JPS62264030A - Auto-focus camera capable of close photographing - Google Patents

Auto-focus camera capable of close photographing

Info

Publication number
JPS62264030A
JPS62264030A JP61108279A JP10827986A JPS62264030A JP S62264030 A JPS62264030 A JP S62264030A JP 61108279 A JP61108279 A JP 61108279A JP 10827986 A JP10827986 A JP 10827986A JP S62264030 A JPS62264030 A JP S62264030A
Authority
JP
Japan
Prior art keywords
distance
optical system
light
range finding
close
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61108279A
Other languages
Japanese (ja)
Inventor
Saburo Sugawara
三郎 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP61108279A priority Critical patent/JPS62264030A/en
Priority to EP92105342A priority patent/EP0495533B1/en
Priority to KR1019920700194A priority patent/KR0156530B1/en
Priority to DE8717978U priority patent/DE8717978U1/en
Priority to AT87902775T priority patent/ATE112071T1/en
Priority to DE3751241T priority patent/DE3751241T2/en
Priority to DE8718028U priority patent/DE8718028U1/en
Priority to DE3751456T priority patent/DE3751456T2/en
Priority to KR1019950703637A priority patent/KR0149575B1/en
Priority to EP92105341A priority patent/EP0495532B1/en
Priority to AT92105357T priority patent/ATE132276T1/en
Priority to EP92105343A priority patent/EP0498467B1/en
Priority to DE8718017U priority patent/DE8718017U1/en
Priority to AT92105344T priority patent/ATE121200T1/en
Priority to AT92105342T priority patent/ATE126363T1/en
Priority to CA000536919A priority patent/CA1312231C/en
Priority to DE8718025U priority patent/DE8718025U1/en
Priority to DE3751455T priority patent/DE3751455T2/en
Priority to EP92105357A priority patent/EP0510379B1/en
Priority to DE8718027U priority patent/DE8718027U1/en
Priority to DE3751481T priority patent/DE3751481T2/en
Priority to DE3751657T priority patent/DE3751657T2/en
Priority to SG1996004214A priority patent/SG49701A1/en
Priority to PCT/JP1987/000293 priority patent/WO1987007038A1/en
Priority to AT92105343T priority patent/ATE126902T1/en
Priority to KR1019920700193A priority patent/KR0131680B1/en
Priority to EP87902775A priority patent/EP0266435B1/en
Priority to DE8718024U priority patent/DE8718024U1/en
Priority to AT92105341T priority patent/ATE126358T1/en
Priority to DE3751879T priority patent/DE3751879T2/en
Priority to KR1019880700027A priority patent/KR940010590B1/en
Priority to EP93110717A priority patent/EP0569051B1/en
Priority to EP92105344A priority patent/EP0497383B1/en
Priority to DE3750569T priority patent/DE3750569T2/en
Priority to AT93110717T priority patent/ATE141693T1/en
Priority to AU73955/87A priority patent/AU606343B2/en
Publication of JPS62264030A publication Critical patent/JPS62264030A/en
Priority to US90/002261A priority patent/US4944030B1/en
Priority to KR1019880700027A priority patent/KR0165530B1/en
Priority to US07/486,914 priority patent/US5214462A/en
Priority to US07/480,214 priority patent/US5157429A/en
Priority to US07/480,217 priority patent/US5142315A/en
Priority to US07/480,215 priority patent/US5016032A/en
Priority to US07/480,213 priority patent/US5150145A/en
Priority to US07486915 priority patent/US5012273B1/en
Priority to US07/480,069 priority patent/US5264885A/en
Priority to AU57612/90A priority patent/AU630976B2/en
Priority to AU57611/90A priority patent/AU630975B2/en
Priority to AU57606/90A priority patent/AU638257C/en
Priority to AU57610/90A priority patent/AU630974B2/en
Priority to AU57608/90A priority patent/AU630973B2/en
Priority to KR1019920700192A priority patent/KR100232279B1/en
Priority to CA000616420A priority patent/CA1330402C/en
Priority to US07/924,524 priority patent/US5276475A/en
Priority to US07/924,631 priority patent/US5321462A/en
Priority to US08/071,107 priority patent/US5424796A/en
Priority to US08/222,697 priority patent/US5465131A/en
Priority to US08/463,259 priority patent/US5583596A/en
Priority to US08/462,687 priority patent/US5673099A/en
Priority to KR1019950703638A priority patent/KR960702910A/en
Priority to US08/646,114 priority patent/US5713051A/en
Priority to US08/838,016 priority patent/US5966551A/en
Priority to HK98100938A priority patent/HK1001900A1/en
Priority to HK98100936A priority patent/HK1001905A1/en
Priority to HK98100940A priority patent/HK1001902A1/en
Priority to HK98100937A priority patent/HK1001906A1/en
Priority to HK98100942A priority patent/HK1001904A1/en
Priority to HK98100941A priority patent/HK1001903A1/en
Priority to HK98100939A priority patent/HK1001901A1/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the precision of range finding for close photographing to ideally focus a camera by arranging an optical element which optically extends the base line length between a light projecting part and a light receiving part in a range finding optical system to allow their optical axes to intersect each other in a finite distance. CONSTITUTION:The optical element is arranged which is moved forward to the front of the range finding optical system for close photographing and optically extends a base line length L between a light projecting part 3 and a light receiving part 4 in the range finding optical system to allow their optical axes to intersect each other in a finite distance. This optical element has two total reflection faces and is a total reflection prism 7 which moves an incident light in parallel with the direction of the base line length L to optically extend this length L. When the prism 7 with a mask 8 is arranged in the front of the light receiving lens 4, that is, close photographing is performed, the first group of a photographic lens is fed out by a certain extent other than by which the first group is fed out by an auto-focusing device. Thus, a measurable range finding area is shifted to the close distance side to improve the precision of range finding and the camera is correctly focused.

Description

【発明の詳細な説明】 「技術分野」 本発明は自動焦点式カメラに間し、特に近接撮影が可能
なカメラに間するものである。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to autofocus cameras, and particularly to cameras capable of close-up photography.

「従来技術」 まず、本発明の説明の前に、2群ズームレンズの被写体
距離と繰り出し量の関係について述べる。第4図に2群
ズームレンズの簡単な構成を示す。
"Prior Art" First, before explaining the present invention, the relationship between the object distance and the amount of extension of the two-group zoom lens will be described. FIG. 4 shows a simple configuration of a two-group zoom lens.

被写体距離と繰り出し量の関係を示す式は次式のとおり
である。
The equation showing the relationship between the subject distance and the amount of extension is as follows.

U=f+ (2+X/f++f+/X) +HH+Δ・
・・■ 但し、U:被写体距離 f、:M1群の焦点距離 X :繰り出し量 HH:主点間隔 Δ:第1群の焦点位置と全群の焦点位置との間隔 0式をXについて解くと、 X−(−2fl−HH−A+U−JC2f1−HH◆△
−U)2−4ft 2)/2・・・■ となる。
U=f+ (2+X/f++f+/X) +HH+Δ・
...■ However, U: Subject distance f, : Focal length of M1 group , X-(-2fl-HH-A+U-JC2f1-HH◆△
-U)2-4ft 2)/2...■.

一方、第5図は、三角測距原理に基づく測距光学系(装
置)の被写体距MUと、位置検出素子2上のずれ量tの
関係を示す。
On the other hand, FIG. 5 shows the relationship between the object distance MU of the distance measuring optical system (apparatus) based on the triangular distance measuring principle and the amount of deviation t on the position detection element 2.

三角測距装置は光源1、位置検出素子2(たとえばPS
D)、投光レンズ3、受光レンズ4より構成されており
、光源1から出射された光の被写体による反射光を位置
検出素子2で得ることにより、被写体までの距離が検出
される。すなわち、フィルム面5から被写体までの距M
Uに対する位置検出素子2上の光源像のずれ量t(基準
は被写体が無限大のときの光源像の位M)は次式で表わ
される。
The triangulation distance measuring device includes a light source 1, a position detection element 2 (for example, a PS
D) It is composed of a light projecting lens 3 and a light receiving lens 4, and the distance to the subject is detected by obtaining the reflected light from the subject of the light emitted from the light source 1 with the position detection element 2. In other words, the distance M from the film surface 5 to the subject
The amount of deviation t of the light source image on the position detection element 2 with respect to U (the reference is the position M of the light source image when the subject is infinite) is expressed by the following equation.

t=L−f/(U−f−d)   −・・■但し、L:
測距装置の基線長 f:受光レンズの焦点距離 d;フィルム面と受光レンズの焦点面との間隔 ずれ量tは、周知のように位置検出素子2の光電流の大
きざによって検出することができるから、この電気量に
よって撮影光学系を上記■、■式に基づいて焦点位置に
移動させれば、自動的に合焦がなされる。このような自
動焦点式カメラ、および撮影光学系の駆動機構は公知で
ある。
t=L-f/(U-f-d) -... ■However, L:
Baseline length f of the distance measuring device: Focal length d of the light-receiving lens; Distance t between the film surface and the focal plane of the light-receiving lens can be detected by the magnitude of the photocurrent of the position detection element 2, as is well known. Therefore, if the photographing optical system is moved to the focal position based on the above equations (1) and (2) using this amount of electricity, focusing will be achieved automatically. Such an autofocus camera and a drive mechanism for a photographing optical system are well known.

この自動焦点カメラにおいて、近接撮影(マクロ撮影)
機能を付加する場合には、測距装置の測距可能範囲を近
距離側にシフトする必要がある。
With this autofocus camera, close-up photography (macro photography)
When adding a function, it is necessary to shift the measurable range of the distance measuring device to the short distance side.

近接撮影機能は、周知のように、撮影光学系の全部また
は一部を、通常撮影時よりざらに被写体側に繰り出し、
その状態で合焦動作を行なわせるものである。菓4図の
撮影光学系では、近接撮影時に撮影レンズの第1群が、
自動焦点装置によって繰り出される繰り出し量とは別に
一定量が繰り出される。
As is well known, the close-up shooting function moves all or part of the photographic optical system closer to the subject than during normal shooting.
A focusing operation is performed in this state. In the photographic optical system shown in Figure 4, the first group of photographic lenses is
A fixed amount is delivered in addition to the amount delivered by the autofocus device.

第6図は測距装置の測距可能な距Mii!囲を近距離側
にシフトする従来例である。同図に示すように受光レン
ズ4の前面に頂角がθのプリズム6を配置することによ
り、測距可能な距M虻囲を近距離側にシフトできる。
Figure 6 shows the distance that can be measured by the distance measuring device Mii! This is a conventional example in which the range is shifted to the short distance side. As shown in the figure, by arranging a prism 6 having an apex angle of θ in front of the light-receiving lens 4, the measurable range M can be shifted to the short distance side.

プリズム6の頂角をθ、屈折率そnとした場合、被写体
距離U1に対する位置検出素子2上の光源像のずれlt
+は次のような手順で求めることができる。
When the apex angle of the prism 6 is θ and the refractive index is n, the shift of the light source image on the position detection element 2 with respect to the object distance U1 is
+ can be found using the following procedure.

プリズム6の被写体側の面への光線の入射角αは次式に
より求められる。
The angle of incidence α of the light beam onto the object-side surface of the prism 6 is determined by the following equation.

a=tac’(L/(υ、−f−a))+θ角度θのプ
リズムに入射角αで光線が人、射したときのふれ角βは
次式により求められる。
a=tac'(L/(υ, -f-a))+θ When a ray of light strikes a person at an incident angle α on a prism having an angle θ, the deflection angle β is determined by the following equation.

β=α−θ+5in−’[n 5in(El −5in
 (a/n))]よって、]γ=α−e− βえに位置検出素子2上の光源像のずれ量t1はt+=
f−tanyとなる。LJmf、は投光レンズ4の光軸
と一敗する光線が投光レンズ3の光軸と交わるときの被
写体距離で、プリズム6の厚みを無視すればUmf+=
L /1an(sin−’(nsinθ)−θ)十f+
dで表 ・わされる。
β=α-θ+5in-'[n 5in(El-5in
(a/n))] Therefore, ]γ=α−e− β Furthermore, the amount of shift t1 of the light source image on the position detection element 2 is t+=
It becomes f-tany. LJmf is the subject distance when the optical axis of the projection lens 4 and the ray of light intersect with the optical axis of the projection lens 3, and if the thickness of the prism 6 is ignored, Umf+=
L /1an(sin-'(nsinθ)-θ)f+
Expressed by d.

ここで実例としで、撮影光学系が2群ズームレンズで、
第1群の焦点距811 f + = 24.68mm、
主点間隔HH=7.02mm、第1群の焦点位置と全群
の焦点位置の間隔Δ・30.04mm、フィルム面と受
光レンズの焦点面の間隔d = 6 、292 mm−
近接撮影時のM1群のシフト量0.5502mm、測距
装置の基線長L = 30mm、受光レンズの焦点距N
f・20mm、プリズム6Q頂角θ=2.826°、プ
リズムの屈折率n・1.483、撮影可能な距離範囲が
0.973m−■で繰り出し段数が18段、そのうち0
.973m〜6mを17段に分割した繰り出し機構をも
つ場合に、0.973m〜6mの撮影範囲を、プリズム
6によって0.580m〜1.020mの撮影範囲にシ
フトさせる場合について計算を行なった結果を表1に示
す。
Here, as an example, the photographing optical system is a two-group zoom lens,
Focal length of the first group: 811 f + = 24.68 mm,
Principal point interval HH = 7.02 mm, interval Δ 30.04 mm between the focal position of the first group and the focal position of all groups, interval d between the film surface and the focal plane of the light receiving lens = 6, 292 mm-
Shift amount of M1 group during close-up shooting: 0.5502 mm, base line length of distance measuring device L = 30 mm, focal length of light receiving lens N
f・20mm, prism 6Q apex angle θ=2.826°, refractive index of the prism n・1.483, photographable distance range is 0.973m-■, number of extension steps is 18 steps, of which 0
.. The calculation results for the case where the shooting range of 0.973m to 6m is shifted to the shooting range of 0.580m to 1.020m by prism 6 in the case of having a feeding mechanism that divides 973m to 6m into 17 steps. It is shown in Table 1.

表中で17−18は17段目と18段目の切り換り点を
示す、o−1も同様である。
In the table, 17-18 indicates the switching point between the 17th stage and the 18th stage, and o-1 is the same.

(以下余白) LI+@f+1.283m 表1の結果より、プリズム6による補正では近接撮影時
の測距可能な距離範囲の両端において、位置検出素子2
上で0.027mmのずれが生じることが分る。これは
繰り出し段数に換算するとほぼ1段に相当するずれ量で
ある。よって位置検出素子2の出力によってそのまま撮
影光学系を繰出制御すると、正しい合焦位置に撮影レン
ズを移動させることができず、ピボケの写真となってし
まう。
(Left below) LI+@f+1.283m From the results in Table 1, it can be seen that with the correction using prism 6, the position detection element 2
It can be seen that a deviation of 0.027 mm occurs at the top. This is a shift amount equivalent to approximately one stage when converted to the number of stages of feeding. Therefore, if the photographing optical system is controlled to advance directly based on the output of the position detection element 2, the photographing lens cannot be moved to the correct in-focus position, resulting in a blurred photograph.

これは、別言すると、プリズム6による補正だけでは、
被写体距111u+に対する位置検出素子2上での光源
像のずれ量t、の変化率を変化させることができないの
で、完全な補正が不可能であることに由来する。
In other words, with only correction using prism 6,
This is because the rate of change of the shift amount t of the light source image on the position detection element 2 with respect to the subject distance 111u+ cannot be changed, so complete correction is impossible.

「発明の目的」 本発明の目的は、三角測距による測距光学系を有する自
動焦点式カメラにおいて、近接撮影時の測距精度を高め
、より理想的なピント補正を実現することである。
[Object of the Invention] An object of the present invention is to improve the distance measurement accuracy during close-up photography and realize more ideal focus correction in an autofocus camera having a distance measurement optical system using triangular distance measurement.

「発明の概要」 本発明は、上記M1表についての議論においで、+7−
18からO−1までのtの変化量が0.5334mm5
 itの変化量が0.4794mmであるから、近接撮
影時にt、の変化量を0.533410.4794倍つ
まりI 、 + 130倍にすれば完全な補正が可能で
あるとの着眼に基づいてなされたものである0本発明は
このため、測距光学系の前面に、近接撮影時に進出して
、該測距光学系の投光部と受光部間の基線長を光学的(
こ延長させ、かつこの投光部と受光部の光軸そ曹限距離
で交差させる光学素子を配置したことを特徴としでいる
“Summary of the Invention” The present invention is based on +7-
The amount of change in t from 18 to O-1 is 0.5334 mm5
Since the amount of change in it is 0.4794 mm, complete correction is possible by increasing the amount of change in t by 0.533410.4794 times, that is, I + 130 times during close-up photography. For this reason, the present invention advances to the front of the distance measuring optical system during close-up photography, and measures the base line length between the light emitting part and the light receiving part of the distance measuring optical system optically (
It is characterized in that an optical element is arranged so that the optical axes of the light emitting part and the light receiving part intersect with each other at a maximum distance.

「発明の実施例」 第1図は、本発明による自動焦点式カメラの測距装置の
近接撮影時の構成を示したものである。
Embodiments of the Invention FIG. 1 shows the configuration of a distance measuring device for an autofocus camera according to the present invention during close-up photography.

測距装置の受光レンズ4の前面に配Mされた2つの全反
斜面をもつプリズム7とマスク8は近接撮影時でない場
合は退避される。
The prism 7 and the mask 8, which have two fully anti-slanted surfaces and are arranged in front of the light-receiving lens 4 of the distance measuring device, are retracted when not in close-up photography.

プリズム7は測距装置の基線長を光学的に延長する効果
と、光線を屈折させる効果をもっている。第2図fこプ
リズム7、マスク8、受光しンズ4の上断面図の詳細図
を示す、第3図は第2図の正面図である。マスク8は、
必要な光路以外の光を遮るためのもので、被写体側の開
口8aと、受光レンズ4側の開口8bを有している。開
口8aは受光レンズ4の光軸Oに対し、投光レンズ3の
光軸から離れる側に距離lだて隔たらせてスリット状に
開けられており、開口8bは受光レンズ4の光軸Oに対
応させてスリット状に開けられている。
The prism 7 has the effect of optically extending the base line length of the distance measuring device and the effect of refracting light rays. FIG. 2f shows a detailed top sectional view of the prism 7, mask 8, and light receiving lens 4, and FIG. 3 is a front view of FIG. 2. Mask 8 is
It is for blocking light other than the necessary optical path, and has an aperture 8a on the subject side and an aperture 8b on the light receiving lens 4 side. The aperture 8a is opened in the shape of a slit and is spaced apart from the optical axis O of the light emitting lens 3 by a distance l from the optical axis O of the light receiving lens 4. It is opened in a slit shape to correspond to the

マスク8をともなったプリズム7が受光レンズ4の前面
に配置されているとき、つまり近接撮影時に、撮影レン
ズの第1群は、自動焦点装置によって繰り出される繰り
出し量とは別に一定量が繰り出されるよう構成されてい
る。第1図、第2図に示すようにプリズム7を受光レン
ズ4の前面に配置することfこより、測距可能な距H範
囲を近距離側にシフトできる。プリズム7は、これに入
射する光線を基線長の方向にlたけ平行移動させること
により、基線長りを光学的にL−11に延長するもので
ある。
When the prism 7 with the mask 8 is placed in front of the light-receiving lens 4, that is, during close-up photography, the first lens group of the photographing lens is extended by a fixed amount apart from the amount extended by the automatic focusing device. It is configured. By arranging the prism 7 in front of the light receiving lens 4 as shown in FIGS. 1 and 2, the measurable distance H range can be shifted to the short distance side. The prism 7 optically extends the baseline length to L-11 by translating the light beam incident thereon by l in the direction of the baseline length.

このプリズム7の角度we、、屈折率をn、光線の平行
移動量を上記のようにlとした場合、被写体距MLJ 
2に対する位置検出素子2上の光源像のずれ量t2は、
次のような手順で求めることが。
If the angle we of this prism 7 is, the refractive index is n, and the amount of parallel movement of the light beam is l as described above, then the object distance MLJ
The amount of deviation t2 of the light source image on the position detection element 2 with respect to 2 is:
You can find it using the following steps:

できる。can.

プリズム7の被写体側の面への光線の入射角α、は次式
より求められる。
The angle of incidence α of the ray of light on the surface of the prism 7 on the subject side is obtained from the following equation.

a +=tan−’((L+ 42 )/(U2−f−
d))争θ。
a +=tan-'((L+ 42 )/(U2-f-
d)) Conflict θ.

この式は、三角測距装置の基線長が、プリズム7を挿入
する前のしから、挿入竣のL+βに延長されでいること
を意味している。
This equation means that the base line length of the triangulation distance measuring device has been extended from before the prism 7 is inserted to L+β after insertion.

角度θ1のプリズムに入射角α曹で光線が入射したとき
のふれ角β、は次式より求められる。
When a ray of light enters a prism with an angle θ1 at an incident angle α, the deflection angle β can be obtained from the following equation.

β1・α1−e、◆5in−’ [n5in(θ言−5
in(α、/n))]よフで、γ5・α、−θ、−β1 ゆえに位11検出素子2上の光源像のずれ量t2はt、
=ftany+ となる、U、、f2は受光レンズ4の光軸と一敗する光
線が投光レンズ3の光軸と交わるときの被写体距離で、
プリズム7の厚みを無視すれば、U wlp2 (Li
  )/1an(sin−’(nsinθ 、)−8+
)”f”dで表わされる。
β1・α1-e, ◆5in-' [n5in(θ word-5
in(α,/n))], γ5・α, −θ, −β1 Therefore, the amount of shift t2 of the light source image on the detection element 2 is t,
=ftany+, U, f2 is the subject distance when the optical axis of the light receiving lens 4 and the ray of light intersect with the optical axis of the light emitting lens 3,
If the thickness of prism 7 is ignored, U wlp2 (Li
)/1an(sin-'(nsinθ,)-8+
)"f"d.

ここで前述の実例と同一の条件の撮影レンズに本発明を
適用した場合を説明する。すなわち、撮影レンズが2群
ズームレンズで、第1群の焦点距離f +=24.68
mm、主点間隔H)I=7.02mm、第1群の焦点位
置と全群の焦点位置の間隔へ=30.04mm、フィル
ム面と受光レンズの焦点面との間隔d・6.292mm
Here, a case will be described in which the present invention is applied to a photographic lens under the same conditions as in the above-mentioned example. In other words, the photographic lens is a two-group zoom lens, and the focal length of the first group is f + = 24.68.
mm, principal point distance H) I = 7.02 mm, distance between the focal position of the first group and the focal position of all groups = 30.04 mm, distance d between the film surface and the focal plane of the light receiving lens 6.292 mm
.

近接撮影時の第1群のシフト量0.5502mm、測距
装置の基線長し・30mm、受光レンズの焦点距Mf□
 20 mm、プリズム7の角度e 、=3.39°、
屈折率n=1.483、光線の平行移動量42 = 3
.39mm、撮影可能な距11HI!囲が0.973m
−coで繰り出し段数が18段、そのうち0.973m
〜6mを17段に分割した繰り出し機構をもつ場合に、
0.973m〜6mの撮影節回をプリズム7によって0
.580m〜I 、 020mの撮影節回にシフトさせ
る場合について計算を行なった結果を表2に示す。
Shift amount of the first group during close-up shooting: 0.5502 mm, base line length of distance measuring device: 30 mm, focal length of light receiving lens Mf□
20 mm, angle e of prism 7, = 3.39°,
Refractive index n = 1.483, amount of parallel movement of light ray 42 = 3
.. 39mm, shooting distance 11HI! The circumference is 0.973m
-co has 18 stages, of which 0.973m
If you have a feeding mechanism that divides ~6m into 17 stages,
Shooting speed of 0.973m to 6m with Prism 7
.. Table 2 shows the results of calculations performed for the case where the shooting speed is shifted to 580 m to I and 020 m.

(以下余白) 表2の結果より、通常撮影時と近接撮影時の位置検出素
子2上の光源像の各段における差は±Q、OQ01mm
以下に抑えられていることが分る。よってこの位M検出
素子2の出力に応じて撮影光学系の繰出制御を行なえば
、はぼ完全なピントの写真を得ることができる0表1の
結果は、プリズム7によって、近接撮影時の基線長を光
学的に通常撮影時のそれの1.113倍(30mm→3
3.39mm)に延長し、位置検出素子2上の移動量を
1.113倍に増加できたことを示している。
(Margin below) From the results in Table 2, the difference between each stage of the light source image on the position detection element 2 during normal shooting and close-up shooting is ±Q, OQ01mm
It can be seen that it is suppressed to below. Therefore, if the photographing optical system is controlled in accordance with the output of the M detection element 2, it is possible to obtain a photograph with almost perfect focus. The length is optically 1.113 times that of normal shooting (30mm → 3
3.39 mm), indicating that the amount of movement on the position detection element 2 could be increased by 1.113 times.

「発明の効果」 本発明による自動焦点式、カメラによれば、近接撮影時
における測距精度を高めることができるので、測距デー
クに基いて撮影光学系を移動制御することにより、近接
撮影でありながら、シャープなピントの写真を売ること
ができる。近接撮影機能は、−眼レフカメラにおいては
広く用いられているが、本発明によれば安価なレンズシ
ャッタ一式の自動合焦カメラに簡単に組み込み、実質的
に一眼レフカメラと同等のピント精度を得ることが可能
である。得に被写界深度が浅くビシポケの目立ちやすい
長焦点レンズを内蔵したカメラにおいで顕著な効果が得
られる。
"Effects of the Invention" According to the automatic focusing camera according to the present invention, distance measurement accuracy during close-up photography can be improved. You can sell photos that are sharp and in focus. The close-up shooting function is widely used in -lens reflex cameras, but according to the present invention, it can be easily incorporated into an inexpensive autofocus camera with a set of lens shutters, and it can achieve focusing accuracy substantially equivalent to that of a single-lens reflex camera. It is possible to obtain. This is particularly effective with cameras equipped with long focal length lenses, which have a shallow depth of field and can easily cause blurring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による近接撮影時のピント補正方式の構
成を示した断面図、 第2図はM1図のプリズム部と受光レンズ部の詳細を表
わした断面図、。 第3図は第2図の正面図である。 第4図は2群ズームレンズの基本構成を示した断面図、 第5図は測距装置の構成を示した断面図、第6図は従来
の近接撮影時のピント補正方式の構成を示した断面図で
ある。 1・・・光源、    2・−位置検出素子、3・・・
投光レンズ、 4・−受光レンズ、5・−フィルム面、
 7・−全反射プリズム、8・・・マスク 第 1 図 第2図 a 第3図 第4図 第5図 6−3i1正の内容 園 手続ネ甫正1((自発) 昭和61年 6月26日 特許庁長官 宇 賀 道 部 殿 1、事件の表示 昭和61年特許願第108279号 2)発明の名称 近接撮影可能な自動焦点式カメラ 3、補正をする者 事件との間係  特許出願人 住 所  東京都板橋区前野町2丁目36番9号名 称
 (052)旭光学工業株式会社代表者  松  本 
  徹 4、代理人 住 所  〒102東京都千代田区四番町3番地1゜四
番町ハイツ501号 2!! 03(234)0290
氏名(8328)弁理士三浦邦夫(外2名)(1)明細
書第3頁第1行に、 X=(−2f I−HH−Δ+U−J(2f + ◆H
H◆△−U)2−4f + 2) /2とあるのを、 X=(−2f+−HH−Δ +U−+”   令  −
U   −4f+  )/2と補正する。 (2)明細書第8頁第8行に「ピボケ」とあるのを、「
ピンボケ」と補正する。 (3)明細書第15頁第1行に「得に」とあるのを、「
特に」と補正する。 以上
FIG. 1 is a cross-sectional view showing the configuration of a focus correction system during close-up photography according to the present invention, and FIG. 2 is a cross-sectional view showing details of the prism section and light receiving lens section of FIG. M1. FIG. 3 is a front view of FIG. 2. Figure 4 is a sectional view showing the basic configuration of a two-group zoom lens, Figure 5 is a sectional view showing the configuration of a distance measuring device, and Figure 6 is a configuration of a conventional focus correction method for close-up photography. FIG. 1...Light source, 2-Position detection element, 3...
Emitter lens, 4.-Receiver lens, 5.-Film surface,
7.-Total reflection prism, 8...Mask No.1 Fig.2a Fig.3 Michibe Uga, Commissioner of the Japan Patent Office1, Indication of the case, Patent Application No. 108279, filed in 19882) Title of the invention: Auto-focus camera capable of close-up photography 3, person making corrections Relationship with the case Patent applicant residence Address: 2-36-9 Maeno-cho, Itabashi-ku, Tokyo Name (052) Asahi Optical Co., Ltd. Representative Matsumoto
Toru 4, Agent address: 501 Yonbancho Heights, 3-1 Yonbancho, Chiyoda-ku, Tokyo 102 2! ! 03(234)0290
Name (8328) Patent attorney Kunio Miura (2 others) (1) In the first line of page 3 of the specification, X = (-2f I-HH-Δ+U-J (2f + ◆H
H◆△-U)2-4f + 2) /2 is written as X=(-2f+-HH-Δ +U-+" order -
Correct it as U −4f+ )/2. (2) The phrase “Piboke” on page 8, line 8 of the specification should be replaced with “
"Out of focus" is corrected. (3) In the first line of page 15 of the specification, the word “tokuni” should be replaced with “
Especially,” he corrected. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)三角測距原理に基づく測距光学系と、この測距光
学系からの測距データに基づき焦点位置に駆動される撮
影光学系とを備え、この撮影光学系は、近距離撮影時に
、その光学系の全部または一部がさらに一定量繰り出さ
れる近接撮影可能な自動焦点式カメラにおいて、上記測
距光学系の前面に、近接撮影時に進出して、該測距光学
系の投光部と受光部間の基線長を光学的に延長させ、か
つこの投光部と受光部の光軸を有限距離で交差させる光
学素子を配置したことを特徴とする自動焦点式カメラ。
(1) Equipped with a distance-measuring optical system based on the triangular distance-measuring principle and a photographing optical system that is driven to the focal position based on distance measurement data from this distance-measuring optical system. , in an autofocus camera capable of close-up photography in which all or part of the optical system is further extended by a certain amount, the light emitting section of the distance-measuring optical system is extended to the front of the distance-measuring optical system during close-up photography. An autofocus camera characterized in that an optical element is arranged to optically extend the baseline length between the light emitting part and the light receiving part, and intersect the optical axes of the light emitting part and the light receiving part at a finite distance.
(2)特許請求の範囲第1項において、前記光学素子は
、全反斜面を2つ有し、入射光を基線長の方向に平行移
動させて該基線長を光学的に延長する全反射プリズムで
あることを特徴とする自動焦点式カメラ。
(2) In claim 1, the optical element is a total reflection prism that has two totally anti-oblique surfaces and that moves incident light in parallel in the direction of the base line length to optically extend the base line length. An autofocus camera characterized by:
JP61108279A 1986-05-12 1986-05-12 Auto-focus camera capable of close photographing Pending JPS62264030A (en)

Priority Applications (68)

Application Number Priority Date Filing Date Title
JP61108279A JPS62264030A (en) 1986-05-12 1986-05-12 Auto-focus camera capable of close photographing
EP92105342A EP0495533B1 (en) 1986-05-12 1987-05-12 Guide mechanism of a flexible printed circuit board for a lens shutter camera
KR1019920700194A KR0156530B1 (en) 1986-05-12 1987-05-12 Lens shutter camera including zoom lens
DE8717978U DE8717978U1 (en) 1986-05-12 1987-05-12 Camera with zoom lens and zoom finder
AT87902775T ATE112071T1 (en) 1986-05-12 1987-05-12 INTER-LENS SHUTTER CAMERA WITH ZOOM LENS.
DE3751241T DE3751241T2 (en) 1986-05-12 1987-05-12 Photographic optical system and camera with such a system.
DE8718028U DE8718028U1 (en) 1986-05-12 1987-05-12 CENTRAL LOCKING CAMERA WITH VARIO LENS
DE3751456T DE3751456T2 (en) 1986-05-12 1987-05-12 Guide mechanism for a flexible printed circuit board in an inter-lens shutter camera.
KR1019950703637A KR0149575B1 (en) 1986-05-12 1987-05-12 Zoom camera
EP92105341A EP0495532B1 (en) 1986-05-12 1987-05-12 Photographic optical system and camera including such a system
AT92105357T ATE132276T1 (en) 1986-05-12 1987-05-12 OPENING AND CLOSING MECHANISM FOR A LENS
EP92105343A EP0498467B1 (en) 1986-05-12 1987-05-12 Flexible printed circuit with anti-reflection device for a lens shutter camera
DE8718017U DE8718017U1 (en) 1986-05-12 1987-05-12 CENTRAL LOCKING CAMERA WITH VARIO LENS
AT92105344T ATE121200T1 (en) 1986-05-12 1987-05-12 PHOTOGRAPHIC OPTICAL SYSTEM AND CAMERA COMPRISING SUCH SYSTEM.
AT92105342T ATE126363T1 (en) 1986-05-12 1987-05-12 GUIDING MECHANISM FOR A FLEXIBLE PRINTED CIRCUIT BOARD IN AN INTERMEDIATE LENS SHUTTER CAMERA.
CA000536919A CA1312231C (en) 1986-05-12 1987-05-12 Lens shutter camera including zoom lens
DE8718025U DE8718025U1 (en) 1986-05-12 1987-05-12 CENTRAL LOCKING CAMERA WITH VARIO VIEWFINDER
DE3751455T DE3751455T2 (en) 1986-05-12 1987-05-12 Photographic-optical system and camera with such a system.
EP92105357A EP0510379B1 (en) 1986-05-12 1987-05-12 Lens cap opening and closing mechanism
DE8718027U DE8718027U1 (en) 1986-05-12 1987-05-12 CENTRAL LOCKING CAMERA WITH VARIO OPTICS
DE3751481T DE3751481T2 (en) 1986-05-12 1987-05-12 Flexible printed circuit with anti-reflection device for a central locking camera.
DE3751657T DE3751657T2 (en) 1986-05-12 1987-05-12 Opening and closing mechanism for a lens
SG1996004214A SG49701A1 (en) 1986-05-12 1987-05-12 Lens shutter camera including a zoom lens system
PCT/JP1987/000293 WO1987007038A1 (en) 1986-05-12 1987-05-12 Lens shutter camera including zoom lens
AT92105343T ATE126902T1 (en) 1986-05-12 1987-05-12 FLEXIBLE PRINTED CIRCUIT WITH ANTI-REFLECTION DEVICE FOR A CENTRAL SHUTTER CAMERA.
KR1019920700193A KR0131680B1 (en) 1986-05-12 1987-05-12 Finder system for a camera
EP87902775A EP0266435B1 (en) 1986-05-12 1987-05-12 Lens shutter camera including zoom lens
DE8718024U DE8718024U1 (en) 1986-05-12 1987-05-12 CENTRAL LOCKING CAMERA WITH VARIO LENS
AT92105341T ATE126358T1 (en) 1986-05-12 1987-05-12 PHOTOGRAPHIC-OPTICAL SYSTEM AND CAMERA COMPRISING SUCH A SYSTEM.
DE3751879T DE3751879T2 (en) 1986-05-12 1987-05-12 Intermediate lens shutter camera with zoom lens
KR1019880700027A KR940010590B1 (en) 1986-05-12 1987-05-12 Lens shutter camera including zoom-lens
EP93110717A EP0569051B1 (en) 1986-05-12 1987-05-12 Lens shutter camera including a zoom lens system
EP92105344A EP0497383B1 (en) 1986-05-12 1987-05-12 Photographic optical system and camera including such a system
DE3750569T DE3750569T2 (en) 1986-05-12 1987-05-12 INTERMEDIATE LENS CAMERA WITH ZOOM LENS.
AT93110717T ATE141693T1 (en) 1986-05-12 1987-05-12 INTERMEDIATE LENS CAMERA WITH ZOOMO LENS
AU73955/87A AU606343B2 (en) 1986-05-12 1987-05-12 Lens shutter camera
US90/002261A US4944030B1 (en) 1986-05-12 1988-01-07 Lens shutter camera including zoom lens
KR1019880700027A KR0165530B1 (en) 1986-05-12 1988-01-12 Lens shutter camera including zoom-lens
US07/486,914 US5214462A (en) 1986-05-12 1990-02-14 Lens shutter camera including zoom lens and barrier mechanisms
US07/480,214 US5157429A (en) 1986-05-12 1990-02-14 Lens shutter camera including zoom lens
US07/480,217 US5142315A (en) 1986-05-12 1990-02-14 Lens shutter type of camera including zoom lens
US07/480,215 US5016032A (en) 1986-05-12 1990-02-14 Lens shutter camera including zoom lens
US07/480,213 US5150145A (en) 1986-05-12 1990-02-14 Lens shutter camera including zoom lens
US07486915 US5012273B1 (en) 1986-05-12 1990-02-14 Lens shutter type of camera including zoom lens
US07/480,069 US5264885A (en) 1986-05-12 1990-02-14 Lens shutter camera including zoom lens
AU57612/90A AU630976B2 (en) 1986-05-12 1990-06-19 Lens shutter camera including zoom lens
AU57611/90A AU630975B2 (en) 1986-05-12 1990-06-19 Lens shutter camera including zoom lens
AU57606/90A AU638257C (en) 1986-05-12 1990-06-19 Lens shutter camera including zoom lens
AU57610/90A AU630974B2 (en) 1986-05-12 1990-06-19 Lens shutter camera including zoom lens
AU57608/90A AU630973B2 (en) 1986-05-12 1990-06-19 Lens shutter camera including zoom lens
KR1019920700192A KR100232279B1 (en) 1986-05-12 1992-01-28 Zoom lens with the ability of operating in the mode tele, wide macro
CA000616420A CA1330402C (en) 1986-05-12 1992-06-25 Lens shutter camera including zoom lens
US07/924,524 US5276475A (en) 1986-05-12 1992-08-04 Lens shutter camera including zoom lens
US07/924,631 US5321462A (en) 1986-05-12 1992-08-04 Lens shutter camera including zoom lens
US08/071,107 US5424796A (en) 1986-05-12 1993-06-04 Lens shutter camera including zoom lens
US08/222,697 US5465131A (en) 1986-05-12 1994-03-10 Lens shutter camera including zoom lens
US08/463,259 US5583596A (en) 1986-05-12 1995-06-03 Lens shutter camera including zoom lens
US08/462,687 US5673099A (en) 1986-05-12 1995-06-05 Lens shutter camera including zoom lens
KR1019950703638A KR960702910A (en) 1986-05-12 1995-08-28 Lens shutter type zoom lens camera
US08/646,114 US5713051A (en) 1986-05-12 1996-05-07 Lens shutter camera including zoom lens
US08/838,016 US5966551A (en) 1986-05-12 1997-04-22 Lens shutter camera including zoom lens
HK98100938A HK1001900A1 (en) 1986-05-12 1998-02-06 Lens shutter camera including a zoom lens system
HK98100936A HK1001905A1 (en) 1986-05-12 1998-02-06 Lens shutter camera including zoom lens
HK98100940A HK1001902A1 (en) 1986-05-12 1998-02-06 Lens cap opening and closing mechanism
HK98100937A HK1001906A1 (en) 1986-05-12 1998-02-06 Guide mechanism of a flexible printed circuit board for a lens shutter camera
HK98100942A HK1001904A1 (en) 1986-05-12 1998-02-06 Photographic optical system and camera including such a system
HK98100941A HK1001903A1 (en) 1986-05-12 1998-02-06 Photographic optical system and camera including such a system
HK98100939A HK1001901A1 (en) 1986-05-12 1998-02-06 Flexible printed circuit with anti-reflection device for a lens shutter camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61108279A JPS62264030A (en) 1986-05-12 1986-05-12 Auto-focus camera capable of close photographing

Publications (1)

Publication Number Publication Date
JPS62264030A true JPS62264030A (en) 1987-11-17

Family

ID=14480615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61108279A Pending JPS62264030A (en) 1986-05-12 1986-05-12 Auto-focus camera capable of close photographing

Country Status (1)

Country Link
JP (1) JPS62264030A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035534A (en) * 2001-07-25 2003-02-07 Sumitomo Osaka Cement Co Ltd Distance sensor and distance sensor array

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414231A (en) * 1977-07-04 1979-02-02 Fuji Photo Optical Co Ltd Focus detector with variable base length
JPS60178415A (en) * 1984-02-27 1985-09-12 Asahi Optical Co Ltd Focus correcting device of camera

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414231A (en) * 1977-07-04 1979-02-02 Fuji Photo Optical Co Ltd Focus detector with variable base length
JPS60178415A (en) * 1984-02-27 1985-09-12 Asahi Optical Co Ltd Focus correcting device of camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035534A (en) * 2001-07-25 2003-02-07 Sumitomo Osaka Cement Co Ltd Distance sensor and distance sensor array

Similar Documents

Publication Publication Date Title
JPH0782143B2 (en) Focus correction device for macro photography of autofocus cameras
JPH067218B2 (en) Autofocus device
JPS63118112A (en) Focus detector
US4370551A (en) Focus detecting device
US4472033A (en) Zoom lens having an automatic focus detecting device
JPS62264030A (en) Auto-focus camera capable of close photographing
JPH01284811A (en) Camera system
US4032938A (en) Miniature single lens reflex camera
JPH0772765B2 (en) Camera automatic focusing device
JP2001350087A (en) Automatic focusing device and camera system
US4428653A (en) Mirror reflex camera with an electronic range finder
JPS60175016A (en) Focus detector
JPS6252538A (en) Automatic focusing camera
JP2600823B2 (en) Focus detection device
JPS63229439A (en) Automatic focusing device
JP2006030479A (en) Range finder apparatus for camera
JPH0522883B2 (en)
JPH029323B2 (en)
JPS62168106A (en) Focus detecting device
JPS62160409A (en) Focus detecting optical system
JPS55129319A (en) Optical system for focus detection of single-lens reflex camera
JPS6187114A (en) Single-lens reflex camera having automatic focus mechanism
JPS636532A (en) Automatic focusing camera capable of proximity photographing
JPS62106425A (en) Optical system for focus detection
JPS62115112A (en) Focus detecting optical system