JPS636532A - Automatic focusing camera capable of proximity photographing - Google Patents

Automatic focusing camera capable of proximity photographing

Info

Publication number
JPS636532A
JPS636532A JP61150995A JP15099586A JPS636532A JP S636532 A JPS636532 A JP S636532A JP 61150995 A JP61150995 A JP 61150995A JP 15099586 A JP15099586 A JP 15099586A JP S636532 A JPS636532 A JP S636532A
Authority
JP
Japan
Prior art keywords
light
distance
optical system
lens
photographing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61150995A
Other languages
Japanese (ja)
Other versions
JPH048774B2 (en
Inventor
Shigeru Kondo
茂 近藤
Saburo Sugawara
三郎 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP61150995A priority Critical patent/JPS636532A/en
Priority to DE3751455T priority patent/DE3751455T2/en
Priority to KR1019920700193A priority patent/KR0131680B1/en
Priority to DE3751879T priority patent/DE3751879T2/en
Priority to CA000536919A priority patent/CA1312231C/en
Priority to DE8718027U priority patent/DE8718027U1/en
Priority to AT92105341T priority patent/ATE126358T1/en
Priority to KR1019920700194A priority patent/KR0156530B1/en
Priority to AT92105357T priority patent/ATE132276T1/en
Priority to EP92105343A priority patent/EP0498467B1/en
Priority to DE8718028U priority patent/DE8718028U1/en
Priority to PCT/JP1987/000293 priority patent/WO1987007038A1/en
Priority to AT92105343T priority patent/ATE126902T1/en
Priority to DE3751241T priority patent/DE3751241T2/en
Priority to AU73955/87A priority patent/AU606343B2/en
Priority to EP87902775A priority patent/EP0266435B1/en
Priority to DE8717978U priority patent/DE8717978U1/en
Priority to AT92105344T priority patent/ATE121200T1/en
Priority to KR1019880700027A priority patent/KR940010590B1/en
Priority to EP92105341A priority patent/EP0495532B1/en
Priority to AT92105342T priority patent/ATE126363T1/en
Priority to AT87902775T priority patent/ATE112071T1/en
Priority to EP92105357A priority patent/EP0510379B1/en
Priority to KR1019950703637A priority patent/KR0149575B1/en
Priority to DE3751456T priority patent/DE3751456T2/en
Priority to DE8718024U priority patent/DE8718024U1/en
Priority to DE3751657T priority patent/DE3751657T2/en
Priority to EP93110717A priority patent/EP0569051B1/en
Priority to DE8718025U priority patent/DE8718025U1/en
Priority to AT93110717T priority patent/ATE141693T1/en
Priority to DE3751481T priority patent/DE3751481T2/en
Priority to EP92105342A priority patent/EP0495533B1/en
Priority to DE3750569T priority patent/DE3750569T2/en
Priority to DE8718017U priority patent/DE8718017U1/en
Priority to EP92105344A priority patent/EP0497383B1/en
Priority to US90/002261A priority patent/US4944030B1/en
Priority to KR1019880700027A priority patent/KR0165530B1/en
Publication of JPS636532A publication Critical patent/JPS636532A/en
Priority to US07/480,217 priority patent/US5142315A/en
Priority to US07/480,214 priority patent/US5157429A/en
Priority to US07/486,914 priority patent/US5214462A/en
Priority to US07/480,069 priority patent/US5264885A/en
Priority to US07/480,213 priority patent/US5150145A/en
Priority to US07486915 priority patent/US5012273B1/en
Priority to US07/480,215 priority patent/US5016032A/en
Priority to AU57608/90A priority patent/AU630973B2/en
Priority to AU57612/90A priority patent/AU630976B2/en
Priority to AU57611/90A priority patent/AU630975B2/en
Priority to AU57606/90A priority patent/AU638257C/en
Priority to AU57610/90A priority patent/AU630974B2/en
Priority to KR1019920700192A priority patent/KR100232279B1/en
Publication of JPH048774B2 publication Critical patent/JPH048774B2/ja
Priority to CA000616420A priority patent/CA1330402C/en
Priority to US07/924,631 priority patent/US5321462A/en
Priority to US07/924,524 priority patent/US5276475A/en
Priority to US08/071,107 priority patent/US5424796A/en
Priority to US08/222,697 priority patent/US5465131A/en
Priority to US08/463,259 priority patent/US5583596A/en
Priority to US08/462,687 priority patent/US5673099A/en
Priority to KR1019950703638A priority patent/KR960702910A/en
Priority to US08/646,114 priority patent/US5713051A/en
Priority to US08/838,016 priority patent/US5966551A/en
Priority to HK98100940A priority patent/HK1001902A1/en
Priority to HK98100942A priority patent/HK1001904A1/en
Priority to HK98100941A priority patent/HK1001903A1/en
Priority to HK98100938A priority patent/HK1001900A1/en
Priority to HK98100936A priority patent/HK1001905A1/en
Priority to HK98100939A priority patent/HK1001901A1/en
Priority to HK98100937A priority patent/HK1001906A1/en
Granted legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To obtain a correct focus by allowing a short distance correcting optical element to interlock with a driving ring, and allowing it to advance to the front of a photodetecting part, at the time of proximity photographing, in a camera for moving a photographic optical system by the driving ring between regular photographing and promixity photographing. CONSTITUTION:A light beam from a light source 3a is emitted to an object to be photographed, a reflected light is received by a photodetecting lens 4b, a light source image shift quantity to a distance to the object to be photographed is derived by a position detecting element 4a, and focusing is executed by moving a photographic optical system to a focal position. In such a case, at the time of proximity photographing, a short distance correcting optical element 4e is positioned in front of the photodetecting lens 4b by allowing it to interlock with a driving ring of the photographic optical system. Its optical element 4e is constituted of a prism 4c and a mask 4d. By its optical element 4e, a base line length of a distance measuring device 4 is extended optically to a distance L + l, a light source image shift quantity t2 against a distance Umf2 of the object to be photographed is set to the same degree as a shift quantity of regular photographing, and the photographic optical system is focused to the focal position. Accordingly, at the time of proximity photographing, the short distance correcting optical element is positioned in front of the photodetecting lens automatically, and the distance measuring accuracy can be raised.

Description

【発明の詳細な説明】 「技術分野」 本発明は自動焦点式カメラに間し、特に近接撮影が可能
なカメラに関するものである。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to autofocus cameras, and particularly to cameras capable of close-up photography.

「従来技術」 まず、2群ズームレンズの被写体距離と繰り出し量の間
係について述べる。第12図に2群ズームレンズの簡単
な構成を示す。
"Prior Art" First, the relationship between the object distance and the extension amount of the two-group zoom lens will be described. FIG. 12 shows a simple configuration of a two-group zoom lens.

被写体距離と繰り出し量の間係を示す式は次式のとおり
である。
The equation showing the relationship between the subject distance and the amount of extension is as follows.

U =f+ (2+X/fl+fl/X)+HH十八・
へ・■ 但し、U:被写体距離 fl:第1群の焦点距離 X:繰り出し量 HH:主点間隔 Δ:第1群の焦点位置と全群の焦点位置との間隔 0式をXについで解くと、 X・(−2f+−HH−△+u−++  +l\−u 
  4f+ )/2・・・■ となる。
U = f+ (2+X/fl+fl/X)+HH 18・
・■ However, U: Subject distance fl: Focal length of the 1st group and X・(-2f+-HH-△+u-++ +l\-u
4f+)/2...■.

一方、菓13図は、三角測距原理に基づく測距光学系(
装M)の被写体距離Uと、位置検出素子2上のずれ量t
の関係を示す。
On the other hand, Fig. 13 shows a distance measuring optical system based on the triangulation principle (
(M) object distance U and the amount of deviation t on the position detection element 2
shows the relationship between

二角測距装置は、光源3aと投光レンズ3aかうなる投
光部3と、受光レンズ4bと位置検出素子4a(たとえ
ばPSD)からなる受光部4から構成されでおり、光源
3aがら出射された光の被写体による反射光を位置検出
素子4aで得ることにより、被写体までの距離が検出さ
れる。すなわち、フィルム面Fから被写体までの距MU
に対する位置検出素子4a上の光源像のずれ量t(基準
は被写体が無限大のときの光源像の位M)は次式%式% 但し、L:測距装置の基線長 f:受光レンズの焦点距離 d:フィルム面と受光レンズの焦点面との間隔 ずれ量tは、周知のように位置検出素子4aの光電流の
大きざによって検出することができるから、この電気量
によって撮影光学系を上記■、■式に基づいて焦点位置
に移動させれば、自動的に合焦がなされる。このような
−自動焦点式カメラ、および撮影光学系の駆動機構は公
知である。
The bigonal distance measuring device is composed of a light projecting section 3 consisting of a light source 3a and a projecting lens 3a, and a light receiving section 4 consisting of a light receiving lens 4b and a position detecting element 4a (for example, a PSD). The distance to the subject is detected by obtaining the reflected light from the subject using the position detection element 4a. In other words, the distance MU from the film plane F to the subject
The amount of deviation t of the light source image on the position detection element 4a (the reference is the position M of the light source image when the object is infinite) is calculated using the following formula (%). However, L: Base length of the distance measuring device f: The distance of the light receiving lens Focal length d: As is well known, the distance t between the film surface and the focal plane of the light-receiving lens can be detected by the magnitude of the photocurrent of the position detection element 4a. If the lens is moved to the focal position based on formulas (1) and (2) above, focusing will be achieved automatically. Such autofocus cameras and drive mechanisms for photographic optics are known.

この自動焦点カメラにおいて、近接撮影(マクロ撮影)
機能を付加する場合には、測距装置の測距可能範囲を近
距離側にシフトする必要がある。
With this autofocus camera, close-up photography (macro photography)
When adding a function, it is necessary to shift the measurable range of the distance measuring device to the short distance side.

近接撮影機能は、周知のように、撮影光学系の全部また
は一部を、通常撮影時よりざらに被写体側に繰り出し、
その状態で合焦動作を行なわせるものである。第12図
の撮影光学系では、近接撮影時に撮影レンズの第1群が
、通常撮影時に自動焦点装置によって繰り出される繰り
出し量とは別に一定量が繰り出される。
As is well known, the close-up shooting function moves all or part of the photographic optical system closer to the subject than during normal shooting.
A focusing operation is performed in this state. In the photographing optical system shown in FIG. 12, the first lens group of the photographing lens is extended by a fixed amount during close-up photography, in addition to the amount extended by the autofocus device during normal photography.

藁14図は測距装置の測距可能な距M範囲を近距離側に
シフトする従来例である。同図に示すように受光レンズ
4bの前面に頂角が6のプリズムPそ配置することによ
り、測距可能な距M&!囲を近距離側にシフトできる。
Figure 14 shows a conventional example in which the measurable distance M range of the distance measuring device is shifted to the short distance side. As shown in the figure, by arranging a prism P with an apex angle of 6 in front of the light receiving lens 4b, distances M&! You can shift the range to the short distance side.

プリズムPの頂角を6、屈折率tnとした場合、被写体
距離U、に対する位置検出素子4a上の光源像のずれ量
t、は次のような手順で求めることができる。
When the apex angle of the prism P is 6 and the refractive index is tn, the shift amount t of the light source image on the position detection element 4a with respect to the object distance U can be determined by the following procedure.

プリズムPの被写体側の面への光線の入射角αは次式に
より求められる。
The angle of incidence α of a ray of light onto the surface of the prism P on the subject side is determined by the following equation.

a =tan−’(L/(U+ −f −a))+ 6
角度6のプリズムに入射角αで光線が入射したときのふ
れ角βは次式により求められる。
a = tan-'(L/(U+ -f -a))+6
When a ray of light enters a prism with an angle of 6 at an incident angle α, the deflection angle β is determined by the following equation.

β:α−6+5in−’[n5in(6−sin(a/
n))]よって、]γ=α−6− 〇えに位置検出素子4a上の光源像のずれ量t、はt+
=f4anyとなる。 Umf+は投光レンズ4の光軸
と一部する光線が投光レンズ3bの光軸と交わるときの
被写体距離で、プリズムPの厚みを無視すればUmf+
=L /1an(sin−’(nsin 6 )−6)
+ f + dで表わされる。
β: α-6+5in-'[n5in(6-sin(a/
n))] Therefore, ]γ=α−6− In addition, the amount of shift t of the light source image on the position detection element 4a is t+
= f4any. Umf+ is the subject distance when a ray that partially intersects the optical axis of the projecting lens 4 intersects with the optical axis of the projecting lens 3b.If the thickness of the prism P is ignored, Umf+
=L/1an(sin-'(nsin6)-6)
+ f + d.

ここで寅例として、撮影光学系か2詳ズームレンズで、
第1群の焦点距離f + = 24.68mm1主点間
隔HH・7.02mm5第1群の焦点位置と全群の焦点
位置の間隔Δ・30.04mm、フィルム面と受光レン
ズの焦点面の間隔d = 6.292mm、近接撮影時
の第1群のシフト量0.5502mm、測距装置の基線
長L = 30mm、受光レンズの焦点距離f・20m
m、プリズムPの頂角6・2.826” 、プリズムの
屈折率n =1.483、撮影可能な距離聞囲が0.9
73m−ωで繰り出し段数が18段、そのうち0.97
3m〜6mを17段に分割した繰り出し機構をもつ場合
(こ、0.973m〜6mの撮影範囲を、プリズムPに
よって0.580m〜1.020mの撮影聞囲にシフト
させる場合について計算を行なった結果を表1に示す。
Here, as an example, with a photographic optical system or a 2-detail zoom lens,
Focal length of the 1st group f + = 24.68 mm 1 Principal point spacing HH 7.02 mm 5 Distance between the focal position of the 1st group and the focal position of all groups Δ 30.04 mm Distance between the film surface and the focal plane of the light receiving lens d = 6.292 mm, shift amount of the first group during close-up photography 0.5502 mm, base line length of the distance measuring device L = 30 mm, focal length of the light receiving lens f・20 m
m, the apex angle of the prism P is 6.2.826", the refractive index of the prism is n = 1.483, and the range of photographic distance is 0.9.
At 73m-ω, the number of feeding steps is 18, of which 0.97.
In the case where the camera has a feeding mechanism that divides 3m to 6m into 17 stages (this calculation was performed for the case where the shooting range of 0.973m to 6m is shifted to the shooting range of 0.580m to 1.020m using prism P). The results are shown in Table 1.

表中で17−18は17段目と18段目の切り換り点を
示す、0−1も同様である。
In the table, 17-18 indicates the switching point between the 17th stage and the 18th stage, and 0-1 is the same.

(以下余白) Usf+”1.283m 表1の結果より、プリズムPによる補正では近接撮影時
の測距可能な距離範囲の両端において、位置検出素子4
a上で0.027mm、のずれが生じることが分る。こ
れは繰り出し段数に換算するとほぼ1段に相当するずれ
量である。よって位置検出素子4aの出力によってその
まま撮影光学系を繰出制御すると、正しい合焦位置1こ
撮影レンズを移動させることができず、ピンボケの写真
となってしまう、これは、別口すると、プリズムPによ
る補正だけでは、被写体距離U、に対する位置検出素子
4a上での光源像のずれjit+の変化率を変化させる
ことができないので、完全な補正が不可能であることに
由来する。
(Left below) Usf+”1.283m From the results in Table 1, it can be seen that with the correction using prism P, the position detection element 4
It can be seen that a deviation of 0.027 mm occurs on a. This is a shift amount equivalent to approximately one stage when converted to the number of stages of feeding. Therefore, if the photographing optical system is controlled to move forward as it is based on the output of the position detection element 4a, the photographing lens cannot be moved to the correct focusing position, resulting in an out-of-focus photograph.This is due to the fact that the prism P This is due to the fact that complete correction is impossible because it is not possible to change the rate of change of the deviation jit+ of the light source image on the position detection element 4a with respect to the subject distance U only by correction.

「発明の目的」 本発明は、三角測距による測距光学系を有する自動焦点
式カメラにおいて、近接撮影時の測距精度を高め、より
理想的なピント補正を実現することを目的とする。また
本発明は、通常撮影から近接撮影への移行動作に連動し
て、自動的に近接撮影用の測距光学系を構成できる自動
焦点式カメラを得ることを目的とする。
[Object of the Invention] An object of the present invention is to improve the distance measurement accuracy during close-up photography and realize more ideal focus correction in an autofocus camera having a distance measurement optical system using triangular distance measurement. Another object of the present invention is to provide an autofocus camera that can automatically configure a distance measuring optical system for close-up photography in conjunction with the transition from normal photography to close-up photography.

「発明の概要」 本発明は、基本的には、上記第1表についての議論にお
いて、+7−18からo−1までのtの変化量が0.5
334mm  t+の変化量が0.4794mmである
から、近接撮影時にtlの変化iiを0.533410
.4794倍つまり1.1130倍にすれば完全な補正
が可能であるとの着眼1こ基づいてなされたもので、こ
のため、測距光学系の前面に、近接撮影時に進出して、
該測距光学系の投光部と受光部間の基線長を光学的に延
長古せ、かつこの投光部と受光部の光軸を有限距離で交
差させる近距離補正光学素子を配置したことを特徴とし
でいる。そして本発明はざら。
"Summary of the Invention" Basically, in the discussion of Table 1 above, the present invention provides that the amount of change in t from +7-18 to o-1 is 0.5.
334mm The amount of change in t+ is 0.4794mm, so the change in tl during close-up photography is 0.533410
.. This was done based on the idea that complete correction would be possible if the magnification was increased to 4794 times, or 1.1130 times, and for this reason, it was placed in front of the distance-measuring optical system during close-up photography.
The base line length between the light emitting part and the light receiving part of the distance measuring optical system is optically extended, and a short distance correction optical element is arranged to intersect the optical axes of the light emitting part and the light receiving part at a finite distance. It is characterized by And the present invention is rough.

に、この近距離補正光学素子を、カメラの通常撮影と近
Wi撮杉の移行動作に連動させて受光部前面に進出させ
るだめの機械的構成を備えでいる。すなわち本発明は、
回動操作により通常撮影と近接撮影間の移行を行なう上
記撮影光学系の駆動リングと:上記近距離補正光字素子
を自由端部に有し、揺動に伴ないこの近距離補正光学素
子を受光部の前面に進退させる、基:4部を枢着した補
正フラグと:この補正フラグを常時はその近距離補正光
学素子が受光部前面から退避する方向に付勢するばね手
段と:駆動リングの近接撮影位宜への回動動作に連動し
て補正フラグを上記ばね手段に抗して回動させその近距
離補正光学素子を受光部の前面に位置させる、該駆動リ
ングと補正フラグとの間に設けて連動手段とを有するこ
とを特徴とするものである。
In addition, a mechanical configuration is provided for moving this short-distance correction optical element to the front of the light-receiving section in conjunction with the camera's transition operation between normal shooting and near-width shooting. That is, the present invention
A driving ring of the photographing optical system which performs a transition between normal photography and close-up photography by rotational operation; A correction flag having four parts pivoted to move it forward and backward in front of the light receiving section; a spring means that normally biases this correction flag in a direction in which its short-range correction optical element retreats from the front surface of the light receiving section; and a drive ring. The drive ring and the correction flag are arranged to rotate the correction flag against the spring means in conjunction with the rotation movement of the drive ring to the appropriate close-up position, and to position the short-range correction optical element in front of the light receiving section. The invention is characterized in that it has an interlocking means provided in between.

なお機械的構成を除く光学系については、本出願人が特
願昭61−108279号(61年5月12日出願)で
別途特許出願していや。
Regarding the optical system other than the mechanical structure, the present applicant has filed a separate patent application in Japanese Patent Application No. 108279/1982 (filed on May 12, 1961).

「発明の実施例」 第9図は、本発明による自動焦点式カメラの測距装置の
近接撮影時の光学的構成を示したものである0本発明は
、プリズム4cとマスク4dからなる近距離補正光学素
子4eを、近接撮影時に、測距装=の受光レンズ4bの
前面に配置し、通常壜影時の場合は、受光レンズ4bの
光軸がら退避させることを基本的な構成としている。
``Embodiment of the Invention'' FIG. 9 shows the optical configuration of the distance measuring device for an autofocus camera according to the present invention during close-up photography. The basic configuration is that the correction optical element 4e is placed in front of the light receiving lens 4b of the distance measuring device during close-up photography, and is retracted from the optical axis of the light receiving lens 4b during normal bottle shadowing.

近距離補正光学素子4eを受光レンズ4bの前面に進退
させる機械的構成を説明する前に、この近距離補正光学
素子4eの構成、近接撮影における測距精度が向上する
理由を説明する。
Before explaining the mechanical configuration for moving the short-distance correction optical element 4e back and forth in front of the light-receiving lens 4b, the structure of the short-distance correction optical element 4e and the reason why distance measurement accuracy in close-up photography is improved will be explained.

プリズム4Cは測距装置の基線長を光学的に延長する効
果と、光線を屈折させる効果をもっている。第10図に
プリズム4c、マスク4d、受光レンズ4bの上訴面図
の詳細図を示す、第11図は第10図の正面図である。
The prism 4C has the effect of optically extending the base line length of the distance measuring device and the effect of refracting light rays. FIG. 10 shows a detailed top view of the prism 4c, mask 4d, and light-receiving lens 4b, and FIG. 11 is a front view of FIG. 10.

マスク4dは、必要な光路以外の光を遮るためのもので
、被写体側の開口4fと、受光レンズ4b側の開口49
を有している。開口4fは受光レンズ4bの光軸○に対
し、投光レンズ3bの光軸から離れる側に距離ρだで隔
たらせてスリット状に開けられでおり、開口49は受光
レンズ4bの光軸Qに対応させてスリット状に開けられ
でいる。
The mask 4d is for blocking light other than the necessary optical path, and has an aperture 4f on the subject side and an aperture 49 on the light receiving lens 4b side.
have. The aperture 4f is opened in a slit shape at a distance ρ on the side away from the optical axis of the light emitting lens 3b with respect to the optical axis ○ of the light receiving lens 4b, and the aperture 49 is spaced apart from the optical axis Q of the light receiving lens 4b. It is opened in a slit shape to correspond to the

マスク4dをともなったプリズム4cが受光レンズ4b
の前面に配置されでいるとき、つまり近接撮影時に、撮
影レンズの第1群は、通常撮影時に自動焦点装置によっ
て繰り出される繰り出し量とは別に一定量が繰り出され
る。第1図、第2図に示すようにプリズム4Cを受光レ
ンズ4bの前面に配置することにより、測距可能な互層
範囲を近距M側にシフトできる。プリズム4cは、これ
に入射する光線を基線長の方向にlだけ平行移動させる
ことにより、基線長りを光学的にL+ρに延長するもの
である。
The prism 4c with the mask 4d is the light receiving lens 4b.
When the camera is placed in front of the camera, that is, during close-up photography, the first lens group of the photographic lens is extended by a fixed amount in addition to the amount extended by the automatic focus device during normal photography. By arranging the prism 4C in front of the light-receiving lens 4b as shown in FIGS. 1 and 2, the range of alternating layers in which distance can be measured can be shifted to the short distance M side. The prism 4c optically extends the base line length to L+ρ by translating the light beam incident thereon by l in the direction of the base line length.

このプリズム4Cの角度を69、屈折率をn、光線の平
行移動j1そ上記のようにβとした場合、被写体距離U
2に対する位置検出素子4a上の光源像のずれ量t2は
、次のような手順で求めることができる。
If the angle of this prism 4C is 69, the refractive index is n, and the parallel movement of the light beam j1 is β as above, then the object distance U
The amount of deviation t2 of the light source image on the position detection element 4a with respect to the position detection element 4a can be determined by the following procedure.

プリズム4Cの被写体側の面への光線の入射角α、は次
式より求められる。
The angle of incidence α of the light beam onto the object-side surface of the prism 4C is obtained from the following equation.

a +=tan−’((L+β)/(12−f−d))
−6。
a +=tan-'((L+β)/(12-f-d))
-6.

この式は、三角測距製雪の基線長が、プリズム4Cを挿
入する前のしから、挿入後のL+βに延長されているこ
とを意味している。
This formula means that the base line length for triangulation snowmaking is extended from before the prism 4C is inserted to L+β after the prism 4C is inserted.

角度6.のプリズムに入射角α、で光線が入射したとき
のふれ角β、は次式より求められる。
Angle 6. When a ray of light enters the prism at an angle of incidence α, the deflection angle β can be obtained from the following equation.

B +=a +−6+”5in−’  [n5in(6
+−5in(a +/n))]よって、]γ1=α言−
6ビβ ゆえに位置検出素子4a上の光源像のずれ量t2はt2
=ftany+ となる、 Umf、は受光レンズ4bの光軸と一部する
光線が投光レンズ3bの光軸と交わるときの被写体距離
で、プリズム4cの厚みを無視すれば、 Umf2=(L+β)/1an(sin−’(nsin
5 +)−6+)・f+dで表わされる。
B +=a +-6+"5in-' [n5in(6
+-5in(a +/n))] Therefore, ]γ1=α word-
6bi β Therefore, the amount of deviation t2 of the light source image on the position detection element 4a is t2
=ftany+, Umf is the subject distance when a ray that is part of the optical axis of the light receiving lens 4b intersects with the optical axis of the projecting lens 3b, and if the thickness of the prism 4c is ignored, then Umf2 = (L + β) / 1an(sin-'(nsin
It is expressed as 5+)-6+)・f+d.

ここで前述の実例と同一の条件の撮影レンズに本発明を
適用した場合を説明する。すなわち、撮影レンズが2群
ズームレンズで、第1群の焦点距M f ++24.6
8n+m、主点間隔量= 7.02mm、第1群の焦点
位置と全群の焦点位置の間隔△・30.04mm、フィ
ルム面と受光レンズの焦点面との間隔d=6.292m
m 、近接撮影時の第1群のシフト量0.5502mm
、測距装置の基線長L =30mn+、受光レシズの焦
点しンf =20mm、プリズム4cの角度6 、=3
.39°、屈折率n・1.483、光線の平行移動量1
2 = 3.39mm、撮影可能な距M範囲が0.97
3m〜ωで繰り出し段数が18段、そのうち0.973
m〜6m17段に分割した繰り出し機構をもつ場合に、
0.973m〜6mの撮影範囲をプリズム4Cによって
0.580m 〜1.020mのfiVV囲にシフトさ
せる場合について計Xを行なった結果を表2に示す。
Here, a case will be described in which the present invention is applied to a photographic lens under the same conditions as in the above-mentioned example. In other words, the photographic lens is a two-group zoom lens, and the focal length of the first group is M f ++24.6.
8n+m, distance between principal points = 7.02mm, distance between the focal position of the first group and the focal position of all groups △・30.04mm, distance d between the film surface and the focal plane of the light receiving lens = 6.292m
m, shift amount of the first group during close-up shooting 0.5502 mm
, base line length L of distance measuring device = 30 mn+, focal point f of light receiving lens = 20 mm, angle of prism 4c 6, = 3
.. 39°, refractive index n・1.483, amount of parallel movement of light 1
2 = 3.39mm, shooting distance M range is 0.97
At 3m~ω, the number of stages is 18, of which 0.973.
When having a feeding mechanism divided into 17 stages of m to 6 m,
Table 2 shows the results of performing a total of X for the case where the photographing range of 0.973 m to 6 m is shifted to the fiVV range of 0.580 m to 1.020 m by the prism 4C.

(以下余白) Usf+”  1.283m 表2の結果より、通常撮影時と近接撮影時の位置検出素
子4a上の光源像の各段にお11′る差は±0.000
1mm以下に抑えられていることが分る。
(Margin below) Usf+” 1.283m From the results in Table 2, the difference in each stage of the light source image on the position detection element 4a during normal shooting and close-up shooting is ±0.000.
It can be seen that the thickness is suppressed to 1 mm or less.

よってこの位置検出素子4aの出力に応じて撮影光学系
の繰出制御を行なえば、はぼ完全なピントの写真を得る
ことができる0表1の結果は、プリズム4Cによって、
近接撮影時の基線長を光学的に通常撮影時のそれの1.
H3倍(30mm→33.39mm)に延長し、位置検
出素子4a上の移動量を1.113倍に増加できたこと
を示している。
Therefore, if the photographing optical system is controlled in accordance with the output of the position detection element 4a, a photograph with almost perfect focus can be obtained.The results shown in Table 1 show that the prism 4C
Optically, the baseline length for close-up photography is 1.
This shows that the length was extended by H3 times (30 mm→33.39 mm), and the amount of movement on the position detection element 4a was increased by 1.113 times.

次に第1図ないし第8図につき、近Wi撮影と通常撮影
との間の移行に連動して、上記近距離補正光学素子4e
を受光レンズ4bの前面に進退させる機械構成を説明す
る。
Next, referring to FIGS. 1 to 8, in conjunction with the transition between near Wi shooting and normal shooting, the short distance correction optical element 4e
A mechanical configuration for advancing and retracting the light receiving lens 4b in front of the light receiving lens 4b will be explained.

この実施例は、ズームレンズ系を有するレンズシャッタ
式カメラに本発明を適用したもので、ズームレンズの鏡
筒ブロック1、ファインダおよびストロボブロック2)
上記三角測距原理に基づく投光部3と受光部4、ズーミ
ング用のズームモータ5を備えている。これらの要素は
、カメラボディの固定部となる台板6上に固定されでい
る。投光部3と受光部4を、ズームモータ5の両側に配
置すると、スペース効率を高めた状態で、基線長L18
:大きくとることができる。
In this embodiment, the present invention is applied to a lens-shutter camera having a zoom lens system, including a zoom lens barrel block 1, a finder, and a strobe block 2).
It is equipped with a light projecting section 3, a light receiving section 4, and a zoom motor 5 for zooming based on the above-mentioned triangulation principle. These elements are fixed on a base plate 6 which serves as a fixed part of the camera body. If the light projector 3 and the light receiver 4 are arranged on both sides of the zoom motor 5, the base line length L18 can be reduced with increased space efficiency.
:Can be made large.

そしてこれらの要素は、カメラボディの固定部となる台
板6(第2図ないし第5図参照)上に固定され−でいる
。すなわち、台板6は、光軸と直角をなす鏡筒支持板部
6aと、この鏡筒支持板部6aの上端r8直角に曲折し
た水平支持板部6bと、この水平支持板部6bに対して
直角をなすモータ支持板部6Cとを有していて、鏡筒支
持板部6aに鏡筒ブロック1が支持されている。またモ
ータ支持板部6Cには、鏡筒ブロック1の上部中央に位
置するズームモータ5が固定され、このズームモータ5
の両側に、水平支持板部6bに固定された投光部3と受
光部4が位置している。
These elements are fixed on a base plate 6 (see FIGS. 2 to 5) which serves as a fixed part of the camera body. That is, the base plate 6 includes a lens barrel support plate part 6a that is perpendicular to the optical axis, a horizontal support plate part 6b that is bent at a right angle to the upper end r8 of this lens barrel support plate part 6a, and a horizontal support plate part 6b that is bent at a right angle to the upper end r8 of this lens barrel support plate part 6a. The lens barrel block 1 is supported by the lens barrel support plate 6a. Further, a zoom motor 5 located at the upper center of the lens barrel block 1 is fixed to the motor support plate portion 6C.
A light projecting section 3 and a light receiving section 4 fixed to the horizontal support plate section 6b are located on both sides of the horizontal supporting plate section 6b.

ファインダブロック2は、この水平支持板部6bの正面
右方に固定される。6eは、スペーサ6fを介してモー
タ支持板部6Cに固定したギヤ列支持プレートである。
The finder block 2 is fixed to the front right side of the horizontal support plate portion 6b. 6e is a gear train support plate fixed to the motor support plate portion 6C via a spacer 6f.

ズームモータ5によって駆動される鏡筒ブロック1の構
造を第6図ないし第8図について説明する0台板6の鏡
筒支持板部6aには、固定ねじ10を介して後固定板1
1が固定されでいる。この後固定板11には光軸と平行
でこれの周囲に位置する4本のガイドロッド12が固定
されでいて、このガイドロッド12の先端に前固定板1
3が固定されでいる1以上が鏡筒ブロック1の主たる固
定要素である。
The structure of the lens barrel block 1 driven by the zoom motor 5 will be explained with reference to FIGS.
1 is fixed. After this, four guide rods 12 are fixed to the fixing plate 11 parallel to the optical axis and located around it, and the front fixing plate 1 is attached to the tip of the guide rod 12.
One or more elements to which 3 is fixed are the main fixing elements of the lens barrel block 1.

後固定板1]と前固定板130間には、カムリング(駆
動リング)14が回転自在に支持されてあり、このカム
リング14の外周に、ズームモータ5の駆動軸5aに固
定したビニオシ7と直接またはギヤ列を介して噛み合う
ギヤ15が固定ねじ]5a(第6図)で固定されでいる
。このギヤ15は、カムリング14の回動範囲をカバー
するセクタギヤである。カムリング14には、前群用、
後群用のズーミングカム溝20.2]が切られている。
A cam ring (driving ring) 14 is rotatably supported between the rear fixed plate 1] and the front fixed plate 130, and a cam ring (drive ring) 14 is rotatably supported on the outer periphery of the cam ring 14. Alternatively, the gears 15 that mesh through the gear train are fixed with fixing screws 5a (FIG. 6). This gear 15 is a sector gear that covers the rotation range of the cam ring 14. The cam ring 14 includes one for the front group,
A zooming cam groove 20.2 for the rear group is cut.

第7図はズーミングカム溝2o、21の展開図で、後群
用のズーミングカム溝21は広角端固定区間21a、変
倍区間21b、望遠端固定区間21c!有している。こ
れに対し前群用のズーミングカム溝20は、バリヤブロ
ック30の開閉区間20a、レンズ収納区間20b、広
角端固定区間20c、変倍区間20d、望遠端固定区間
20e、マクロ繰出区間2Of、およびマク口端固定区
間209を有している。これら各区間の回動角度は、ズ
ーミングカム溝2oの開閉区間20a、レンズ収納区間
20b、および広角端固定区間20cの合計角度6.が
、ズーミングカム溝21の広角端固定区間21aの角度
61と同一であり、変倍区間20dと変倍区m21bの
角度62が同一であり、望遠端固定区間20e、マクロ
繰出区間2Of、およびマクロ固定区間209の合計角
度63が望遠端固定区間21cの角度63と同一である
。なおこの実施例の具体的なズーミング範囲は35mm
〜70mmで、望遠端(70mm)からざらにマクロ繰
出が可能となっている。
FIG. 7 is a developed view of the zooming cam grooves 2o and 21, and the zooming cam groove 21 for the rear group includes a wide-angle end fixed section 21a, a variable power section 21b, and a telephoto end fixed section 21c! have. On the other hand, the zooming cam groove 20 for the front group includes the opening/closing section 20a of the barrier block 30, the lens storage section 20b, the wide-angle end fixed section 20c, the variable power section 20d, the telephoto end fixed section 20e, the macro feed section 2Of, and the lens storage section 20b. It has a mouth end fixed section 209. The rotation angle of each of these sections is the total angle of the opening/closing section 20a of the zooming cam groove 2o, the lens storage section 20b, and the wide-angle end fixing section 20c. is the same as the angle 61 of the wide-angle end fixed section 21a of the zooming cam groove 21, the angle 62 of the variable magnification section 20d and the variable magnification section m21b is the same, and the angle 62 of the variable magnification section 20d and variable magnification section m21b is the same, and the angle 62 of the variable magnification section 20d and variable magnification section m21b is the same, and The total angle 63 of the fixed section 209 is the same as the angle 63 of the telephoto end fixed section 21c. Note that the specific zooming range of this example is 35 mm.
~70mm, it is possible to roughly extend macro from the telephoto end (70mm).

このズーミングカム溝20およびズーミングカム溝21
には、ガイドロッド12に移動自在に嵌めた前群枠16
のローラ17および後群枠18のローラ19が嵌まる。
These zooming cam grooves 20 and 21
The front group frame 16 is movably fitted to the guide rod 12.
The roller 17 of the rear group frame 18 and the roller 19 of the rear group frame 18 are fitted.

前群枠16には、固定ねじ22aを介して飾枠22が固
定され、ざらにシャッタブロック23が固定されている
。前群レンズL1&保持した前群レンズ枠24は、この
シャッタプロ・νり23とへリコイド25によって螺合
してあり、またシャ・ンタブロック23のレンズ繰出レ
バー23aと係合する腕24aを有している。したがっ
てレンズ繰出レバー23aが円周方向に回動し、これに
伴ない前群レンズ枠24が回動すると、前群レンズ枠2
4はヘリコイF:25に従って光軸方向に移動する。後
群レンズL2は、後群枠18に直接固定されている。
A decorative frame 22 is fixed to the front group frame 16 via fixing screws 22a, and a shutter block 23 is roughly fixed to the front group frame 16. The front group lens L1 and the held front group lens frame 24 are screwed together with this shutter pro-v 23 by a helicoid 25, and also have an arm 24a that engages with a lens extension lever 23a of the shutter block 23. are doing. Therefore, when the lens advancing lever 23a rotates in the circumferential direction and the front group lens frame 24 rotates accordingly, the front group lens frame 24 rotates.
4 moves in the optical axis direction according to the helicoid F:25. The rear group lens L2 is directly fixed to the rear group frame 18.

以上の構成から明らかなように、上記鏡筒ブロック1は
、ズームモータ5によってカムリング14を回動させ、
前群枠16のローラ17をズーミングカム溝20のマク
ロ繰出区Fffi2Ofからマク口端固定区間209に
係合させると、通常撮影時より前群レンズL1がさらに
繰出される近接撮影状態となる。
As is clear from the above configuration, the lens barrel block 1 rotates the cam ring 14 by the zoom motor 5,
When the roller 17 of the front group frame 16 is engaged with the macro mouth end fixing section 209 from the macro feed section Fffi2Of of the zooming cam groove 20, a close-up shooting state is established in which the front group lens L1 is further moved out than during normal shooting.

本発明の特徴とする上記近距離補正光学素子4eは、第
1図、第2図、第4図に示すように、受光部4の下方に
位置する軸41によって、その基端部を台板6に枢着し
た補正フラグ42の自由端に固定されている。この補正
フラグ42は外力が加わらない状態では直線性を保持す
るが、外力が加わると、弾性的に変形する可視性を有し
でいる。そしてこの補正フラグ42の他端には、連動突
起43が一体に設けられている。また近距離補正光学素
子4eは、引張ばね46によって、雷時はその近距離補
正光学素子4eが受光部4の前方から退避する方向に回
動付勢されでいる。そしてカムリング14には、これが
近接撮影位置に回動したとき上記運動突起43と係合し
て近距離補正光学素子4eを受光部4の前面に進出させ
る進出突起44が設けられている。進出突起44は、近
距離補正光学素子4eを受光部4の前面より大きく回動
させるように位置および形状が定められているが、近距
離補正光学素子4eの進出突起44による回@端は、台
板6と一体のギヤ支持板6eの側面が規制し、進出突起
44によるオーバチャージ分は、補正フラグ42の可視
性で吸収される。
As shown in FIGS. 1, 2, and 4, the short distance correction optical element 4e, which is a feature of the present invention, has its base end connected to the base plate by a shaft 41 located below the light receiving section 4. The correction flag 42 is fixed to the free end of the correction flag 42 which is pivotally connected to the correction flag 6. This correction flag 42 maintains its linearity when no external force is applied to it, but when an external force is applied to it, it has the visibility of being elastically deformed. An interlocking protrusion 43 is integrally provided at the other end of the correction flag 42. Further, the short distance correction optical element 4e is rotatably biased by a tension spring 46 in a direction in which the short distance correction optical element 4e retreats from the front of the light receiving section 4 during lightning. The cam ring 14 is provided with an advancing protrusion 44 that engages with the movable protrusion 43 to advance the short distance correction optical element 4e to the front of the light receiving section 4 when the cam ring 14 is rotated to the close-up photographing position. The position and shape of the protrusion protrusion 44 are determined so as to rotate the short distance correction optical element 4e more than the front surface of the light receiving section 4, but the rotation by the protrusion protrusion 44 of the short distance correction optical element 4e is The side surface of the gear support plate 6e, which is integral with the base plate 6, regulates, and the overcharge caused by the advancing protrusion 44 is absorbed by the visibility of the correction flag 42.

以上の構造によれば、カムリング14が近接撮影機能に
回動したときに、自動的に近距離補正光学素子4eを受
光部4の前面に位置させることができる。
According to the above structure, when the cam ring 14 rotates for the close-up shooting function, the short-distance correction optical element 4e can be automatically positioned in front of the light receiving section 4.

なお投光部3と受光部4を宵する測距装置からのシャッ
タブロック23への駆動信号は、図示しないフレキシブ
ルプリント基板(FPC基板)を介しで行なわれる。こ
のフレキシブルプリント基板は、前群レンズし1および
後群レンズL2の全移動域において、余裕を持って伸展
し、かつ折曇まれるように、カムリング14の内側に曲
折配置される。
Note that a drive signal to the shutter block 23 from the distance measuring device that illuminates the light projecting section 3 and the light receiving section 4 is sent via a flexible printed circuit board (FPC board) not shown. This flexible printed circuit board is bent and arranged inside the cam ring 14 so that it can be extended with a margin and folded over the entire movement range of the front lens group 1 and the rear group lens L2.

また舅1図に示したファインダブロック2を簡単1こ説
明すると、このファインダ装=8とストロボ装置9は、
鏡筒ブロック1の焦点距離の変化に連動させて、ファイ
ンダ視野を変化させ、かつストロボの照射角(光強度)
を変化させるものである。そのための動力源は、上記ズ
ームモータ5が用いられる8カムリング14のギヤ15
には、上記ビニオン7とは別のとニオン50が噛み合っ
ていで、このビニオン500軸51は、台板6の後方に
延長され、その後端に減速ギヤ列52が設けられている
。減速ギヤ列52の最綬ギヤ52aは、カム板53のラ
ック53aに噛み合っている。カム板53は左右方向に
摺動可能で、その後端の下方曲折部53bの先端(下端
)にラック53aが一体に設けられている。減速ギヤ列
52は、ギヤ15の回転を減速し、カムリング]4の動
きを縮小してカム板53に与えるものである。
Also, to briefly explain the finder block 2 shown in Figure 1, the finder unit 8 and strobe device 9 are as follows:
The viewfinder field of view is changed in conjunction with the change in the focal length of the lens barrel block 1, and the illumination angle (light intensity) of the strobe is
It changes the The power source for this is the gear 15 of the 8 cam ring 14 in which the zoom motor 5 is used.
A nion 50, which is different from the above-mentioned binion 7, is meshed with the pinion 7, and the shaft 51 of this binion 500 is extended to the rear of the base plate 6, and a reduction gear train 52 is provided at the rear end thereof. The lowest gear 52a of the reduction gear train 52 meshes with a rack 53a of the cam plate 53. The cam plate 53 is slidable in the left-right direction, and a rack 53a is integrally provided at the tip (lower end) of a lower bent portion 53b at the rear end. The reduction gear train 52 decelerates the rotation of the gear 15 and reduces the movement of the cam ring] 4 to apply it to the cam plate 53.

カム板53には、ファインダ装置8用の変倍カム溝55
と、パララックス補正カム溝56、およびストロボ製雪
9用のストロボカム溝57が設けられている。
The cam plate 53 has a variable magnification cam groove 55 for the finder device 8.
, a parallax correction cam groove 56, and a strobe cam groove 57 for the strobe snow making 9.

ファインダ装M8のレンズ系は、基本的には、固定され
た被写体側レンズ群L3と接眼レンズ詳L4、および可
動の変倍レンズ群L5からなり、ざら(こ、近接撮影機
能の偏角プリズムP1を備えでいる。変倍レンズ群L5
は鏡筒ブロック1の変倍操作による撮影画面と、ファイ
ンダ装置8による視野を一部させるものであり、偏角プ
リズムP1は近接撮影時のみ光軸上に進出して特にパラ
ラックスを補正する。すなわちレンズシャッタ式カメラ
では、パララックスが避けられず、その量は近接撮影機
能きくなるが、本発明のカメラは近接1杉が可能であり
、このときパララックスの量が大きくなることから、近
接撮影時に限って、下方が厚く上方が薄い楔形の偏角プ
リズムP1を光路に入れで、光路を下方に屈曲させ、撮
影部分により近い部分を観察できるようにしている。
The lens system of the finder M8 basically consists of a fixed subject-side lens group L3, an eyepiece lens L4, and a movable variable magnification lens group L5. Variable magnification lens group L5
The angle prism P1 extends onto the optical axis only during close-up photography to particularly correct parallax. In other words, in a lens-shutter type camera, parallax is unavoidable and the amount of parallax affects the close-up shooting function, but the camera of the present invention is capable of close-up photography, and at this time the amount of parallax becomes large. Only when photographing, a wedge-shaped deflection prism P1 that is thick at the bottom and thin at the top is inserted into the optical path to bend the optical path downward so that a portion closer to the photographed area can be observed.

またストロボ装置9は、撮影レンズの焦点距離が長焦点
のとき程、つまりレンズを繰出す程照射角を絞る一方、
近接撮影時には、照射角を逆に広げて被写体に対する光
量を落すものである。このためこの実施例ではフレネル
レンズ[6そ固定し、キセノンランプ58を保持した反
射笠59を光軸方向に動かすようにしている。
In addition, the strobe device 9 narrows down the irradiation angle as the focal length of the photographing lens becomes longer, that is, as the lens extends.
During close-up photography, the illumination angle is conversely widened to reduce the amount of light to the subject. Therefore, in this embodiment, the Fresnel lens [6] is fixed, and the reflective shade 59 holding the xenon lamp 58 is moved in the optical axis direction.

「発明の、効果」 本発明による自動焦点式カメラによれば、近接撮影時に
おける測距精度を高めることができるので、測距データ
に暴いて撮影光学系を移動制御することにより、近接撮
影でありながら、シャープなどントの写真を売ることが
できる。近接撮影機能は、−眼レフカメラにおいては広
く用いられているが、本発明によれば安価なレンズシャ
ッター式の自動合焦カメラに簡単に組み込み、寅質的に
一眼レフカメラと同等のピント精度を得ることが可能で
ある。特に被写界深度が浅くピンボケの目立ちやすい長
焦点レンズを内蔵したカメラにおいで顕著な効果が得ら
れる。
"Effects of the Invention" According to the autofocus camera according to the present invention, it is possible to improve the distance measurement accuracy during close-up photography. You can still sell sharp photos. The close-up shooting function is widely used in -lens reflex cameras, but according to the present invention, it can be easily incorporated into inexpensive lens-shutter autofocus cameras, and it can achieve focusing accuracy that is qualitatively equivalent to that of single-lens reflex cameras. It is possible to obtain This is particularly effective for cameras with built-in long focal length lenses that have a shallow depth of field and tend to be out of focus.

そして本発明においては、近距離補正光学素子が揺動可
能な補正フラグの先端にに設けられでおり、撮影光学系
を通常撮影から近接撮影に移行させる駆動リングの回動
に連動して、この補正フラグに設けた近距離補正光学素
子が受光部の前面に進出するので、近接撮影にお(プる
測距を特別な操作を要することなく自動的に行なうこと
ができる。
In the present invention, the short-distance correction optical element is provided at the tip of the swingable correction flag, and this element is connected to the rotation of the drive ring that shifts the photographing optical system from normal photography to close-up photography. Since the short-distance correction optical element provided in the correction flag extends to the front of the light receiving section, distance measurement for close-up photography can be performed automatically without requiring special operations.

【図面の簡単な説明】[Brief explanation of the drawing]

菌1図は本考案のレンズシャッタ式カメラの実施例を示
す主要要素の概念的斜視図、 M2図は主に鏡筒ブロック、測距装置の投光部と受光部
と近距離補正光学素子、およびズームモータの配置を示
す正面図、 第3図は第2図の平面図、 第4図および第5図は、それぞれ第2図の■−■線およ
びv−v線に沿う断面図、 第6図は鏡筒ブロックの縦断面図、 第7図はカムリングの前群用カム溝および後群用カム溝
の展開図、 第8図は鏡筒ブロックの分解斜視図、 第9図は本発明による近接撮影時のピント補正方式の構
成を示した断面図、 第10図は第9図における近距離補正光学素子の詳細を
表した断面図、 第11図は舅10図の正面図、 第12図は2群ズームレンズの基本構成を示した断面図
、 第13図は測距装置の構成を示した断面図、第14図は
従来の近接撮影時のピント補正方式の構成を示す断面図
である。 1・・・鏡筒ブロック、3・・・投光部、4・・・受光
部、4e・・・近距離補正光学素子、5・・・ズームモ
ータ、20・・・前群用ズーミングカム溝、2Of・・
・マクロ繰出区間、209・・・マク口端固定区間、4
2・・・補正フラグ、43・・・連動突起、44・・・
進出突起、46・・・引張ばね。 特許出願人  旭光学工業株式会社 第2図 第3図 第4図 第5図 LI               L2第6図 )−61÷62−F−63−( 第7図 第8図 第9図 第10図 4ろ 第11図 1.1斜寥2群 第13図 第14図
Fig. 1 is a conceptual perspective view of the main elements showing an embodiment of the lens-shutter camera of the present invention, and Fig. M2 mainly shows the lens barrel block, the light emitting part and light receiving part of the distance measuring device, the short-range correction optical element, FIG. 3 is a plan view of FIG. 2, FIGS. 4 and 5 are sectional views taken along the lines ■-■ and v-v of FIG. 2, respectively. Figure 6 is a longitudinal sectional view of the lens barrel block, Figure 7 is a developed view of the front group cam groove and rear group cam groove of the cam ring, Figure 8 is an exploded perspective view of the lens barrel block, and Figure 9 is the invention of the present invention. 10 is a sectional view showing the details of the close-range correction optical element in FIG. 9, FIG. 11 is a front view of 10, and 12 Figure 13 is a sectional view showing the basic configuration of a two-group zoom lens, Figure 13 is a sectional view showing the configuration of a distance measuring device, and Figure 14 is a sectional view showing the configuration of a conventional focus correction method for close-up photography. be. DESCRIPTION OF SYMBOLS 1... Lens barrel block, 3... Light emitter, 4... Light receiver, 4e... Short distance correction optical element, 5... Zoom motor, 20... Zooming cam groove for front group , 2Of...
・Macro feeding section, 209...Macro mouth end fixed section, 4
2... Correction flag, 43... Interlocking protrusion, 44...
Advance protrusion, 46...Tension spring. Patent Applicant: Asahi Optical Industry Co., Ltd. Figure 2 Figure 3 Figure 4 Figure 5 LI L2 Figure 6) -61÷62-F-63-( Figure 7 Figure 8 Figure 9 Figure 10 Figure 4 Fig. 11 1.1 Oblique 2nd group Fig. 13 Fig. 14

Claims (2)

【特許請求の範囲】[Claims] (1)被写体に向けて測距光を発する投光部と、被写体
からの反射光を受ける受光部とを有する三角測距原理に
基づく測距光学系と;この測距光学系からの測距データ
に基づき焦点位置に駆動される撮影光学系とを備え、こ
の撮影光学系は、近接撮影時に、その光学系の全部また
は一部がさらに一定量繰り出される近接撮影可能な自動
焦点式カメラにおいて、 回動操作により通常撮影と近接撮影間の移行を行なう上
記撮影光学系の駆動リングと;上記測距光学系の受光部
の前面に配置されたとき、該測距光学系の投光部と受光
部の間の基線長を光学的に延長させ、かつこの投光部と
受光部の光軸を有限距離で交差させる近距離補正光学素
子と;この近距離補正光学素子を自由端部に有し、揺動
に伴ないこの近距離補正光学素子を受光部の前面に進退
させる、基端部を枢着した補正フラグと;この補正フラ
グを常時はその近距離補正光学素子が受光部前面から退
避する方向に付勢するばね手段と;上記駆動リングが近
接撮影位置に回動したとき補正フラグを上記ばね手段に
抗して回動させその近距離補正光学素子を受光部の前面
に位置させる、該駆動リングと補正フラグとの間に設け
た連動手段とを備えたことを特徴とする近接撮影可能な
自動焦点式カメラ。
(1) A distance measuring optical system based on the triangular distance measuring principle, which has a light emitting section that emits distance measuring light toward the subject and a light receiving section that receives reflected light from the subject; distance measuring from this distance measuring optical system. In an autofocus camera capable of close-up photography, the photographing optical system is equipped with a photographing optical system that is driven to a focal position based on data, and the photographing optical system is further extended by a certain amount in whole or in part during close-up photography. A driving ring of the photographing optical system that transitions between normal photography and close-up photography by rotational operation; and a light-emitting part and light-receiving part of the distance-measuring optical system when placed in front of the light-receiving part of the distance-measuring optical system; a short-distance correction optical element that optically extends the baseline length between the light-emitting part and the light-receiving part and intersects the optical axes of the light-emitting part and the light-receiving part at a finite distance; , a correction flag whose proximal end is pivoted to move the short-distance correction optical element forward and backward in front of the light-receiving unit as it swings; a spring means for biasing the drive ring in a direction in which the correction flag is rotated against the spring means when the drive ring is rotated to the close-up photographing position, and the close-range correction optical element is positioned in front of the light receiving section; An autofocus camera capable of close-up photography, characterized by comprising interlocking means provided between the drive ring and the correction flag.
(2)特許請求の範囲第1項において、前記近距離補正
光学素子は、全反斜面を2つ有し、入射光を基線長の方
向に平行移動させて該基線長を光学的に延長する全反射
プリズムである自動焦点式カメラ。
(2) In claim 1, the short-distance correction optical element has two fully anti-oblique surfaces, and moves the incident light in parallel in the direction of the base line length to optically extend the base line length. An autofocus camera that is a total internal reflection prism.
JP61150995A 1986-05-12 1986-06-26 Automatic focusing camera capable of proximity photographing Granted JPS636532A (en)

Priority Applications (67)

Application Number Priority Date Filing Date Title
JP61150995A JPS636532A (en) 1986-06-26 1986-06-26 Automatic focusing camera capable of proximity photographing
DE3751455T DE3751455T2 (en) 1986-05-12 1987-05-12 Photographic-optical system and camera with such a system.
KR1019920700193A KR0131680B1 (en) 1986-05-12 1987-05-12 Finder system for a camera
DE3751879T DE3751879T2 (en) 1986-05-12 1987-05-12 Intermediate lens shutter camera with zoom lens
CA000536919A CA1312231C (en) 1986-05-12 1987-05-12 Lens shutter camera including zoom lens
DE8718027U DE8718027U1 (en) 1986-05-12 1987-05-12 CENTRAL LOCKING CAMERA WITH VARIO OPTICS
AT92105341T ATE126358T1 (en) 1986-05-12 1987-05-12 PHOTOGRAPHIC-OPTICAL SYSTEM AND CAMERA COMPRISING SUCH A SYSTEM.
KR1019920700194A KR0156530B1 (en) 1986-05-12 1987-05-12 Lens shutter camera including zoom lens
AT92105357T ATE132276T1 (en) 1986-05-12 1987-05-12 OPENING AND CLOSING MECHANISM FOR A LENS
EP92105343A EP0498467B1 (en) 1986-05-12 1987-05-12 Flexible printed circuit with anti-reflection device for a lens shutter camera
DE8718028U DE8718028U1 (en) 1986-05-12 1987-05-12 CENTRAL LOCKING CAMERA WITH VARIO LENS
PCT/JP1987/000293 WO1987007038A1 (en) 1986-05-12 1987-05-12 Lens shutter camera including zoom lens
AT92105343T ATE126902T1 (en) 1986-05-12 1987-05-12 FLEXIBLE PRINTED CIRCUIT WITH ANTI-REFLECTION DEVICE FOR A CENTRAL SHUTTER CAMERA.
DE3751241T DE3751241T2 (en) 1986-05-12 1987-05-12 Photographic optical system and camera with such a system.
AU73955/87A AU606343B2 (en) 1986-05-12 1987-05-12 Lens shutter camera
EP87902775A EP0266435B1 (en) 1986-05-12 1987-05-12 Lens shutter camera including zoom lens
DE8717978U DE8717978U1 (en) 1986-05-12 1987-05-12 Camera with zoom lens and zoom finder
AT92105344T ATE121200T1 (en) 1986-05-12 1987-05-12 PHOTOGRAPHIC OPTICAL SYSTEM AND CAMERA COMPRISING SUCH SYSTEM.
KR1019880700027A KR940010590B1 (en) 1986-05-12 1987-05-12 Lens shutter camera including zoom-lens
EP92105341A EP0495532B1 (en) 1986-05-12 1987-05-12 Photographic optical system and camera including such a system
AT92105342T ATE126363T1 (en) 1986-05-12 1987-05-12 GUIDING MECHANISM FOR A FLEXIBLE PRINTED CIRCUIT BOARD IN AN INTERMEDIATE LENS SHUTTER CAMERA.
AT87902775T ATE112071T1 (en) 1986-05-12 1987-05-12 INTER-LENS SHUTTER CAMERA WITH ZOOM LENS.
EP92105357A EP0510379B1 (en) 1986-05-12 1987-05-12 Lens cap opening and closing mechanism
KR1019950703637A KR0149575B1 (en) 1986-05-12 1987-05-12 Zoom camera
DE3751456T DE3751456T2 (en) 1986-05-12 1987-05-12 Guide mechanism for a flexible printed circuit board in an inter-lens shutter camera.
DE8718024U DE8718024U1 (en) 1986-05-12 1987-05-12 CENTRAL LOCKING CAMERA WITH VARIO LENS
DE3751657T DE3751657T2 (en) 1986-05-12 1987-05-12 Opening and closing mechanism for a lens
EP93110717A EP0569051B1 (en) 1986-05-12 1987-05-12 Lens shutter camera including a zoom lens system
DE8718025U DE8718025U1 (en) 1986-05-12 1987-05-12 CENTRAL LOCKING CAMERA WITH VARIO VIEWFINDER
AT93110717T ATE141693T1 (en) 1986-05-12 1987-05-12 INTERMEDIATE LENS CAMERA WITH ZOOMO LENS
DE3751481T DE3751481T2 (en) 1986-05-12 1987-05-12 Flexible printed circuit with anti-reflection device for a central locking camera.
EP92105342A EP0495533B1 (en) 1986-05-12 1987-05-12 Guide mechanism of a flexible printed circuit board for a lens shutter camera
DE3750569T DE3750569T2 (en) 1986-05-12 1987-05-12 INTERMEDIATE LENS CAMERA WITH ZOOM LENS.
DE8718017U DE8718017U1 (en) 1986-05-12 1987-05-12 CENTRAL LOCKING CAMERA WITH VARIO LENS
EP92105344A EP0497383B1 (en) 1986-05-12 1987-05-12 Photographic optical system and camera including such a system
US90/002261A US4944030B1 (en) 1986-05-12 1988-01-07 Lens shutter camera including zoom lens
KR1019880700027A KR0165530B1 (en) 1986-05-12 1988-01-12 Lens shutter camera including zoom-lens
US07/480,217 US5142315A (en) 1986-05-12 1990-02-14 Lens shutter type of camera including zoom lens
US07/480,214 US5157429A (en) 1986-05-12 1990-02-14 Lens shutter camera including zoom lens
US07/486,914 US5214462A (en) 1986-05-12 1990-02-14 Lens shutter camera including zoom lens and barrier mechanisms
US07/480,069 US5264885A (en) 1986-05-12 1990-02-14 Lens shutter camera including zoom lens
US07/480,213 US5150145A (en) 1986-05-12 1990-02-14 Lens shutter camera including zoom lens
US07486915 US5012273B1 (en) 1986-05-12 1990-02-14 Lens shutter type of camera including zoom lens
US07/480,215 US5016032A (en) 1986-05-12 1990-02-14 Lens shutter camera including zoom lens
AU57608/90A AU630973B2 (en) 1986-05-12 1990-06-19 Lens shutter camera including zoom lens
AU57612/90A AU630976B2 (en) 1986-05-12 1990-06-19 Lens shutter camera including zoom lens
AU57611/90A AU630975B2 (en) 1986-05-12 1990-06-19 Lens shutter camera including zoom lens
AU57606/90A AU638257C (en) 1986-05-12 1990-06-19 Lens shutter camera including zoom lens
AU57610/90A AU630974B2 (en) 1986-05-12 1990-06-19 Lens shutter camera including zoom lens
KR1019920700192A KR100232279B1 (en) 1986-05-12 1992-01-28 Zoom lens with the ability of operating in the mode tele, wide macro
CA000616420A CA1330402C (en) 1986-05-12 1992-06-25 Lens shutter camera including zoom lens
US07/924,631 US5321462A (en) 1986-05-12 1992-08-04 Lens shutter camera including zoom lens
US07/924,524 US5276475A (en) 1986-05-12 1992-08-04 Lens shutter camera including zoom lens
US08/071,107 US5424796A (en) 1986-05-12 1993-06-04 Lens shutter camera including zoom lens
US08/222,697 US5465131A (en) 1986-05-12 1994-03-10 Lens shutter camera including zoom lens
US08/463,259 US5583596A (en) 1986-05-12 1995-06-03 Lens shutter camera including zoom lens
US08/462,687 US5673099A (en) 1986-05-12 1995-06-05 Lens shutter camera including zoom lens
KR1019950703638A KR960702910A (en) 1986-05-12 1995-08-28 Lens shutter type zoom lens camera
US08/646,114 US5713051A (en) 1986-05-12 1996-05-07 Lens shutter camera including zoom lens
US08/838,016 US5966551A (en) 1986-05-12 1997-04-22 Lens shutter camera including zoom lens
HK98100940A HK1001902A1 (en) 1986-05-12 1998-02-06 Lens cap opening and closing mechanism
HK98100942A HK1001904A1 (en) 1986-05-12 1998-02-06 Photographic optical system and camera including such a system
HK98100941A HK1001903A1 (en) 1986-05-12 1998-02-06 Photographic optical system and camera including such a system
HK98100938A HK1001900A1 (en) 1986-05-12 1998-02-06 Lens shutter camera including a zoom lens system
HK98100936A HK1001905A1 (en) 1986-05-12 1998-02-06 Lens shutter camera including zoom lens
HK98100939A HK1001901A1 (en) 1986-05-12 1998-02-06 Flexible printed circuit with anti-reflection device for a lens shutter camera
HK98100937A HK1001906A1 (en) 1986-05-12 1998-02-06 Guide mechanism of a flexible printed circuit board for a lens shutter camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61150995A JPS636532A (en) 1986-06-26 1986-06-26 Automatic focusing camera capable of proximity photographing

Publications (2)

Publication Number Publication Date
JPS636532A true JPS636532A (en) 1988-01-12
JPH048774B2 JPH048774B2 (en) 1992-02-18

Family

ID=15508980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61150995A Granted JPS636532A (en) 1986-05-12 1986-06-26 Automatic focusing camera capable of proximity photographing

Country Status (1)

Country Link
JP (1) JPS636532A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149629A (en) * 1986-12-15 1988-06-22 Fuji Photo Optical Co Ltd Focusing distance switching type camera
US4945372A (en) * 1988-02-16 1990-07-31 Olympus Optical Co., Ltd. Camera

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149629A (en) * 1986-12-15 1988-06-22 Fuji Photo Optical Co Ltd Focusing distance switching type camera
US4945372A (en) * 1988-02-16 1990-07-31 Olympus Optical Co., Ltd. Camera

Also Published As

Publication number Publication date
JPH048774B2 (en) 1992-02-18

Similar Documents

Publication Publication Date Title
KR940010590B1 (en) Lens shutter camera including zoom-lens
US4944030A (en) Lens shutter camera including zoom lens
JPH0764216A (en) Stereoscopic photographing device
JPH0618321Y2 (en) Light-shielding device for lens shutter type camera
US5016032A (en) Lens shutter camera including zoom lens
US5157429A (en) Lens shutter camera including zoom lens
JPH0782143B2 (en) Focus correction device for macro photography of autofocus cameras
US4942414A (en) Front conversion adapter for lens shutter type of zoom lens camera
JPS61114217A (en) Photographic optical system
JPS636532A (en) Automatic focusing camera capable of proximity photographing
JPH0422332Y2 (en)
JPS632030A (en) Lens shutter type zoom lens camera
JPH0531634Y2 (en)
JP2855550B2 (en) Camera interlocking device
KR0131680B1 (en) Finder system for a camera
JPH055544Y2 (en)
JPH0722660Y2 (en) Lens shutter type zoom lens camera
JPH0531632Y2 (en)
KR0156530B1 (en) Lens shutter camera including zoom lens
KR0156267B1 (en) Apparatus of light shutter for a camera
JPH0645923Y2 (en) Actuation mechanism of short-distance correction optical element of lens shutter type zoom lens camera
JP3126027B2 (en) Camera structure
CA1332527C (en) Lens shutter camera including zoom lens
JP3262483B2 (en) Emitter window of autofocus camera
JPH08160289A (en) Auxiliary light device for range-finding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees