JPS62267071A - Control method for one side welding - Google Patents

Control method for one side welding

Info

Publication number
JPS62267071A
JPS62267071A JP10865386A JP10865386A JPS62267071A JP S62267071 A JPS62267071 A JP S62267071A JP 10865386 A JP10865386 A JP 10865386A JP 10865386 A JP10865386 A JP 10865386A JP S62267071 A JPS62267071 A JP S62267071A
Authority
JP
Japan
Prior art keywords
welding
groove
electrode
width
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10865386A
Other languages
Japanese (ja)
Other versions
JPH0459992B2 (en
Inventor
Yuji Sugitani
祐司 杉谷
Hisahiro Tamaoki
玉置 尚弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10865386A priority Critical patent/JPS62267071A/en
Publication of JPS62267071A publication Critical patent/JPS62267071A/en
Publication of JPH0459992B2 publication Critical patent/JPH0459992B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable a good back bead shape and the uniformity of the front bead with one side welding by finding the welding speed with the input of various welding conditions to an arithmetic unit with controlling an electrode by its movement in the axial direction of the welding electrode and in the width direction of a groove and performing the welding at this speed. CONSTITUTION:A welding electrode 5 is reciprocally rocked in the width direction (X axis) of the inside of a groove 2 and simultaneously moved in the height direction (Y axis) so that the arc length becomes constant. This respective movement is controlled by moving mechanisms 4X, 4Y. The moving width of one cycle of the electrode 5 is detected by a displacement gage 6X and the height of the front bead, a wire speed, groove angle, etc. are inputted into an arithmetic unit 20 together with this detection value. The welding speed is operated from this result and the welding is performed with this welding speed as that of the succeeding cycle. In this way, a stabilized one side welding is enabled, a good back bead is always held and the bead having uniform height of the front bead can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は片面溶接における制御方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a control method for single-sided welding.

〔従来の技術〕[Conventional technology]

第4図は従来の溶接装置を示す構成図である。 FIG. 4 is a configuration diagram showing a conventional welding device.

被溶接母材(1)に対し、その開先(2)に沿って移動
可能な溶接台車(3)には、溶接電極(5)が高さ方向
(Y軸)と開先幅方向(X軸)との両移!gI1機構(
4Y)、(4x)を介して支持されている。該溶接Ti
極(5)は、開先内で幅方向にオシレートしつつ、開先
線方向へ移動し、同時にアーク長を一定ならしめるよう
にY軸方向の移動が制御され、その変位はポテンショメ
ータ等の変位計(6Y)で検出される。また上記電極(
5)の開先幅方向の揺動におけるX軸方向の変位も、ポ
テンショメータ等の変位計(6x)で検出するようにし
である。消耗電極又は非消耗電極の電極(5)と母材(
1)との間には溶接電源(7)が接続され、溶接用途に
よって定電流電源又は定電圧電源と使い分けられている
。なお(8)はアーク電圧検出器、(9)はアーク電流
検出器で、制御の必要に応じて設けられるものである。
A welding cart (3) that is movable along the groove (2) with respect to the base material (1) to be welded has a welding electrode (5) in the height direction (Y-axis) and groove width direction (X-axis). Both transfers with axis)! gI1 mechanism (
4Y) and (4x). The welding Ti
The pole (5) moves in the direction of the groove line while oscillating in the width direction within the groove, and at the same time its movement in the Y-axis direction is controlled to keep the arc length constant, and its displacement is determined by the displacement of a potentiometer, etc. Detected in total (6Y). In addition, the above electrode (
The displacement in the X-axis direction during the rocking in the groove width direction in step 5) is also detected by a displacement meter (6x) such as a potentiometer. Electrode (5) of consumable or non-consumable electrode and base material (
A welding power source (7) is connected between the welding power source 1) and a constant current power source or a constant voltage power source depending on the welding purpose. Note that (8) is an arc voltage detector, and (9) is an arc current detector, which are provided as necessary for control.

制御方式の基本となるのは、電ai T51を開先(2
)内で輻方向(X軸)に往復揺動させ、同時に常にア一
り長が一定となるように高さ方向(Y軸)に電極(5)
を移動させつつ行う定アーク長制御揺動溶接であり、上
記X軸方向への電極(5)の揺動は、X軸モーク(I 
Q X) テ駆’lh t R4移”lh機m < 4
 X)により行われ、またY軸方向の移動制御は、Y軸
モーク (IOY)で駆動されろ移動機*(4Y)によ
って行われる。図の例では、電極(5)をX軸方向に移
動可能に支持する移動機構(4x)は、Y軸方向にも移
動可能なように移動ff1h’l(4’l’)により支
持され、さらに移動機構(4Y)は、台車(31に支持
されている。
The basis of the control method is the electric AI T51 groove (2
) in the radial direction (X-axis), and at the same time move the electrode (5) in the height direction (Y-axis) so that the aperture length is always constant.
This is constant arc length controlled swing welding performed while moving the electrode (5), and the swing of the electrode (5) in the X-axis direction is caused by the
Q
The movement control in the Y-axis direction is performed by a moving machine* (4Y) driven by a Y-axis moke (IOY). In the illustrated example, the moving mechanism (4x) that supports the electrode (5) movably in the X-axis direction is supported by the moving ff1h'l (4'l') so that it can also move in the Y-axis direction, Furthermore, the moving mechanism (4Y) is supported by a trolley (31).

第5図はY軸モータ (IOY)による定アーク長制御
の基本回路構成図である。電源(7)が定電流電源の場
合はアーク電圧検出器(8)からのアーク電圧を、また
電源(7)が定電圧電源の場合にはアーク電流検出器(
9)からのアーク電流を、差動増幅器αυに入力せしめ
、予め設定器面に設定した基準値との差を該増幅器αl
から出力させて、この差出力に応じた速度でY軸モータ
 (IOY)を駆動する駆動制御器0318備えている
。この回路によってアーク電圧(又1まアーク電流)が
一定に保たれ、アーク長が一定となるのであり、電極(
5)はX軸方向へ移動するときは、電極先端は開先壁に
沿って移動するのである。
Figure 5 is a basic circuit configuration diagram of constant arc length control using the Y-axis motor (IOY). If the power source (7) is a constant current power source, the arc voltage from the arc voltage detector (8) is detected, and if the power source (7) is a constant voltage power source, the arc current detector (
The arc current from 9) is input to the differential amplifier αυ, and the difference between it and the reference value set in advance on the setting device is calculated by the amplifier αl.
A drive controller 0318 is provided to drive the Y-axis motor (IOY) at a speed corresponding to this differential output. This circuit keeps the arc voltage (or arc current) constant, the arc length is constant, and the electrode (
5) When moving in the X-axis direction, the electrode tip moves along the groove wall.

電極(ト)のX軸方向への移動は、第6図に示す駆動制
御回路によって制御される。すなわち図においてX軸モ
ータ(IOY)は設定器α4で予め設定された速度で定
速回転するように制御器側を介して制御され、さらに制
御器叫が切換パルス発生器01から信号を受けるたびに
、X軸モータ (IOX)の回転方向が逆転するように
構成されている。変位計(6Y)によって検出した電8
ii (51のY軸方向の変位量(ey)は、予め設定
されて記憶器0りに記憶されている端部位置設定値(e
o)とコンパレーク□□□によって比較され、(ey)
が(eo)に等しくなるたびにコンパレーク(至)から
出力される信号によって上記切換パルス発生器側が制御
器(5)へ逆転指令信号を発するものである。
Movement of the electrode (g) in the X-axis direction is controlled by a drive control circuit shown in FIG. That is, in the figure, the X-axis motor (IOY) is controlled via the controller to rotate at a constant speed preset by the setting device α4, and further, whenever the controller receives a signal from the switching pulse generator 01. Additionally, the rotation direction of the X-axis motor (IOX) is configured to be reversed. Electricity 8 detected by displacement meter (6Y)
ii (The amount of displacement (ey) in the Y-axis direction of 51 is the end position setting value (e
o) and compared by comparator □□□, (ey)
The switching pulse generator side issues a reverse rotation command signal to the controller (5) in response to a signal output from the comparator (to) every time the rotation angle becomes equal to (eo).

第7図は上記制御の許にある電極(5)の動きと溶着金
属との関係を示す説明図である。第7図(alは第4図
の装置によろ電ltj+51の移動状態を示し、第7図
(b)に形成されろ溶着金属と電極先端との位置関係を
示している。図において、(5a)は電極先端の軌跡を
示し、(1a)は母材表面、(2a)は開先底面、(3
)は裏当材、モしてG1は溶着金属である。
FIG. 7 is an explanatory diagram showing the relationship between the movement of the electrode (5) under the above control and the weld metal. FIG. 7 (al) shows the moving state of the filter electric current ltj+51 by the apparatus shown in FIG. 4, and shows the positional relationship between the filter weld metal and the electrode tip formed in FIG. ) shows the locus of the electrode tip, (1a) is the base material surface, (2a) is the bottom surface of the groove, (3
) is the backing material, and G1 is the weld metal.

次に動作を説明する。Next, the operation will be explained.

第7図(λ)において、まず電極(5)を開先の端部(
イ)に設定し、このときのY軸変位を、eoとして記憶
させておく。アークを発生させて、X軸方向の移動を開
始すると、上述の定アーク長制姉により、電極先端は図
のイーローハのようにほぼ開先壁面に沿って移動し、電
極先端の軌跡(5a)が1与られろ。八に達すると変位
計(6Y)の出力eyが再びeoとなゆ、第3図の制御
回路動作によりX軸の移動方向が逆転して以後この動作
をくり返す。
In FIG. 7 (λ), first the electrode (5) is placed at the grooved end (
b) and store the Y-axis displacement at this time as eo. When an arc is generated and movement in the X-axis direction is started, the electrode tip moves almost along the groove wall surface as shown in E-Roha in the figure due to the above-mentioned constant arc length, and the electrode tip moves along the trajectory (5a). Give me 1. When the displacement meter (6Y) reaches 8, the output ey of the displacement meter (6Y) becomes eo again, and the direction of movement of the X-axis is reversed by the control circuit operation shown in FIG. 3, and this operation is repeated thereafter.

ここで、揺動の一方の端部(イ:ハ)から他方の端部(
ハ:イ)までの期間を揺動の1サイクルとする。この制
御法によれば、開先形状がどのように変化しても、また
開先中心が溶接台車の進行方向とずれろことがあっても
、電極の先端は母材表面あるいは開先底面から一定の距
離を保ったまま常に開先幅内で反転揺動をくり返すこと
になる。
Here, from one end of the swing (A: C) to the other end (
The period up to (c) and (b) is one cycle of oscillation. According to this control method, no matter how the groove shape changes, or even if the center of the groove deviates from the traveling direction of the welding cart, the tip of the electrode remains constant from the base metal surface or the bottom of the groove. This means that the inversion and oscillation are repeated within the groove width while maintaining the distance of .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで溶接の無人化をはかるためには、?fI接中に
時々刻々と変化する開先線の2次元的な変化に対し、溶
接トーチ位置を自動的に検知して位置修正する必要があ
り、そのためには検知センサおよびセンサの情報に応じ
て作動する溶接トーチ位置調整81溝が必要である。
By the way, what can we do to make welding unmanned? It is necessary to automatically detect and correct the welding torch position in response to two-dimensional changes in the groove line that change moment by moment during fI contact. A working welding torch position adjustment 81 groove is required.

従来、このための検知センサとしては、接触センサや電
磁気光電方式の非接触式センサなとがあり、実用化され
ている。
Conventionally, detection sensors for this purpose include contact sensors and electromagnetic photoelectric type non-contact sensors, which have been put into practical use.

さらに溶接継手においては、開先幅、角度、などの形状
変動があるため、これらの変動を検出して溶接条件を自
動制御する必要がある。しかしこのための有益な検知セ
ンサは皆無といってもよく、わずかにITVを用いてア
ーク前方の開先を撮像して開先幅を検出する方式が検討
されている程度である。
Furthermore, in a welded joint, there are variations in the shape of the groove width, angle, etc., so it is necessary to detect these variations and automatically control the welding conditions. However, it can be said that there are no useful detection sensors for this purpose, and only a few methods are being considered that use ITV to image the groove in front of the arc and detect the groove width.

しかしながら上記センサのうち、前者の開先線の2次元
的変化を検知するものについては、溶接1、−チと別に
その近傍に設けられろものであり、検知位置と1・−チ
の位置との間には一定の間隔が必要なため、正確な検出
が困難であり、又、対象物の寸法が制限されるなどの実
用上の制約が多い。
However, among the above-mentioned sensors, the former one that detects two-dimensional changes in the groove line should be installed separately from and near welds 1 and -ch, and the detection position and the position of welds 1 and -ch are different from each other. Since a certain interval is required between the two, accurate detection is difficult and there are many practical restrictions such as restrictions on the dimensions of the object.

又後者のITV方式も開先表面の幅は検出てきても、真
の開先断面は不明であり、検出位置とアーク位置とのず
れがあることから、検出精度に限界があり、さらに前述
のように適用対象物に寸法制約があるなどの欠点がある
ため、実用化されるには到っていない。
Furthermore, although the latter ITV method can detect the width of the groove surface, the true groove cross section is unknown, and there is a gap between the detection position and the arc position, so there is a limit to the detection accuracy. However, it has not been put into practical use due to drawbacks such as size restrictions on the objects to which it can be applied.

このような状況にかんがみ、発明者らは開先内で揺動す
る溶接アーク自体をセンサとして利用し、トーチと別個
に専用センサを用いろことなく、溶接電極の位置を正確
に開先内でなられせろ方法を、特公昭57−3462号
公報で提案した。この方法は、溶接トーチを開先線にな
られせるだけでなく、その時のトーチがえがく変位波形
がアーク直下での開先断面の情報をもたらすものとして
有用なものなのである。
In view of this situation, the inventors used the welding arc itself, which oscillates within the groove, as a sensor, and were able to accurately position the welding electrode within the groove without using a dedicated sensor separate from the torch. The method of narasero was proposed in Japanese Patent Publication No. 57-3462. This method is useful not only because it allows the welding torch to follow the groove line, but also because the displacement waveform drawn by the torch at that time provides information on the groove cross section directly under the arc.

この発明は、上記の事情に鑑みてなされたもので、開先
位置や開先断面形状等の検出を別体としてのセンサを用
いることなく、溶接アーク自身の特性を利用することに
より溶接アークをセンサとなし、溶接トーチを開先線に
正確になられせろと同時に、開先形状をも検知して溶接
条件を自動制御し、開先状態の変動があっても常に良好
な裏ビード形状を保ち、かつ表ビードの高さが一定な溶
接ビードが形成される片直溶接制御方法を提供しようと
するものである。
This invention was made in view of the above circumstances, and detects the welding arc by using the characteristics of the welding arc itself without using a separate sensor to detect the groove position, groove cross-sectional shape, etc. The sensor not only allows the welding torch to follow the bevel line accurately, but also detects the bevel shape and automatically controls the welding conditions, ensuring a good back bead shape even when the bevel condition fluctuates. The object of the present invention is to provide a method for controlling direct welding in which a weld bead with a constant surface bead height is formed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は溶接電源として直流もしくは交流の定電流特性
又は直流の定電圧特性の電源が用いられ、あらかじめ設
定された一定のアーク電圧または溶接電流を保持するよ
うに、溶接電極の軸線方向(以下Y軸と称する)移動機
構によって電極の先端部と母材表面との間隔距離を変化
させ、これによりアーク長を常に一定とする制御動作を
行わせつつ、上記電極を開先の幅方向(以下X軸)に移
動させ、上記間隔距離が予め設定された値に達したこと
を条件として上記X軸移動の方向を逆転させ、以下この
動作をくり返すことにより、電極端のアークを開先内の
幅方向に往復揺動させつつ、正確な開先ならいを行わせ
、かつ母材表面もしくは開先底部から上記往復揺動の両
端部までの高さ距離を當に一定に保持するアーク溶接装
置において、演算装置を備左、上記揺動の一方の端部か
らもう一方の端部までの期間を1サイクルとし、この1
サイクル期間もしくはその整数倍サイクルの期間で、揺
動のX軸方向の幅すなわち揺動幅に関する情報を検出し
て、上記演算装置に記憶させ、予め定めたワイヤ送給速
度■、。、所望する表ビード高さhp、実験により求ま
る表ビード高さhs等を上記演算装置に入力して溶接速
度■を演算し、移動の次の1サイクル又はその整数倍の
サイクルの期間該溶接速度で溶接を行い、以下この制御
動作を繰り返す。
The present invention uses a DC or AC constant current characteristic or a DC constant voltage characteristic as a welding power source, and maintains a preset constant arc voltage or welding current in the axial direction of the welding electrode (hereinafter referred to as Y). The distance between the tip of the electrode and the surface of the base material is changed by a moving mechanism (referred to as an axis), thereby controlling the arc length to always be constant. axis), then reverse the direction of the X-axis movement on the condition that the interval distance reaches a preset value, and repeat this operation, thereby adjusting the arc of the electrode end within the groove. In an arc welding device that performs accurate groove tracing while reciprocating in the width direction, and maintains a constant height distance from the base material surface or the bottom of the groove to both ends of the reciprocating movement. , a calculation device is provided, the period from one end of the above-mentioned oscillation to the other end is one cycle, and this one
During a cycle period or an integer multiple thereof, information regarding the width of the oscillation in the X-axis direction, that is, the oscillation width, is detected and stored in the arithmetic unit, and a predetermined wire feeding speed (2) is determined. , the desired front bead height hp, the front bead height hs determined by experiment, etc. are input into the above-mentioned calculation device to calculate the welding speed (■), and the welding speed is calculated during the next cycle of movement or an integral multiple thereof. Welding is carried out with , and this control operation is repeated thereafter.

〔作用〕[Effect]

上記溶接速度制御方式による溶接の結果、良好な裏ビー
ド形状と、一定の高さを有する表ビードとを同時に備え
た溶接ビードが得られるのである。
As a result of welding using the welding speed control method described above, a weld bead can be obtained that simultaneously has a good back bead shape and a front bead having a constant height.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例を示す溶接装置の構成図で、
(イ)は演算装置、2Dはモータである。図に示すよう
に変位計(6X)によりm S (5]の1サイクルの
移動幅WWを検出し、該検出値を、演算装置囚に入力し
て、予め該演算装置翰内に入力している表ビード高さh
p、裏ビード高さha、gビードの溶込み幅ΔB、ワイ
ヤ送給速度Vf、開先角度θ笈び揺動端部におけろ電極
先端と開先壁面とのX軸方向の距離ΔWとともに、後述
する算式により溶接速度■を演算し、この溶接速度Vを
モータet+に入力せしめて次サイクルの溶接速度とし
て溶接を行い以下この操作を繰り返すのである。
FIG. 1 is a configuration diagram of a welding device showing an embodiment of the present invention.
(A) is an arithmetic unit, and 2D is a motor. As shown in the figure, the movement width WW of one cycle of mS (5) is detected by a displacement meter (6X), and the detected value is input into the arithmetic unit. Front bead height h
p, back bead height ha, g bead penetration width ΔB, wire feeding speed Vf, groove angle θ, and distance ΔW in the X-axis direction between the electrode tip and the groove wall surface at the swinging end. The welding speed (2) is calculated using the formula described below, and this welding speed V is input to the motor et+ to perform welding as the welding speed for the next cycle, and this operation is repeated thereafter.

なお上記諸元中h@は実験により求めうる値であり、h
pば予め所望する値をとればよく、他は溶接条件により
定まる値である。
In addition, h@ in the above specifications is a value that can be determined by experiment, and h
p may take a desired value in advance, and the other values are determined by the welding conditions.

以下上記諸元より溶接速度Vを求めろ算式について述べ
ろ。第7図の溶接説明図に示すように、揺動の1サイク
ルにおいて、X軸変位計より検出てきる揺rf!!J幅
(WW)は、揺動反転位置(eo点)におけろ開先幅(
B)と次式の関係にある。
Below, describe the formula for determining the welding speed V from the above specifications. As shown in the welding explanatory diagram of FIG. 7, in one cycle of oscillation, the oscillation rf! detected by the X-axis displacement meter! ! J width (WW) is the groove width (WW) at the swing reversal position (eo point).
B) has the following relationship.

B=WW+2ΔW       −、−fil(1)式
において、ΔWは、揺動端部での電極先端と開先壁面と
の距離であり、基本的には設定すべきアーク長にて定ま
る定数で、溶接電流とアーク電圧の設定値が一定であれ
ば開先幅が変動しても一定で、これは実験でも確認され
ている。
B=WW+2ΔW -, -fil In formula (1), ΔW is the distance between the electrode tip and the groove wall at the swinging end, and is basically a constant determined by the arc length to be set. If the current and arc voltage settings are constant, they will remain constant even if the groove width changes, and this has been confirmed through experiments.

一方、裏当材を用いた片面溶接における裏ビード形状は
一定の溶接条件でlδ接した場合、開先底面におけろ被
溶接物間の間隔距gI(ルートギャップ)が変化しても
アーク直下に溶融金属が存在していれば、裏ビード高さ
くh6)はほとんど一定で裏ビード幅(WW)はルート
ギャップに対応して変化する。これは実験により確認さ
れており、第8図は溶接電流I=26OA、溶接速度■
=16cm/分、ワイヤ電極径d=1.2m+sのMA
G溶接による実験結果の一例を示すものである。本図に
よりルー1−ギャップ9−まではアーク直下に溶融金属
が存在しており、裏ビード高さhaはほぼ一定値である
ことがわかる。また裏ビード幅Waはルートギャップの
変化に対して直線的に変化する。ところがルートギャッ
プが9鴫を越又るとアーク直下に溶融金属が存在しなく
なり、裏ピード形状が太き(変化し、そのまま溶接を続
けようとすると遂にはアークが消弧し溶接不可能な状態
となる。アーク直下に溶融金属が存在し、安定な溶接が
行われろときの裏ビードの断面積Aaは近似的に次式で
与丸られろことができる。
On the other hand, when the back bead shape in single-sided welding using a backing material is in contact with lδ under constant welding conditions, even if the distance gI (root gap) between the workpieces changes at the bottom of the groove, the back bead will be directly below the arc. If molten metal is present in the root gap, the back bead height h6) is almost constant and the back bead width (WW) changes in accordance with the root gap. This has been confirmed through experiments, and Figure 8 shows welding current I = 26OA and welding speed ■
= 16cm/min, MA of wire electrode diameter d = 1.2m+s
This shows an example of experimental results using G welding. From this figure, it can be seen that molten metal exists directly under the arc from route 1 to gap 9, and the back bead height ha is approximately a constant value. Further, the back bead width Wa changes linearly with changes in the root gap. However, when the root gap exceeds 9mm, there is no molten metal directly under the arc, the shape of the back weld becomes thick (changes), and if we try to continue welding, the arc will eventually extinguish and welding will become impossible. The cross-sectional area Aa of the back bead when molten metal exists directly under the arc and stable welding is to be performed can be approximately given by the following equation.

As”  −!L ha・W6 さらに、裏ビード幅W a IよルートギャップGと溶
込幅△Bの和であるから、 Aa−−!L hs (G+2ΔB )  −−(31
ここでΔBは実験により求まる定数である。故に溶着金
属00の断面積Aはビード表面と上記揺動反転位置の距
離をΔlx 、表ビード高さをhp、開先角度をθとす
れば、 A = ((WW+2ΔW)−2Δbtanθ−hpL
anθlhp+ ’、 h s (w、+zΔW)−2
(△h+h p ) tanθ+2ΔB+ −−(41 (4)式は、開先の深さくあるいは板厚)と開先角度θ
が一定で、アーク直下に溶融金属が存在ずろ安定な溶接
条件であれば、開先幅の変動下においても常に良好な裏
ビード形状と一定な表ビード高さを与える溶着金属の断
面積Aが、上記検出された揺動幅WWの値にもとづいて
計算により求まることを示している。
As” −!L ha・W6 Furthermore, since the back bead width W a I is the sum of the root gap G and the penetration width ΔB, Aa −!L hs (G+2ΔB ) −−(31
Here, ΔB is a constant determined by experiment. Therefore, the cross-sectional area A of weld metal 00 is given by: A = ((WW+2ΔW)-2Δbtanθ-hpL) where the distance between the bead surface and the above-mentioned rocking reversal position is Δlx, the front bead height is hp, and the groove angle is θ.
anθlhp+ ′, h s (w, +zΔW)−2
(△h+h p ) tanθ+2ΔB+ --(41 Equation (4) is the groove depth or plate thickness) and the groove angle θ
If the welding conditions are constant and there is no molten metal directly under the arc, then the cross-sectional area A of the weld metal that will always give a good back bead shape and a constant front bead height even under fluctuating groove widths will be , which can be determined by calculation based on the value of the swing width WW detected above.

一方、ワイヤ送給速度を■1、溶接速度を■、形成され
る溶着金属の断面積Δとするとこれらの間には次の関係
がある。
On the other hand, if the wire feeding speed is 1, the welding speed is 2, and the cross-sectional area of the deposited metal is Δ, then there is the following relationship between them.

Vl=に、A−V v(5) V−k・−人し ただしに、、に、は定数 即ち上記(5)式に上記諸元を入れれば溶接速度Vを求
めうろ。
Vl=, A-V v(5) V-k・-person However, , is a constant, that is, by inserting the above specifications into the above equation (5), the welding speed V can be determined.

次に、溶接速度の算出のさらに簡便な実施例を説明する
。一般に第7図(a)、(blのような開先に限らず、
溶接速度、溶接電流、ワイヤ送給速度などの溶接条件は
、その開先形状に応じて予め初期値として設定し、以後
開先幅の変動状態をみながら上記溶接条件を変更して行
く。この方法に従って、初期値としてのワイヤ送給速度
を■、。、溶接速度をvoとし、この条件で′f11接
を開始して、1サイクルの揺動を行うと、その時得られ
る溶着金属の断固81A、は、 八〇−に2−!−L−IL ■。       −(6) となる。なお、初期揺動幅WW。とする。次の揺動1サ
イクルで開先幅が変動し、たとえば増加して揺動幅がW
Wになったとする。この場合良好な裏ビートリ形状と一
定の表ビード高さhple確保するためには、溶着断面
積をΔA=A−A、たけ増加させてやらなければならな
い。すなわち前述の(4)式において、WWを除く他の
全てのパラメータは定数であるから、 ΔA=A−A0 (w、 −w、。) (h F −+4−h a I−
−f71ここでバラメークhを次式で与えろ。
Next, a simpler example of calculating the welding speed will be described. In general, it is not limited to grooves as shown in Fig. 7 (a) and (bl),
Welding conditions such as welding speed, welding current, wire feeding speed, etc. are set in advance as initial values according to the groove shape, and thereafter the above-mentioned welding conditions are changed while checking the fluctuating state of the groove width. According to this method, ■, wire feeding speed as the initial value. , the welding speed is set to vo, and under these conditions, 'f11 welding is started and one cycle of oscillation is performed.The resulting deposited metal is determined to be 81A, which is 80- to 2-! -L-IL ■. −(6) becomes. In addition, the initial swing width WW. shall be. In the next oscillation cycle, the groove width changes, for example, increases and the oscillation width becomes W.
Suppose it becomes W. In this case, in order to ensure a good back bead shape and a constant front bead height hple, the weld cross-sectional area must be increased by ΔA=A−A. That is, in the above equation (4), all parameters except WW are constants, so ΔA=A-A0 (w, -w,.) (h F -+4-h a I-
-f71 Now give the variable h using the following formula.

h = h p +Th e         −−1
8]故に、良好な裏ビード形状と一定の表ビード高さh
pを確保するための溶接速度■は(5)〜(8)式よの
次式で与えられる。
h = h p +Th e −−1
8] Therefore, a good back bead shape and a constant front bead height h
The welding speed ■ to ensure p is given by the following equations (5) to (8).

y=」n=  Vコエーー A    A、+ 八 A (9)式を用いれば、開先幅の変動する開先において、
所望する表ビード高さhpと表ビード高さhsを4又れ
ば、溶接前に定めた初期溶接速度■。とワイヤ送給速度
■I0と、各サイクル毎の揺動幅の検出値の変化分、す
なわちWW−WW。から、次の揺動サイクルでの適正溶
接速度■が計算で求めることができる。
y='n=VCoE-A A, + 8 A Using the formula (9), in a groove with fluctuating groove width,
If the desired front bead height hp and front bead height hs are 4 times, the initial welding speed (■) determined before welding. and the wire feeding speed ■I0, and the change in the detected value of the swing width for each cycle, that is, WW-WW. From this, the appropriate welding speed (■) for the next oscillation cycle can be calculated.

第2図は上記式にもとづきマイクロコンピュータで溶接
速度制御を行った場合の制御動作の流れ図を示すもので
ある。(ステップ1)で、先ず所望する表ビード高さh
pと裏ビード高さhaから定まる定数h、溶接速度の初
期値■。、ワイヤ送給速度の設定値Vc6をインプット
して記憶させる。
FIG. 2 shows a flowchart of the control operation when welding speed is controlled by a microcomputer based on the above formula. In (step 1), first the desired front bead height h
Constant h determined from p and back bead height ha, initial value of welding speed■. , the set value Vc6 of the wire feeding speed is input and stored.

(ステップ2)て先ずA0=V、。/V0の計算を行い
これを記憶しておく。(ステップ3)で溶接を開始する
。このときの揺動制御は、前記の第4〜6図の機構およ
び制御回路にもとづく。(ステップ4)で1サイクルの
揺動が終了したら、(ステップ5)でそのときの揺動幅
WW0を検出して記憶ずろ。同様に次の揺動サイクルに
入り、(ステップ6)を経て(ステップ7)でWlを検
出する。
(Step 2) First, A0=V. /V0 is calculated and stored. Welding is started in (step 3). The swing control at this time is based on the mechanism and control circuit shown in FIGS. 4 to 6 described above. When one cycle of oscillation is completed in (step 4), the oscillation width WW0 at that time is detected and memorized in (step 5). Similarly, the next swing cycle is started, and Wl is detected in (step 7) after passing through (step 6).

これまでの溶接速度■。である。(ステップ8)で(w
、−wvo)hを計算し、(ステップ9)で、前記■に
関する(6)式にもとづいて溶接速度■を計算する。 
(ステップ10)で始めて適正溶接速度■を実行して次
の揺動サイクルに入る。以後(ステップ7)=(ステッ
プ10)の動作をくり返した後、(ステップ11)で溶
接を終了する。
Conventional welding speed ■. It is. (Step 8)
, -wvo)h is calculated, and in step 9, the welding speed (■) is calculated based on equation (6) regarding the above-mentioned (■).
Starting at step 10, the proper welding speed (2) is performed and the next oscillation cycle begins. Thereafter, after repeating the operations of (step 7) and (step 10), welding is completed in (step 11).

第3図は本発明に係る制御方法を実施した結果を示す線
図である。ルートギャップGの変化に対して、溶接速度
■が制御されておりその結果、常にアーク直下に啓融金
属が存在する状態を維持すろことができ、安定な溶接が
行われ、裏ビードの高さh8が一定でルー1−ギャップ
Gの大きさに対応した裏ビード幅W8の良好な裏ピード
形状と表ビード高さり、が一定の溶接ビードが形成され
ていることが判る。
FIG. 3 is a diagram showing the results of implementing the control method according to the present invention. The welding speed ■ is controlled in response to changes in the root gap G, and as a result, it is possible to maintain a state in which the melting metal always exists directly under the arc, resulting in stable welding and the height of the back bead. It can be seen that a weld bead with a constant h8 and a good back bead shape with a back bead width W8 corresponding to the size of the loop 1-gap G and a constant front bead height is formed.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明の制御方法によれば、開先線
のずれや開先幅の変動を別体としてのセンサーを用いる
ことなく、溶接アーク自身の特性を利用することにより
検出し、それに応じて溶接速度を制御することによって
溶接1・−チを開先線に正確になられせると同時に、開
先幅の変動に対しても安定な片面溶接が可能となり片面
溶接においても常に良好な裏ビード形状を保つとともに
、表ビードの高さの均一な溶接ビードの形成を可能なら
しめるという優れた効果をあげることとなった。
As described above, according to the control method of the present invention, deviations in the groove line and fluctuations in the groove width are detected by using the characteristics of the welding arc itself, without using a separate sensor, and By controlling the welding speed accordingly, welding 1 and - 1 can be accurately aligned with the groove line, and at the same time, stable single-sided welding is possible even when the groove width fluctuates, resulting in consistently good single-sided welding. This has the excellent effect of maintaining the shape of the back bead and making it possible to form a weld bead with a uniform height of the front bead.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す溶接装置の構成図、第
2図は他の実施例の流れ図、第3図は本発明の効果を示
す線図、第4図は従来の溶接装置の構成図、第5図は定
アーク長制御の構成図、第6図は溶接装置のX軸モーク
の駆動制園回路の構成図、第7図は溶接の説明図、第8
図は従来の溶接状況を示す線図である。 図中(1)は溶接母材、(2)は開先、(3)は溶接台
車、(4X)は電極のX軸方向移動機構、(4Y)は同
Y軸方向移g1機構、(5)は溶接電極、(6X)。 (6Y)は変位計、(7)は電源、(5)は演算装置、
211はモータである。 代理人 弁理士 佐 藤 正 年 ルートキ゛ヤっプG(mm) 第5図 第6図 第7図
Fig. 1 is a configuration diagram of a welding device showing one embodiment of the present invention, Fig. 2 is a flowchart of another embodiment, Fig. 3 is a line diagram showing the effects of the present invention, and Fig. 4 is a conventional welding device. Fig. 5 is a block diagram of constant arc length control, Fig. 6 is a block diagram of the drive control circuit for the X-axis moke of the welding device, Fig. 7 is an explanatory diagram of welding, Fig. 8
The figure is a diagram showing a conventional welding situation. In the figure, (1) is the welding base material, (2) is the groove, (3) is the welding cart, (4X) is the mechanism for moving the electrode in the X-axis direction, (4Y) is the g1 mechanism for moving the electrode in the Y-axis direction, (5 ) is a welding electrode, (6X). (6Y) is a displacement meter, (7) is a power supply, (5) is a calculation device,
211 is a motor. Agent Patent Attorney Masaru Sato Root Cap G (mm) Figure 5 Figure 6 Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)溶接電極を開先内で幅方向に往復揺動させながら
行うアーク溶接方法であつて、あらかじめ設定された溶
接電流又はアーク電圧を保持するように、溶接電極の軸
線方向即ちY軸方向移動機構によって電極の先端部と母
材表面との間隔距離を変化させ、これによりアーク長を
常に一定とする制御動作を行わせつつ、上記電極を開先
の幅方向即ちX軸方向に移動させ、上記間隔距離があら
かじめ設定された値に達したことを条件としてX軸移動
の方向を逆転させ、以下この動作をくり返すことにより
電極先端のアークを開先内の幅方向に往復揺動させつつ
正確な開先ならいを行わせ、かつ、母材表面又は開先底
部から上記往復揺動の両端部までの高さ距離を常に一定
に保持するアーク溶接方法による片面溶接において、 演算装置を備え、上記移動の一方の端部から他方の端部
までの期間を1サイクルとし、各サイクルの期間の揺動
のX軸方向の幅W_Wを検出し、該幅W_Wに関する情
報とともに、所望表ビード高さh_F、裏ビード高さh
_B、裏ビードの溶込み幅ΔB、ワイヤ送給速度V_f
、開先角度θ及び揺動端部での電極先端と開先壁面との
X軸方向の距離ΔWを上記演算装置に入力して、溶接速
度Vを演算し、該溶接速度Vにより次の揺動1サイクル
の溶接を行うように構成したことを特徴とする片面溶接
の制御方法。
(1) An arc welding method in which the welding electrode is reciprocated in the width direction within the groove, and the welding electrode is moved in the axial direction of the welding electrode, that is, in the Y-axis direction, so as to maintain a preset welding current or arc voltage. The distance between the tip of the electrode and the surface of the base material is changed by a moving mechanism, thereby performing a control operation to keep the arc length constant, while moving the electrode in the width direction of the groove, that is, in the X-axis direction. , the direction of the X-axis movement is reversed when the above-mentioned interval distance reaches a preset value, and by repeating this operation, the arc at the tip of the electrode is reciprocated in the width direction within the groove. In single-sided welding using an arc welding method that performs accurate groove tracing and always maintains a constant height distance from the base metal surface or the bottom of the groove to both ends of the reciprocating swing, the present invention is equipped with a computing device. , the period from one end of the movement to the other end is defined as one cycle, the width W_W of the swing in the X-axis direction during each cycle is detected, and the desired table bead height is detected along with information regarding the width W_W. h_F, back bead height h
_B, back bead penetration width ΔB, wire feeding speed V_f
, the groove angle θ and the distance ΔW in the X-axis direction between the electrode tip and the groove wall surface at the swinging end are input into the above calculation device to calculate the welding speed V, and the next swing is calculated using the welding speed V. 1. A control method for single-sided welding, characterized in that the method is configured to perform one cycle of welding.
(2)上記幅W_Wに関する情報は、1サイクルの幅W
_Wである事を特徴とする特許請求の範囲第1項記載の
片面溶接の制御方法。
(2) The information regarding the width W_W is the width W of one cycle.
_W. The single-sided welding control method according to claim 1, wherein: _W.
(3)上記幅W_Wに関する情報が、連続するサイクル
の幅W_Wの差であることを特徴とする特許請求の範囲
第1項記載の片面溶接の制御方法。
(3) The method for controlling single-sided welding according to claim 1, wherein the information regarding the width W_W is a difference between the widths W_W of successive cycles.
JP10865386A 1986-05-14 1986-05-14 Control method for one side welding Granted JPS62267071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10865386A JPS62267071A (en) 1986-05-14 1986-05-14 Control method for one side welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10865386A JPS62267071A (en) 1986-05-14 1986-05-14 Control method for one side welding

Publications (2)

Publication Number Publication Date
JPS62267071A true JPS62267071A (en) 1987-11-19
JPH0459992B2 JPH0459992B2 (en) 1992-09-24

Family

ID=14490262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10865386A Granted JPS62267071A (en) 1986-05-14 1986-05-14 Control method for one side welding

Country Status (1)

Country Link
JP (1) JPS62267071A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222909A (en) * 2006-02-23 2007-09-06 Nippon Steel & Sumikin Welding Co Ltd Groove copying arc welding method and welding equipment
CN102380690A (en) * 2011-03-30 2012-03-21 上海锅炉厂有限公司 Method for controlling welding deformation of joint between inserted large inclined tube and barrel
WO2012056614A1 (en) * 2010-10-26 2012-05-03 川崎重工業株式会社 Arc-welding control system and control method
JP2014018809A (en) * 2012-07-13 2014-02-03 Kobe Steel Ltd Welding apparatus, program, welding method, and method for manufacturing welded structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222909A (en) * 2006-02-23 2007-09-06 Nippon Steel & Sumikin Welding Co Ltd Groove copying arc welding method and welding equipment
WO2012056614A1 (en) * 2010-10-26 2012-05-03 川崎重工業株式会社 Arc-welding control system and control method
JP2012091197A (en) * 2010-10-26 2012-05-17 Kawasaki Heavy Ind Ltd Control system for arc welding and control method used for the same
CN103124612A (en) * 2010-10-26 2013-05-29 川崎重工业株式会社 Arc-welding control system and control method
US9468987B2 (en) 2010-10-26 2016-10-18 Kawasaki Jukogyo Kabushiki Kaisha Arc welding control system and method
US10144081B2 (en) 2010-10-26 2018-12-04 Kawasaki Jukogyo Kabushiki Kaisha Arc welding control system and method
CN102380690A (en) * 2011-03-30 2012-03-21 上海锅炉厂有限公司 Method for controlling welding deformation of joint between inserted large inclined tube and barrel
JP2014018809A (en) * 2012-07-13 2014-02-03 Kobe Steel Ltd Welding apparatus, program, welding method, and method for manufacturing welded structure

Also Published As

Publication number Publication date
JPH0459992B2 (en) 1992-09-24

Similar Documents

Publication Publication Date Title
US3646309A (en) Self-adaptive welding torch controller
US4394559A (en) Arc welding method
JPS644875B2 (en)
JPH02154B2 (en)
US4608481A (en) Method of automatically controlling height of a weld bead
JPS62267071A (en) Control method for one side welding
JP7191534B2 (en) Weaving Weld Thermal Manipulation and Seam Tracking
JPS6117590B2 (en)
JPS6128433B2 (en)
JPS6117591B2 (en)
JPS6225475B2 (en)
EP0167390A2 (en) Automatic groove tracing control method for arc welding
JPS60111777A (en) Arc welding method
JPH0328980B2 (en)
JPS58112661A (en) Arc welding method
JPH0116596B2 (en)
JP2000317632A (en) Weld line tracking device
JPH0249831B2 (en)
JPS5915743B2 (en) Arc welding method
JPS6317552B2 (en)
JPS5942184A (en) Welding method
JPS63248575A (en) Oscillating arc welding method and oscillating device
JPH0947871A (en) Oscillating high speed rotation arc welding method
JPS6018270B2 (en) Arc welding method
JPS6128435B2 (en)