JPS6226432A - Ice heat storage vessel - Google Patents

Ice heat storage vessel

Info

Publication number
JPS6226432A
JPS6226432A JP16214285A JP16214285A JPS6226432A JP S6226432 A JPS6226432 A JP S6226432A JP 16214285 A JP16214285 A JP 16214285A JP 16214285 A JP16214285 A JP 16214285A JP S6226432 A JPS6226432 A JP S6226432A
Authority
JP
Japan
Prior art keywords
water
container
ice
heat storage
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16214285A
Other languages
Japanese (ja)
Other versions
JPH067014B2 (en
Inventor
Takeshi Hashimoto
健 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Air Conditioning Co Ltd
Original Assignee
Shinryo Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Air Conditioning Co Ltd filed Critical Shinryo Air Conditioning Co Ltd
Priority to JP16214285A priority Critical patent/JPH067014B2/en
Publication of JPS6226432A publication Critical patent/JPS6226432A/en
Publication of JPH067014B2 publication Critical patent/JPH067014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To provide a highly efficient ice heat storage vessel of a compact structure and a small motive power of a freezer by inserting a cylindrical container full of water into a vessel having a heat insulative property and filled with an antifreezing solution and to make it possible to supply power to water within the container by use of two electrodes connected to a power supply device. CONSTITUTION:A vessel 12 having a heat insulative property is filled with an antifreezing solution 14. A number of bottomed cylindrical containers 16 in which is placed water as a coolness storage agent are inserted perpendicularly into a vessel 12, and fixed to the cover of the vessel 12. A bar-like electrode 18 is inserted into water within each of containers, and the electrodes are divided into three systems in accordance with the flow direction of the antifreezing solution within the vessel 12 and connected to a power supply device 24 through switches 22. The container 16 itself made of a conductive material constitutes a second electrode 20, and is connected to the ground side of the power supply device 24. Thus, since the ice making rate can be increased, the quantity of heat escaping to the circumference is reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷凍機を稼動させて蓄熱槽内の水を冷やし、
得られた冷水と氷を利用して冷房を行なう空調システム
用の氷蓄熱槽に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention operates a refrigerator to cool water in a heat storage tank.
The present invention relates to an ice heat storage tank for an air conditioning system that performs air conditioning using the obtained cold water and ice.

従来の技術 夜間電力を利用して冷凍機を稼動させ、蓄熱槽内に冷水
と氷を蓄えてこれを居間の冷房に利用する空調システム
は、既によく知られている。この空調システムにおいて
は、冷凍機からの冷媒(あるいはブライン)をパイプを
通して蓄熱槽の中に導入し、この冷媒(あるいはブライ
ン)パイプをコイル状あるいはU字蛇行状に配設して冷
却器とし、この冷却器を通過した冷K(あるいはシライ
ン)が再び冷凍機に戻る蓄熱槽内冷却装置を有している
。この蓄熱槽内冷却装置は、蓄熱槽内に冷却器を固定し
、冷凍機からの冷媒により冷却器外表面に着氷させ、蓄
熱槽内を氷と水の共存状態とするものである。この氷と
水により蓄えられた冷熱を配管を介して空調機へ冷水と
して循環させるようにしたものが当該空調システムであ
る。
2. Description of the Related Art Air conditioning systems that operate a refrigerator using nighttime electricity, store cold water and ice in a heat storage tank, and use this to cool the living room are already well known. In this air conditioning system, the refrigerant (or brine) from the refrigerator is introduced into the heat storage tank through a pipe, and the refrigerant (or brine) pipe is arranged in a coiled or U-shaped meandering shape to function as a cooler. It has a cooling device in the heat storage tank in which the cold K (or si-line) that has passed through the cooler is returned to the refrigerator again. In this heat storage tank cooling device, a cooler is fixed in a heat storage tank, and ice is formed on the outer surface of the cooler using a refrigerant from a refrigerator, so that ice and water coexist in the heat storage tank. This air conditioning system circulates the cold heat stored by the ice and water to the air conditioner via piping as cold water.

この空調システムでは、冷水だけでなく氷の融解潜熱も
利用しているので蓄熱槽の蓄熱容量が大となり、その結
果蓄熱槽をコンパクトなものに出来るという利点がある
。しかしながら、従来の氷蓄熱槽では冷却器の伝熱管(
冷媒あるいはブラインパイプ)の外面に氷を成長させて
いるため、氷の成長につれて熱抵抗が著しく増大し、伝
熱管内流体温度をさらに低くしなければならず冷凍機の
消費動力が増大するという問題点があった。また冷却器
に形成された氷は、一定厚さまでは定速成長するが、2
0〜30mmの厚さに達すると冷却器の冷却能力が低下
するため氷の成長が著しく低下する。従って、製氷量を
多くするためには定期的に冷却器に付着した氷をはがす
必要があり、冷凍機をデフロストサイクル(霜取り)に
切換える等の操作を必要とし、゛蓄熱槽の動車が著しく
低下する欠点があった。さらに、槽内に浸漬できる伝熱
管の量をあまり多くできないため槽内水の製氷率を高め
ることができない。一方、槽内の伝熱管の量を多くしす
ぎたり製氷率を50%以上に高めると槽内水の流動性が
悪くなり、冷熱を取出すことができない等の問題点があ
った。したがって従来の技術では製氷率30%が限度で
あった。
This air conditioning system uses not only cold water but also the latent heat of melting ice, so the heat storage capacity of the heat storage tank is increased, and as a result, there is an advantage that the heat storage tank can be made compact. However, in conventional ice storage tanks, the heat exchanger tubes (
Since ice is growing on the outer surface of the refrigerant (or brine pipe), thermal resistance increases significantly as the ice grows, and the fluid temperature inside the heat transfer tubes has to be further lowered, which increases the power consumption of the refrigerator. There was a point. Also, ice formed in the cooler grows at a constant rate until it reaches a certain thickness, but 2
When the thickness reaches 0 to 30 mm, the cooling capacity of the cooler decreases, resulting in a significant decrease in ice growth. Therefore, in order to increase the amount of ice produced, it is necessary to periodically remove the ice adhering to the cooler, which requires operations such as switching the refrigerator to the defrost cycle (defrosting), which significantly reduces the movement of the heat storage tank. There was a drawback. Furthermore, since it is not possible to increase the amount of heat transfer tubes that can be immersed in the tank, it is not possible to increase the ice making rate of the water in the tank. On the other hand, if the number of heat transfer tubes in the tank is too large or the ice making rate is increased to 50% or more, the fluidity of the water in the tank deteriorates, causing problems such as the inability to extract cold heat. Therefore, in the conventional technology, the ice making rate was limited to 30%.

発明が解決しようとする問題点 本発明の目的は、従来よりもコンパクトで冷凍機の消費
動力が少ない高効塞の氷蓄熱槽を提供することにある。
Problems to be Solved by the Invention An object of the present invention is to provide a highly efficient ice heat storage tank that is more compact than conventional ice storage tanks and consumes less power of the refrigerator.

問題点を解決するための手段とその作用本発明の前述し
た目的は、断熱性を有する槽内に不凍液を収容し、不凍
液で満たされた槽内に水を入れた筒状のコンテナを挿入
し、電源装置に接続した2つの電極を用いてコンテナ内
の水に通電可能とした氷蓄熱槽によって達成される。
Means for Solving Problems and Their Effects The above-mentioned object of the present invention is to store antifreeze in a tank having heat insulation properties, and to insert a cylindrical container filled with water into the tank filled with antifreeze. This is accomplished by an ice storage tank in which the water in the container can be energized using two electrodes connected to a power supply.

コンテナ内には2つの電極を挿入するのが好適であるが
、コンテナを導電材料で作り第1の電極だけをコンテナ
内の水中に挿入しコンテナ自体を第2の電極とすること
も出来る。これにより電極の構成が簡略化されコストダ
ウンとなる。
Preferably, two electrodes are inserted into the container, but it is also possible to make the container of a conductive material and insert only the first electrode into the water within the container, with the container itself serving as the second electrode. This simplifies the electrode configuration and reduces costs.

上記の構成によれば、不凍液が冷凍機によって冷却され
、コンテナ内の水を氷に変えて蓄冷することが出来る。
According to the above configuration, the antifreeze is cooled by the refrigerator, and the water in the container can be turned into ice to store cold.

従来、このようなコンテナ内の水を冷却した場合には、
過冷却現象が生じて一5°C程度まで冷えても氷を生成
しないことが知られていた。本発明では、コンテナ内の
水温が0°C以下になっても氷結しない場合には、電源
装置のスイッチをONにして通電させることにより過冷
却状態を解除させ、コンテナ内に強制的に氷を生成させ
るようにした点に特徴を有する。コンテナでは通電と同
時に水全体に板状の氷が発生し引続き筒の外側から中心
に向って氷が成長するため、伝熱特性が優れており、コ
ンテナ内の水はほぼ完全に氷になる。不凍液はコンテナ
外部の隙間を通って流れるので、氷の成長による流動性
の低下もなく、冷凍機の蒸発温度を従来の氷蓄熱槽より
も高目に保持することができ、冷凍機の消費動力が少な
くて済む。コンテナは単純な筒状゛でよいから、蓄熱槽
内に大量のコンテナを挿入して充填密度を高め、製氷率
を高くすることが可能である。従って、蓄熱槽をさらに
コンパクトなものにすることが出来る。コンテナの形状
は単純であり同一形状のものを量産すればよいから、コ
スト的な問題は生じない。
Conventionally, when cooling water in such a container,
It was known that a supercooling phenomenon occurs and ice does not form even when the temperature drops to about 15°C. In the present invention, if the water temperature inside the container does not freeze even if it falls below 0°C, the supercooling state is canceled by turning on the power supply switch and energizing, and ice is forced into the container. The feature is that it is generated. In a container, plate-shaped ice forms all over the water as soon as electricity is applied, and the ice continues to grow from the outside of the tube toward the center, resulting in excellent heat transfer properties, and the water inside the container almost completely turns into ice. Since the antifreeze flows through the gaps outside the container, there is no decrease in fluidity due to ice growth, and the evaporation temperature of the refrigerator can be maintained higher than that of conventional ice storage tanks, reducing the power consumption of the refrigerator. less. Since the container may be a simple cylindrical shape, it is possible to insert a large number of containers into the heat storage tank to increase the packing density and increase the ice making rate. Therefore, the heat storage tank can be made even more compact. Since the shape of the container is simple and it is sufficient to mass-produce containers of the same shape, there is no cost problem.

本発明の他の特徴及び利点は、添付図面の実施例を参照
した以下の記載により明らかとなろう。
Other characteristics and advantages of the invention will become apparent from the following description with reference to the embodiments of the accompanying drawings.

実施例 第1図は、本発明による氷蓄熱槽10を含む空調システ
ムの例を表わしており、氷蓄熱槽10は断熱性を有する
槽12内に不凍液14が満たされている。槽12内には
蓄冷剤として水を入れた有底筒状のコンテナ(容器)1
6が多数鉛直方向に挿入され、槽12のカバー(図示せ
ず)に固定されている。この実施例では、不凍液14の
回路が開放回゛路となっており、コンテナ16の口部は
不凍液の液面より上方に突出している。各コンテナ内の
水中には1つの棒状電極18が挿入され、槽内の不凍液
の流れ方向に応じて3系統に分けられスイッチ22を介
して電源装置24に接続されている。導電材料で作られ
たコンテナ容器16自体が第2の電極20を構成し、電
源装置24のアース側に接続されている。
Embodiment FIG. 1 shows an example of an air conditioning system including an ice heat storage tank 10 according to the present invention. Inside the tank 12 is a bottomed cylindrical container 1 containing water as a cold storage agent.
6 are inserted vertically and fixed to a cover (not shown) of the tank 12. In this embodiment, the circuit for the antifreeze 14 is an open circuit, and the mouth of the container 16 projects above the level of the antifreeze. One rod-shaped electrode 18 is inserted into the water in each container, divided into three systems depending on the flow direction of the antifreeze in the tank, and connected to a power supply device 24 via a switch 22. The container 16 itself made of conductive material constitutes the second electrode 20 and is connected to the ground side of the power supply 24 .

不凍液14はポンプ26の作動により冷凍機28へと送
られ、冷却された後に槽内に戻される。
The antifreeze liquid 14 is sent to the refrigerator 28 by the operation of the pump 26, and after being cooled, it is returned to the tank.

冷凍機28は圧縮機a1凝縮器b1膨張弁C1蒸発器d
を含んでいる。
The refrigerator 28 includes a compressor a1 a condenser b1 an expansion valve C1 an evaporator d
Contains.

空調システムの二次側回路には空調機30その他の負荷
が接続され、水蓄熱槽で冷却された不凍液がポンプ32
により循環させられて冷却作用を行なう。
The air conditioner 30 and other loads are connected to the secondary circuit of the air conditioning system, and the antifreeze cooled in the water heat storage tank is pumped to the pump 32.
It is circulated by the air to perform a cooling effect.

本発明による氷蓄熱槽10を含んだ空調システムは上記
のように構成されており、冷凍機28の作用により冷却
された不凍液14がコンテナ16を冷却し、コンテナ1
6内の水は外側から冷却されてOoCに達すると氷結を
開始するかあるいは過冷却状態になってさらに水温が低
下する。過冷却状態になった場合は、スイッチ22をO
Nにして水中に通電し過冷却状態を解除させる。これに
よりコンテナ16内の水は氷結を開始し、やがて完全に
氷結する。コンテナ内の水が完全に氷結しても不凍液の
流動性には影響がないから、二次側への流れを開始する
ことが出来る。
The air conditioning system including the ice heat storage tank 10 according to the present invention is configured as described above, and the antifreeze 14 cooled by the action of the refrigerator 28 cools the container 16.
The water inside 6 is cooled from the outside and when it reaches OoC, it starts to freeze or becomes supercooled and the water temperature further decreases. If it becomes supercooled, turn the switch 22 to O.
Turn on N and energize the water to release the supercooled state. As a result, the water in the container 16 begins to freeze, and eventually becomes completely frozen. Even if the water in the container completely freezes, it does not affect the fluidity of the antifreeze, so it can start flowing to the secondary side.

スイッチ22は、不凍液の流れ方向及び電気容量に応じ
て電極を複数の系統に分けて0N−OFFを行なわせる
ことが望ましい。電源は交流でも直流でも利用すること
が出来る。
It is preferable that the switch 22 divides the electrodes into a plurality of systems depending on the flow direction of the antifreeze and the electric capacity, and performs ON-OFF operation. The power source can be either alternating current or direct current.

第2図は、不凍液14の回路が閉回路になって。In Figure 2, the antifreeze 14 circuit is a closed circuit.

いて、水を入れた多数のコンテナ16が槽12の ・底
部より下方まで延伸している実施例を表わしている。各
コンテナ16内には2個の棒状電極40゜42が挿入さ
れている。変形例として、コンテナ16の下方に水槽4
4を配置し、各コンテナの底部を水槽44に接続させて
連通させることも出来る。このような連通水槽44を設
けると、コンテナ内の水面の高さを一定にできるので、
各コンテナ内の水の量を調節する必要がなくなるという
利゛点がある。
The figure shows an embodiment in which a number of containers 16 containing water extend below the bottom of the tank 12. Two rod-shaped electrodes 40.degree. 42 are inserted into each container 16. As a modified example, a water tank 4 is placed below the container 16.
4, and the bottom of each container can be connected to a water tank 44 for communication. By providing such a communicating water tank 44, the height of the water surface inside the container can be kept constant.
An advantage is that there is no need to adjust the amount of water in each container.

第2図の例では、二次側回路に熱交換器46が挿入され
ており、ポンプ48の作動により空調機30側には水が
循環するように構成されている。
In the example shown in FIG. 2, a heat exchanger 46 is inserted into the secondary circuit, and water is circulated to the air conditioner 30 by operation of a pump 48.

一般に蓄熱槽は建物の地下に設置されており、夜間に運
転されるものであるから、コンテナ内で過冷却現象が生
じているかどうかを確認するのは容易でない。従って、
コンテナ内又は不凍液の水温をセンサーで検出し、水温
が00C以下になった時はコンテナ内の水は過冷却状態
にあるものと考え、自動的にスイッチ22を断続的に0
N−OFF作動させるようにして自動制御を行なうごと
が好ましい。
Generally, heat storage tanks are installed underground in buildings and are operated at night, so it is not easy to confirm whether supercooling is occurring inside the container. Therefore,
A sensor detects the water temperature in the container or in the antifreeze liquid, and when the water temperature falls below 00C, it is assumed that the water in the container is in a supercooled state, and the switch 22 is automatically turned off intermittently.
It is preferable to carry out automatic control such that the N-OFF operation is performed.

本発明による氷蓄熱槽を実際の建物に適用した場合の効
果は次のようになる。延床面積10000m2で冷房最
大負荷が300冷凍トンの建物に蓄熱槽を設置し、冷凍
機容量を150冷凍トンに減らすとすると、蓄熱槽の所
要容積は次のようになる。
The effects when the ice heat storage tank according to the present invention is applied to an actual building are as follows. If a heat storage tank is installed in a building with a total floor area of 10,000 m2 and a maximum cooling load of 300 refrigeration tons, and the chiller capacity is reduced to 150 refrigeration tons, the required volume of the heat storage tank will be as follows.

1)氷蓄熱槽で製氷率60%(本発明)  54m32
)氷蓄熱槽で製氷率30%(従来)  100m33)
水蓄熱槽の場合         6oOm3容積54
m  の水蓄熱槽を設置した場合の冷凍機の年間運転費
は、蓄熱槽なしの場合を100として、製氷率30%(
従来)の場合で86%、製氷率60%(本発明)の場合
で75%となる。これは夜間の安い電気料金を利用でき
るためであ乞。
1) Ice production rate of 60% using ice heat storage tank (this invention) 54m32
) Ice production rate 30% with ice heat storage tank (conventional) 100m33)
For water heat storage tank: 6oOm3 volume: 54
The annual operating cost of the refrigerator when a water heat storage tank of m is installed is 100 without a heat storage tank, and the ice making rate is 30% (
It is 86% in the case of the conventional method and 75% in the case of the ice making ratio of 60% (the present invention). This is because you can take advantage of cheaper electricity rates at night.

発明の効果 以上詳細に説明した如く、本発明によれば従来よりも製
氷率を高めることができるので、水蓄熱槽がコンパクト
になり、周囲に逃げる熱量が減少するので効塞が高めら
れる。槽内液は常に流動性を保持しているので、冷凍機
の蒸発温度を従来よりも高目に保持することができ、冷
凍機の消費動力が減少する等、その作用効果には極めて
顕著なものがある。
Effects of the Invention As explained in detail above, according to the present invention, the ice making rate can be increased compared to the conventional method, the water heat storage tank becomes compact, and the amount of heat escaping to the surroundings is reduced, so that the occlusion efficiency is increased. Since the liquid in the tank always maintains fluidity, the evaporation temperature of the refrigerator can be maintained higher than before, and the power consumption of the refrigerator is reduced, which is extremely effective. There is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による氷蓄熱槽を含んだ空調システムの
系統図、第2図は空調システム及び水蓄熱槽の他の実施
例を表わす系統図である。
FIG. 1 is a system diagram of an air conditioning system including an ice heat storage tank according to the present invention, and FIG. 2 is a system diagram showing another embodiment of the air conditioning system and water heat storage tank.

Claims (1)

【特許請求の範囲】 1、断熱性を有する槽内に不凍液を収容し、不凍液で満
たされた槽内に水を入れた筒状のコンテナを挿入し、電
源装置に接続した2つの電極を用いて前記コンテナ内の
水に通電可能としたことを特徴とする氷蓄熱槽。 2、前記コンテナ内の水中に2つの電極が挿入されてい
る特許請求の範囲第1項記載の氷蓄熱槽。 3、前記コンテナは導電材料で作られ、第1の電極がコ
ンテナ内の水中に挿入され、第2の電極がコンテナ自体
である特許請求の範囲第1項記載の氷蓄熱槽。
[Claims] 1. Antifreeze is stored in a tank with heat insulation properties, a cylindrical container filled with water is inserted into the tank filled with antifreeze, and two electrodes connected to a power supply are used. An ice heat storage tank characterized in that the water in the container can be energized by the water in the container. 2. The ice heat storage tank according to claim 1, wherein two electrodes are inserted into the water in the container. 3. The ice storage tank according to claim 1, wherein the container is made of a conductive material, the first electrode is inserted into the water within the container, and the second electrode is the container itself.
JP16214285A 1985-07-24 1985-07-24 Ice heat storage tank Expired - Fee Related JPH067014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16214285A JPH067014B2 (en) 1985-07-24 1985-07-24 Ice heat storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16214285A JPH067014B2 (en) 1985-07-24 1985-07-24 Ice heat storage tank

Publications (2)

Publication Number Publication Date
JPS6226432A true JPS6226432A (en) 1987-02-04
JPH067014B2 JPH067014B2 (en) 1994-01-26

Family

ID=15748831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16214285A Expired - Fee Related JPH067014B2 (en) 1985-07-24 1985-07-24 Ice heat storage tank

Country Status (1)

Country Link
JP (1) JPH067014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052897A (en) * 2009-09-02 2011-03-17 Mitsubishi Electric Corp Heat storage control method of ice thermal storage unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052897A (en) * 2009-09-02 2011-03-17 Mitsubishi Electric Corp Heat storage control method of ice thermal storage unit

Also Published As

Publication number Publication date
JPH067014B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
US4735064A (en) Energy storage container and system
US4756164A (en) Cold plate refrigeration method and apparatus
US5372011A (en) Air conditioning and heat pump system utilizing thermal storage
US4712387A (en) Cold plate refrigeration method and apparatus
JPH0120334B2 (en)
US4753080A (en) Cold storage method and apparatus
WO1979001051A1 (en) Improved refrigeration means and methods
CN104566723A (en) Ice storage air-conditioning system using different phase-change materials
WO1990009554A1 (en) Ice building, chilled water system and method
US5339644A (en) Defrost system for refrigeration apparatus
US3181310A (en) Refrigerating apparatus with holdover means
JPS6226432A (en) Ice heat storage vessel
JP2020532706A (en) How to operate the cooling cabinet and the cooling cabinet
JP2001021283A (en) Refrigerating device
JP3856572B2 (en) Heat storage system
CN203893476U (en) Refrigerator and refrigerating system for same
JPH0749301Y2 (en) Latent heat regenerator
CN216282230U (en) Phase-change material based energy storage vehicle-mounted refrigerator
JP3853965B2 (en) Heat storage system
CN214791626U (en) Phase-change energy-storage heat exchange device
KR20070020712A (en) DOUBLE COOLING and STORAGING DEVICE SYSTEM
JPH0571808A (en) Heat storage type refrigerator
KR20050054233A (en) Full icing type thermal storage system
RU2073819C1 (en) Cooling plant
KR930005661Y1 (en) Heat-exchanger for air-conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees