Heat exchanger tube, 31 ... Concrete structure, 32 ... Heat insulating material, 41 ... Inner circumference magnetic pole, 42 ... Outer circumference magnetic pole, 45 ... Transfer Thermal surface, 46.
...-Main channel, 47...Secondary channel, 50...Upper ring header, 51...Lower ring header Engraving of diagram f (no change in content) 20th 1., Primary rock tool, 3 Yamasyl brother part, 7...1. Magnetic flow coupler, 2...Primary cypress #shoulder, 15...Secondary ticket wing, 16...Two-dog cold guard, 19...Ma t (J Bono's, 20...Gokiko) Yukai, 23., l... arrangement 9゜ 3 intestines 7 ro 419.-1'l m H1A@4'l -
= NZ; * u4'L... Gaimyo Kamal Ayu 50
・・Partially biased〉7 peopleもも4≦・Heat transfer surface Precept 01. Lower fermentation〉Gehezday 4.6 ... -nInijiL"jj (≦, Procedural amendment (method) August 21, 1986

Claims (1)

【特許請求の範囲】 1、炉心と一次冷却材とを内蔵した一次容器と、前記一
次容器内をホットプレナムとコールドプレナムとに区画
する隔壁と、前記一次容器を内包する二次容器と、前記
一次と二次の両容器間隔間にいれた二次冷却材と二次冷
却材の駆動ポンプと蒸気発生器とを備え、前記両容器間
隔間を前記二次冷却材の流路とした原子炉において、前
記コールドプレナム内であって前記炉心の外周囲に、一
次流路と二次流路とを備え前記両流路間の伝熱面を備え
た電磁フローカプラーを設け、前記駆動ポンプの吐出口
と前記二次流路の入り口とを配管にて連通し、前記二次
流路の出口と前記蒸気発生器の二次冷却材入り口とを配
管にて連通し、前記一次流路の入り口を前記ホットプレ
ナムに、出口を前記コールドプレナムにそれぞれ連通し
、前記駆動ポンプの吸い込み口と前記蒸気発生器の二次
冷却材出口とを前記両容器間隔間に連通したことを特徴
とした高速増殖型原子炉。 2、特許請求の範囲の第1項において、前記二次容器の
下部形状を二段湾曲形状として、一次容器の底部湾曲部
と前記二次容器の底部湾曲部との間隔を他部よりも狭い
前記容器間隔間としたことを特徴とした高速増殖型原子
炉。 3、特許請求の範囲の第1項において、前記各配管を一
次容器の垂直壁を貫通させて一次容器内と二次容器内と
に通したことを特徴とした高速増殖型原子炉。 4、特許請求の範囲の第1項において、二次容器の底部
と二次容器外周部の構造物との間に保温手段を原子炉運
転時の温度状態で二次容器にフィトするように設けたこ
とを特徴とした高速増殖型原子炉。 5、特許請求の範囲の第1項において、前記原子炉は容
器の上方をルーフスラブで覆う炉型であって、一次容器
の上部をフランジにし、前記フランジを前記ルーフスラ
ブにはめこんで前記一次容器を二次容器内に位置決めし
たことを特徴とした高速増殖型原子炉。
[Scope of Claims] 1. A primary vessel containing a reactor core and a primary coolant, a partition partitioning the inside of the primary vessel into a hot plenum and a cold plenum, a secondary vessel containing the primary vessel, and a secondary vessel containing the primary vessel; A nuclear reactor comprising a secondary coolant placed between the primary and secondary containers, a drive pump for the secondary coolant, and a steam generator, and with the space between the containers as a flow path for the secondary coolant. An electromagnetic flow coupler having a primary flow path and a secondary flow path and a heat transfer surface between the two flow paths is provided in the cold plenum and around the outer periphery of the core, and the electromagnetic flow coupler is provided with a heat transfer surface between the two flow paths. The outlet and the inlet of the secondary flow path are connected through piping, the outlet of the secondary flow path and the secondary coolant inlet of the steam generator are connected through piping, and the inlet of the primary flow path is connected through piping. A fast breeding type characterized in that an outlet is connected to the hot plenum and an outlet is connected to the cold plenum, and a suction port of the driving pump and a secondary coolant outlet of the steam generator are connected to the space between the two containers. Reactor. 2. In claim 1, the lower part of the secondary container has a two-stage curved shape, and the distance between the bottom curved part of the primary container and the bottom curved part of the secondary container is narrower than other parts. A fast breeder nuclear reactor characterized by having the above-mentioned vessel interval. 3. A fast breeder nuclear reactor according to claim 1, wherein each of the pipes passes through a vertical wall of the primary vessel and passes into the primary vessel and the secondary vessel. 4. In claim 1, heat insulating means is provided between the bottom of the secondary vessel and the structure on the outer periphery of the secondary vessel so as to fit into the secondary vessel at a temperature during reactor operation. A fast breeder nuclear reactor characterized by: 5. In claim 1, the nuclear reactor is a reactor type in which the upper part of the container is covered with a roof slab, the upper part of the primary container is a flange, the flange is fitted into the roof slab, and the primary container is covered with a roof slab. A fast breeder nuclear reactor characterized by positioning the vessel within a secondary vessel.
JP61110774A 1986-05-16 1986-05-16 Fast breeding type reactor Granted JPS62267690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61110774A JPS62267690A (en) 1986-05-16 1986-05-16 Fast breeding type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61110774A JPS62267690A (en) 1986-05-16 1986-05-16 Fast breeding type reactor

Publications (2)

Publication Number Publication Date
JPS62267690A true JPS62267690A (en) 1987-11-20
JPH0579156B2 JPH0579156B2 (en) 1993-11-01

Family

ID=14544253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61110774A Granted JPS62267690A (en) 1986-05-16 1986-05-16 Fast breeding type reactor

Country Status (1)

Country Link
JP (1) JPS62267690A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003007310A1 (en) * 2001-07-10 2003-01-23 Central Research Institute Of Electric Power Industry Nuclear reactor
KR101355204B1 (en) * 2012-06-07 2014-01-28 한국과학기술원 Cooling system using linear electromagnetic pump for liquid metal nuclear reactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003007310A1 (en) * 2001-07-10 2003-01-23 Central Research Institute Of Electric Power Industry Nuclear reactor
US6944255B2 (en) * 2001-07-10 2005-09-13 Central Research Institute Of Electric Power Industry Nuclear reactor
KR101355204B1 (en) * 2012-06-07 2014-01-28 한국과학기술원 Cooling system using linear electromagnetic pump for liquid metal nuclear reactor

Also Published As

Publication number Publication date
JPH0579156B2 (en) 1993-11-01

Similar Documents

Publication Publication Date Title
RU2408094C2 (en) Nuclear reactor, namely nuclear reactor with liquid-metal cooling
JPH0271196A (en) Compact intermediate heat transfer system for sodium cooling type reactor
JPS62267690A (en) Fast breeding type reactor
JPH0326795B2 (en)
JPS60239694A (en) Pressurized water type reactor changed into unit
JP3950517B2 (en) Steam generator and cooling system for liquid metal cooled reactor
JPH0380277B2 (en)
JP2948831B2 (en) Fast breeder reactor
JPH03289591A (en) Satellite tank for nuclear reactor
JPH04110694A (en) Fast breeder reactor
JPH03102288A (en) Tank fast breeder
JPS633292A (en) Fast breeder reactor
JP2002341080A (en) Intermediate heat exchanger united with pump
JP2508538Y2 (en) Fast breeder reactor cooling unit
JP2723246B2 (en) Fast breeder reactor
JPS62157596A (en) Circulating pump integrated type intermediate heat exchanger
JPS63121793A (en) Fast breeder reactor
US4465653A (en) Nuclear reactor
JP2686147B2 (en) Reactor
JPH0795109B2 (en) Reactor structure of fast breeder reactor
JPS6154495A (en) Fast breeder reactor
JPH0660722B2 (en) Steam generator
JPS61210993A (en) Heat exchanger for removing decay heat of core
JPS6244694A (en) Nuclear reactor
JPS63113390A (en) Tank type fast breeder reactor