JPS62263719A - Ad converter - Google Patents

Ad converter

Info

Publication number
JPS62263719A
JPS62263719A JP10704486A JP10704486A JPS62263719A JP S62263719 A JPS62263719 A JP S62263719A JP 10704486 A JP10704486 A JP 10704486A JP 10704486 A JP10704486 A JP 10704486A JP S62263719 A JPS62263719 A JP S62263719A
Authority
JP
Japan
Prior art keywords
amplifier
gain
output
vfs
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10704486A
Other languages
Japanese (ja)
Inventor
Haruyasu Yamada
山田 晴保
Akira Matsuzawa
松沢 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10704486A priority Critical patent/JPS62263719A/en
Publication of JPS62263719A publication Critical patent/JPS62263719A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an A/B converter with high accuracy at a high speed by adjusting the gain of an amplifier in the blanking period of a video signal twice while including the gain of a sample-and-hold circuit, keeping the gain of each amplifier constant at a period till the next blanking so as to apply pipeline processing. CONSTITUTION:Various pulses are formed by a blanking pulse shaping circuit 27 based on a blanking pulse from a terminal 6 when the blanking period of a picture signal comes, a switch 24 is connected to a ground potential and the electric charge in a capacitor 22 is discharged because a switch 25 is closed tentatively. A comparator 23 keeps closing a switch 26 when an output of an amplifier 1 is larger than a full scale voltage (VFS) to charge up the capacitor 22 via a resistor 28 from a bias power supply 29. As the voltage rises, a MOS TR is going to be turned on, an output voltage of the amplifier 1 is lowered and smaller than the voltage VFS. The output of the comaprator 23 is inverted momentarily to turn off the switch 26 and since the output is VFS with respect to the input of the votlage difference of VFS/2, the gain of the amplifier is kept just twice.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高精度、高速、低電力のAD変換器に関し、特
に縦続形AD変換器の変換速度と変換精度を向上させた
構成に関するものでちる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a high-precision, high-speed, low-power AD converter, and more particularly to a structure that improves the conversion speed and conversion accuracy of a cascaded AD converter.

従来の技術 高速のAD変換器としては並列形がすぐれている。この
方式は、nビットのAD変換器であれば2n−1個の比
較器を用意し、これに比較すべき基準電圧を印加してお
き、この基準電圧と入力電圧を比較し、入力電圧のレベ
ルを検出するものである。この方式では変換速度を高速
にできるが、多数の比較器を必要とするだめ素子数が増
大すること、かつ電力も素子数に比例して犬きくなる欠
点がある。これに対し素子数を削減し電力も小さくした
方法に縦続形がある〔例えば 1983IEEE  I
nternational 5olid−3tateC
ircuitsConference Diges+t
  (アイイイイ インターナショナル ンリッドステ
ート サーキット  コンフェレンスダイジェス))’
P178:]  この方式は2倍の利得でもつ増幅器i
AD変換器のビット数だけ縦続に接続し、この増幅器で
フルスケールの3省の大きさの電圧と入力信号電圧の差
を次々に比較してその大小を判別して各ビットの出力を
順番に得るものである。
Conventional technology A parallel type is excellent as a high-speed AD converter. In this method, for an n-bit AD converter, 2n-1 comparators are prepared, a reference voltage to be compared is applied to these, and this reference voltage is compared with the input voltage. It detects the level. Although this method can increase the conversion speed, it has the disadvantage that it requires a large number of comparators, which increases the number of elements, and that the power consumption increases in proportion to the number of elements. On the other hand, there is a cascade type method that reduces the number of elements and reduces the power consumption [for example, 1983 IEEE I
international 5olid-3tateC
circuitsConference Diges+t
(Aiiiii International Rid State Circuit Conference Digest)'
P178:] This method uses an amplifier i with double the gain.
The number of bits of the AD converter is connected in series, and this amplifier successively compares the differences between the three full-scale voltages and the input signal voltage, determines the magnitude, and outputs each bit in sequence. It's something you get.

発明が解決しようとする問題点 この方式は増幅器と比較器をピット数と同じ数しか必要
としないが、増幅器の利得がAD変換器のビット精度以
下の正確さで2倍でないと変換誤差が累積し、正しい変
換が得られなくなる。また、仮に増幅器の利得ヲトリミ
ング等で正確にセットしても周囲温度の変化や経時変化
等で誤元が大きくなる可能性がある。さらに縦続形AD
変換器では増幅器を多段接続するため変換速度が並列形
に比べて遅くなるといった欠点もある。
Problems to be Solved by the Invention This method requires only the same number of amplifiers and comparators as the number of pits, but unless the gain of the amplifier is doubled with an accuracy of less than the bit precision of the AD converter, conversion errors will accumulate. and the correct conversion will not be obtained. Further, even if the gain of the amplifier is set accurately by trimming or the like, there is a possibility that the source of error becomes large due to changes in ambient temperature, changes over time, etc. Furthermore, cascade type AD
The converter has the disadvantage that the conversion speed is slower than a parallel type because the amplifiers are connected in multiple stages.

問題点を解決するための手段 本発明は、複数個のサンプルホールド回路と増幅器とを
縦続に接続された、アナログビデオ信号等をディジタル
信号に変換するAD変換器であって、前記サンプルホー
ルド回路の出力と基準電圧とを比較し、ディジタル信号
を出力する手段と、前記ビデオ信号のブランキング期間
内に増幅器の利得をサンプルホールド回路の利得を含め
て2倍に調整し、次のブランキングまでの期間各増幅器
の利得を一定に保ち、パイプライン処理することを特徴
とするAD変換器である。
Means for Solving the Problems The present invention provides an AD converter for converting an analog video signal or the like into a digital signal, in which a plurality of sample and hold circuits and an amplifier are connected in series. means for comparing the output with a reference voltage and outputting a digital signal, and adjusting the gain of the amplifier to double including the gain of the sample and hold circuit within the blanking period of the video signal, and adjusting the gain of the amplifier to twice the gain of the amplifier until the next blanking. This AD converter is characterized by maintaining the gain of each amplifier constant during a period and performing pipeline processing.

作  用 本発明によれば、AD変換器の変換誤差の大きな原因と
なる増幅器の利得がビデオ信号のブランキング周期で較
正されるため、常に正しい変換がなされる。較正は各段
のサンプルホールド回路の誤差も含めてなされるので複
数個のサンプルボールド回路を使用しても誤差は累積し
ない。
According to the present invention, the gain of the amplifier, which is a major cause of conversion errors in the AD converter, is calibrated using the blanking period of the video signal, so that correct conversion is always performed. Since calibration is performed including errors in the sample and hold circuits at each stage, errors do not accumulate even if a plurality of sample and hold circuits are used.

−力変換は゛クロックに同期して1ビツト毎にパイプラ
イン的に処理されるので増幅器の応答速度はそのままで
ビット数倍、変換速度を速めることができる。また較正
は変換の必要のないブランキング期間内に行うので、較
正により変換時間が長くなることはない。
- Since power conversion is processed bit by bit in a pipeline manner in synchronization with the clock, the conversion speed can be increased by a factor of two times the number of bits while maintaining the response speed of the amplifier. Furthermore, since the calibration is performed during the blanking period when no conversion is necessary, the conversion time does not become longer due to the calibration.

さらに短い周期でもって較正を行うため、周囲温度の変
化に対してもすげやく対処でき、経時変化も較正できる
Furthermore, since calibration is performed at short intervals, changes in ambient temperature can be quickly dealt with, and changes over time can also be calibrated.

実施例 第1図て本発明の縦続形AD変換器のブロック図を示す
。1例として1oビツトのAD変換器について説明する
。1−1から1−9は高利得の増幅器、2−−1から2
−10は比較器、3−1〜3−9はサンプルホールド回
路、4−1〜4−9は増幅器1−1〜1−9の帰還用の
可能抵抗で増幅器の利得を制御する。6−1から6−9
は可変抵抗4−1〜4−9の値をコントロールする制御
回路、6はブランキングパルス入力端子、7は画像信号
の入力端子、8はAD変換器のダイナミックレンジを決
定するフルスケール電圧(VFS)=入力端子、9はイ
フルスケール電圧(vFs/2)の入力端子である。
Embodiment FIG. 1 shows a block diagram of a cascade type AD converter of the present invention. As an example, a 10 bit AD converter will be explained. 1-1 to 1-9 are high gain amplifiers, 2--1 to 2
-10 is a comparator, 3-1 to 3-9 are sample and hold circuits, and 4-1 to 4-9 are feedback resistors for the amplifiers 1-1 to 1-9, which control the gains of the amplifiers. 6-1 to 6-9
is a control circuit that controls the values of variable resistors 4-1 to 4-9, 6 is a blanking pulse input terminal, 7 is an image signal input terminal, and 8 is a full scale voltage (VFS) that determines the dynamic range of the AD converter. )=input terminal, 9 is the input terminal of full scale voltage (vFs/2).

次に本発明のAD変換器の動作について説明する。始め
に変換器の状態が変換できる周期にあるとする。端子7
から入力されたアナログ画像信号はサンプルホールド回
路3−1でサンプリングされ変換が終了するまでそのと
きの値が保持される。
Next, the operation of the AD converter of the present invention will be explained. First, it is assumed that the state of the converter is in a cycle that allows conversion. terminal 7
The analog image signal inputted from is sampled by the sample and hold circuit 3-1, and the value at that time is held until the conversion is completed.

この出力は比較器2−1でHのフルスケール電圧゛と比
較され、これよりも大きければMSBに1が出力される
This output is compared with the full-scale voltage of H in the comparator 2-1, and if it is larger than this, 1 is output to the MSB.

一方サンプルホールド回路3−1の出力は10ビツトの
精度でその利得が2に調整された増幅器1−1に入力さ
れ、■Fs/2 の電圧との差の2倍が出力される。こ
の差出力2(v、n−vFs/2)はサンプルホールド
回路3−2に入力され、次の変換周期の間ホールドされ
る。この差出力はこの間に比較器2−2に入力され、v
Fs/2電圧と比較され、大きければ2Bit目の出力
に1が出力される。
On the other hand, the output of the sample-and-hold circuit 3-1 is input to the amplifier 1-1 whose gain is adjusted to 2 with 10-bit accuracy, and twice the difference from the voltage of 1Fs/2 is output. This difference output 2 (v, n-vFs/2) is input to the sample-and-hold circuit 3-2 and held for the next conversion period. This difference output is input to the comparator 2-2 during this time, and v
It is compared with the Fs/2 voltage, and if it is larger, 1 is output as the 2nd bit output.

一方サンプルホールド回路3−1には次のビデオ信号が
入っており、2Bit目の変換と同時に次データのMS
Bが変換される。またサンプルホールド回路3−2の出
力2(vin−vFs/りは増幅器1−2に入力され、
同様にしてサンプルホールド回路3−3でホールドされ
3ビツト目の変換に利用される。以下間、H1にして1
0ビツト目までサンプリング周期に従って1ビツトづつ
変換される。
On the other hand, the sample and hold circuit 3-1 contains the next video signal, and at the same time the 2nd bit is converted, the MS of the next data is
B is converted. In addition, the output 2 (vin-vFs/ri) of the sample and hold circuit 3-2 is input to the amplifier 1-2,
Similarly, it is held in the sample hold circuit 3-3 and used for converting the third bit. For the following time, change to H1 and 1
It is converted bit by bit according to the sampling period up to the 0th bit.

従ってLSBのデータが出力されるまでMSBから9ビ
ツトまでのデータをラッチしておけばこのデータがアナ
ログ画像入力信号のディジタル僅となる。
Therefore, if the data from the MSB to 9 bits is latched until the LSB data is output, this data becomes the digital signal of the analog image input signal.

始めに入力されてからディジタル信号が出力されるまで
10サンプル期間を要するが、あとは連続的に変換デー
タが出力される。従って1つの比較器2あるいは増幅器
1は1サンプル周期間に1ビツトのデータを変換できれ
ば良いので変換速度を高速化できる。
It takes 10 sample periods from the initial input to the output of the digital signal, but after that the converted data is output continuously. Therefore, one comparator 2 or amplifier 1 only needs to be able to convert one bit of data during one sample period, so that the conversion speed can be increased.

ここで重要なことは変換誤差を10ピツト以下にするに
は増幅器1−1〜1−9の利得が10ビット精度で丁度
2倍になっている必要がある。また各段間に入っている
サンプルホールド回路の精度もこの精度に入っている必
要がある。以下本発明のポイントであるこの増幅器の利
得調整法について述べる。利得の調整は画像信号のブラ
ンキング期間に行う。各増幅器とも調整法は等しいので
第2図をもとに1つのサンプルホールド回路ト増幅器に
ついて述べる。
What is important here is that in order to reduce the conversion error to 10 pits or less, the gains of amplifiers 1-1 to 1-9 must be exactly doubled with 10-bit accuracy. The accuracy of the sample and hold circuits inserted between each stage must also be within this accuracy. The gain adjustment method of this amplifier, which is the key point of the present invention, will be described below. Gain adjustment is performed during the blanking period of the image signal. Since the adjustment method is the same for each amplifier, one sample-and-hold circuit amplifier will be described based on FIG.

第1図と同等のものは同一番号を付す。4の点線は可変
抵抗器で、この例ではMOS)ランジスタ21と容量2
2で構成される。6の点線は可変抵抗を制御する回路で
比較器23とスイッチ24゜26.26、ブランキング
パルス整形回路27、任意の電流全供給する抵抗28と
バイアス電源29(VB)からなる。
Items equivalent to those in Figure 1 are given the same numbers. The dotted line 4 is a variable resistor (MOS in this example) transistor 21 and capacitor 2.
Consists of 2. The dotted line 6 is a circuit for controlling the variable resistor, which consists of a comparator 23, a switch 24°26.26, a blanking pulse shaping circuit 27, a resistor 28 for supplying the entire arbitrary current, and a bias power supply 29 (VB).

画像信号のブランキング期間になると端子6からのブラ
ンキングパルスをもとにブランキングパルス整形回路2
7によって各種パルスが作られ、まずスイッチ24は接
地電位に接続される。さらに容量22の電荷はスイッチ
25が1時的に閉じて放電される。その後サンプルホー
ルド回路3が接地電圧をホールドする。この状態ではM
OS抵抗21の値は大きいので増幅器1の出力はvFs
よりも大きな値となる。ここで比較器23は増幅器1の
出力とvFsを比較し、増幅器1の出力がvFs より
も大きい間スイッチ26を閉じつづけ、バイアス電源2
9より抵抗28を介して′電流が流れ、容量22を充電
していく。容量22の電圧、すなわちMOS)ランジス
タ21のゲート電圧が上がるにつれてMOS)ランジス
タはオンしはじめ、抵抗は小さくなる。それにつれて増
幅器1の出力電圧は低下し、vFs よりも小さくなる
。この瞬間に比較器23の出力が反転しスイッチ26を
オフにする。MOS)ランジスタ21のゲートはオープ
ンになり、ある一定時間がゲート電圧は一定て保たれる
。V F 3 /2の電圧差の入力に対して出力がvF
sであるから、増幅器の利得は丁度2倍に保たれる。少
なくとも次のブランキング期間までの間、2倍の利得が
10ビット精度で保たれる様に容量を大きくしておく必
要がある。またこの利得調整ではサンプルホールド回路
の誤差も含めて利得調整されるため、多数使用されてい
るサンプルホールド回路の特性バラツキも補正される。
During the blanking period of the image signal, the blanking pulse shaping circuit 2 uses the blanking pulse from the terminal 6.
7 generates various pulses, and first the switch 24 is connected to ground potential. Furthermore, the charge in the capacitor 22 is discharged by temporarily closing the switch 25. After that, the sample and hold circuit 3 holds the ground voltage. In this state M
Since the value of OS resistor 21 is large, the output of amplifier 1 is vFs
will be a larger value. Here, the comparator 23 compares the output of the amplifier 1 with vFs, and keeps the switch 26 closed while the output of the amplifier 1 is greater than vFs, and bias power supply 2
9, a current flows through the resistor 28 and charges the capacitor 22. As the voltage of the capacitor 22, that is, the gate voltage of the MOS transistor 21 increases, the MOS transistor begins to turn on and its resistance decreases. Accordingly, the output voltage of amplifier 1 decreases and becomes smaller than vFs. At this moment, the output of the comparator 23 is inverted and the switch 26 is turned off. The gate of the MOS transistor 21 is opened, and the gate voltage is kept constant for a certain period of time. The output is vF for an input with a voltage difference of V F 3 /2.
Since s, the gain of the amplifier remains exactly twice. It is necessary to increase the capacity so that the double gain can be maintained with 10-bit precision at least until the next blanking period. Furthermore, since this gain adjustment includes errors in the sample and hold circuits, variations in characteristics of the many sample and hold circuits used are also corrected.

以上の動作により増、幅器1の利得が2倍に調整される
Through the above operations, the gain of the amplifier 1 is adjusted to double.

発明の効果 以上、本発明の縦続形AD変換器によれば、画像の性質
を利用し、少ない素子で高精度でかつ低電力化をはかり
、パイプライン処理によゆ高速なA/D変換器を実現で
き、さらに半導体集積回路に適した構成となっている。
In addition to the effects of the invention, the cascade type A/D converter of the present invention utilizes the properties of images, achieves high precision and low power consumption with a small number of elements, and achieves a high-speed A/D converter due to pipeline processing. The structure is suitable for semiconductor integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の縦続形A/D変換器の一実施例のブロ
ック構成図、第2図は本発明のポイントとなる増幅器の
利得、調整方法を説明するだめの、より具体的な回路構
成図である。 1・・・・・・・増幅器、2・・・・・比較器、3・・
・・サンプルホールド回路、4・・・・・・可変抵抗器
、6・・・・・・可変抵抗制御回路。
FIG. 1 is a block diagram of an embodiment of the cascade type A/D converter of the present invention, and FIG. 2 is a more specific circuit for explaining the amplifier gain and adjustment method, which is the key point of the present invention. FIG. 1...Amplifier, 2...Comparator, 3...
...Sample hold circuit, 4...Variable resistor, 6...Variable resistance control circuit.

Claims (1)

【特許請求の範囲】[Claims] 入力信号と基準電圧の差が出力される増幅器が多段縦続
接続され、前記各増幅器の出力と前記基準電圧を比較し
てディジタル信号を出力する縦続形AD変換器であって
、前記各増幅器の間にサンプルホールド回路と、前記各
増幅器に可変帰還抵抵器と利得制御回路とを具備し、入
力画像信号のブランキング期間内に、増幅器の利得を前
記サンプルホールド回路の利得を含めて2倍に調整し、
次のブランキングまでの期間前記各増幅器の利得を一定
に保ち、パイプライン処理をすることを特徴とするAD
変換器。
A cascade type AD converter in which amplifiers that output a difference between an input signal and a reference voltage are connected in cascade in multiple stages, and output a digital signal by comparing the output of each of the amplifiers with the reference voltage, the amplifier being connected between each of the amplifiers. and a variable feedback resistor and a gain control circuit for each of the amplifiers, and the gain of the amplifier is doubled, including the gain of the sample and hold circuit, within a blanking period of the input image signal. Adjust,
An AD characterized in that the gain of each of the amplifiers is kept constant until the next blanking, and pipeline processing is performed.
converter.
JP10704486A 1986-05-09 1986-05-09 Ad converter Pending JPS62263719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10704486A JPS62263719A (en) 1986-05-09 1986-05-09 Ad converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10704486A JPS62263719A (en) 1986-05-09 1986-05-09 Ad converter

Publications (1)

Publication Number Publication Date
JPS62263719A true JPS62263719A (en) 1987-11-16

Family

ID=14449095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10704486A Pending JPS62263719A (en) 1986-05-09 1986-05-09 Ad converter

Country Status (1)

Country Link
JP (1) JPS62263719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311107A (en) * 1988-06-10 1989-12-15 Agency Of Ind Science & Technol Butadiyne-type material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311107A (en) * 1988-06-10 1989-12-15 Agency Of Ind Science & Technol Butadiyne-type material

Similar Documents

Publication Publication Date Title
JPH05218868A (en) Multistage a/d converter
JP2006517765A (en) Automatic zeroing in critical continuous time applications
CN112751565B (en) Self-calibration on-chip reference voltage module
US4559522A (en) Latched comparator circuit
US10644713B1 (en) Process, voltage and temperature optimized asynchronous SAR ADC
US6859158B2 (en) Analog-digital conversion circuit
CN111337153B (en) Temperature sensor and temperature analog signal digitization method
US6504500B1 (en) A/D converter and A/D converting method
US5247299A (en) Successive approximation A/D converter correcting for charge injection offset
JPS62263719A (en) Ad converter
US6700523B2 (en) Analog to digital converter selecting reference voltages in accordance with feedback from prior stages
US5629702A (en) Analog to digital converter
KR20150072972A (en) Analog to Digital Converter for interpolation using Calibration of Clock
Liu et al. A fully differential SAR/single-slope ADC for CMOS imager sensor
US20040189504A1 (en) Semi-flash A/D converter with minimal comparator count
JPS59167112A (en) Digital-analog converter
WO2024082732A1 (en) Analog-to-digital converter integrated with reference voltage generation, and calibration method
JPH118557A (en) A/d converter
JPS62263720A (en) Ad converter
WO2022241698A1 (en) Analog-to-digital conversion circuit, integrated chip, display device, and analog-to-digital conversion method
Webb et al. A 12b A/D converter
JP2979656B2 (en) Clamp circuit
JPS61293023A (en) Digital to analog converter
JP2003032112A (en) Analog to digital conversion circuit and its dc bias voltage generating method
KR20010045351A (en) Analog to digital converter