JPS62263458A - Oxygen sensor element - Google Patents

Oxygen sensor element

Info

Publication number
JPS62263458A
JPS62263458A JP61107085A JP10708586A JPS62263458A JP S62263458 A JPS62263458 A JP S62263458A JP 61107085 A JP61107085 A JP 61107085A JP 10708586 A JP10708586 A JP 10708586A JP S62263458 A JPS62263458 A JP S62263458A
Authority
JP
Japan
Prior art keywords
diffusion
sensor element
resistor
oxygen sensor
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61107085A
Other languages
Japanese (ja)
Inventor
Yu Fukuda
祐 福田
Takeshi Nagai
彪 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61107085A priority Critical patent/JPS62263458A/en
Publication of JPS62263458A publication Critical patent/JPS62263458A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • G01N27/4072Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure characterized by the diffusion barrier

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To suppress the irregularity of a limit current value, by providing an adjusting means for adjusting the diameter of a diffusion hole in which a wire material is inserted and a seal layer. CONSTITUTION:A wire material 9 for adjusting the diameter of the diffusion hole 8 of a diffusion resistor 7 is inserted in said diffusion hole 8. The material quantity of the wire material has m.p. at least equal to or higher than the operation temp. of a sensor element and excellent oxidation resistance because the sensor element is heated to operable temp. Next, a diffusion resistor holding member (or resistor 7) is provided with a seal layer 10 so as to form a constant space from the surface of the cathode 2b of a solid electrolyte body 1. The seal layer 10 is constituted of a glass paste 10a and heat resistant fine particles 10b. The material quality of the paste 10a pref. has coefficient of thermal expansion equal to that of the electrolyte body 1 or the member 6 (or resistor 7). A material having m.p. higher than the working temp. of the paste 10a is adapted to the fine particles 10b. By this method, the irregularity of the limit current value of the sensor element can be suppressed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は雰囲気ガス中の酸素濃度を検出するための酸素
センサ素子に関し、特に、酸素イオン伝導性固体電解質
を利用した限界電流式酸素センサ素子に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an oxygen sensor element for detecting oxygen concentration in an atmospheric gas, and in particular to a limiting current type oxygen sensor element using an oxygen ion conductive solid electrolyte. It is.

従来の技術 従来この種の酸素センサ素子は、第2図に示すように、
例えばZrO2、y2o3材料の酸素イオン伝導性固体
電解質体1(以下、固体電解質体と記す)の両面にPt
、Pdなどの導電性ペーストによる多孔質の電極2(陽
極2a、陰極2b)を形成し、さらに前記陰極2 b 
(1111の固体電解質体1表面と酸素の流入を制限す
る直径100μm以下の拡散孔3を設けた拡散抵抗体4
をガラス質接着剤で接着しシー1v層5を設けた構成と
なっ°Cいる。
BACKGROUND OF THE INVENTION Conventionally, this type of oxygen sensor element is as shown in FIG.
For example, Pt is applied to both sides of an oxygen ion conductive solid electrolyte body 1 (hereinafter referred to as solid electrolyte body) made of ZrO2, y2o3 material.
, a porous electrode 2 (anode 2a, cathode 2b) made of conductive paste such as Pd, and further the cathode 2b
(1111 solid electrolyte body 1 surface and diffusion resistor 4 provided with diffusion holes 3 with a diameter of 100 μm or less to restrict oxygen inflow)
It has a structure in which the glass layer 5 is bonded with a vitreous adhesive and a layer 5 is provided.

この構成において、酸素センサ素子を酸素センサとして
作動可能な温度に加熱した後、電極2間に直流電圧を印
加すると陰極2b面で酸素分子のイオン化反応が起こり
、イオン化した酸素イオンが固体電解質体1中を陽i2
aに向かって移動する。この際、雰囲気ガスの流入は拡
散抵抗体4に設けCいる拡散孔3により制限され、陰極
2bへの酸素の流入が拡散律速となるため、固体電解質
体1中を酸素イオンが移動することによって生ずる電流
が印加電圧の増加に対し、ある電圧以降一定となる。こ
の一定となる電流が限界電流であり、これが雰囲気ガス
中の酸素濃変に比例することから、この限界電流を検出
することによって酸素濃変ヲ測定することができる。
In this configuration, after heating the oxygen sensor element to a temperature at which it can operate as an oxygen sensor, when a DC voltage is applied between the electrodes 2, an ionization reaction of oxygen molecules occurs on the surface of the cathode 2b, and the ionized oxygen ions are transferred to the solid electrolyte body 1. Inside positive i2
Move towards a. At this time, the inflow of atmospheric gas is restricted by the diffusion holes 3 provided in the diffusion resistor 4, and the inflow of oxygen into the cathode 2b becomes diffusion rate-determining. The generated current becomes constant after a certain voltage as the applied voltage increases. This constant current is the limiting current, and since this is proportional to changes in oxygen concentration in the atmospheric gas, changes in oxygen concentration can be measured by detecting this limiting current.

発明が解決しようとする問題点 しかしながら、前記拡散抵抗体4の材料は耐熱性、耐食
性の面からセラミックに限定されることが多い。セラミ
ック材料を拡散抵抗体4として用いた場合、直径が10
0μm以下の拡散孔を精度よく穴開は加工することは実
用と困難であるとともに、酸素センサ素子組立ての各工
程で生ずるばらつきのために最終的に前記限界電流の値
が大きくばらつくという問題があった。
Problems to be Solved by the Invention However, the material of the diffused resistor 4 is often limited to ceramics in terms of heat resistance and corrosion resistance. When a ceramic material is used as the diffused resistor 4, the diameter is 10
It is practically difficult to drill diffusion holes of 0 μm or less with precision, and there is a problem in that the value of the limiting current ultimately varies greatly due to variations that occur in each process of assembling the oxygen sensor element. Ta.

また、拡散抵抗体4と固体電解質体1の接着にガラス質
接着剤が用いられ°Cいるが、この両者を無加重で加熱
融着した場合には接着界面でのガラスの濡れ性が悪くな
り接着界面で連通した空洞が生じやすく、その部分から
雰囲気ガスがリークし、限界電流特性が得られなくなる
という問題があった。一方、加重をかけて接着した場合
にはガラスが電極2(陰唖2b)に流出し、電極面を被
覆して酸素の解離吸着能力が抑制される原因となり、限
界電流値のばらつきが大きくなるという問題があった。
Furthermore, although a glassy adhesive is used to bond the diffused resistor 4 and the solid electrolyte 1, the wettability of the glass at the adhesive interface deteriorates when the two are heated and fused together without any load. There has been a problem in that communicating cavities are likely to occur at the bonded interface, and atmospheric gas leaks from these cavities, making it impossible to obtain limiting current characteristics. On the other hand, if the adhesive is applied with a load, the glass will flow into the electrode 2 (negative electrode 2b) and cover the electrode surface, causing the dissociation and adsorption ability of oxygen to be suppressed, increasing the variation in the limiting current value. There was a problem.

本発明はかかる従来の問題を解消するもので、前記限界
電流値のばらつきを抑制するとともに、限界電流特性が
常に安定して得られる酸素センサ素子を提供することを
目的とする。
The present invention has been made to solve these conventional problems, and aims to provide an oxygen sensor element that suppresses variations in the limiting current value and can always provide stable limiting current characteristics.

問題点を解決するための手段 と記問題を解決するために本発明の酸素センサ素子は、
拡散抵抗体に形成した拡散孔に線材を挿入することによ
る孔径の調整手段と、前記拡散抵抗体と固体電解質体と
の間に一定の空間を形成するようにガラスペーストと前
記ガラスペーストの作業温度より融点の高い耐熱性徴粒
子の混合物よりなるシール層を設けるという構成を備え
たものである。
Means for Solving the Problems In order to solve the problems described above, the oxygen sensor element of the present invention has the following features:
A means for adjusting the hole diameter by inserting a wire into a diffusion hole formed in the diffusion resistor, and a glass paste and a working temperature of the glass paste so as to form a certain space between the diffusion resistor and the solid electrolyte body. It has a structure in which a sealing layer is provided which is made of a mixture of heat-resistant particles having a higher melting point.

作  用 本発明は上記した構成によって、拡散抵抗体に形成した
拡散孔の孔径が大きくばらついてもばらつきに応じた線
材を前記拡散孔に挿入することにより一定の孔径が得ら
れる。また、シー)v層の接着性を向上させるため加重
をかけて加熱融着してもシーw層に含有しているガラス
ペーストの作業温度より融点の高い微粒子が拡散抵抗体
の支え(一定空間を形成)となるため、溶融したガラス
の圧縮による電極面への流出が防止されることになる。
Effects According to the present invention, with the above-described configuration, even if the diameter of the diffusion hole formed in the diffusion resistor varies greatly, a constant diameter can be obtained by inserting a wire corresponding to the variation into the diffusion hole. In addition, even if heat fusion is applied under load to improve the adhesion of the Sea) V layer, fine particles with a melting point higher than the working temperature of the glass paste contained in the Sea W layer support the diffusion resistor (in a certain space). ), thereby preventing the molten glass from flowing out onto the electrode surface due to compression.

実施例 以下、本発明の実施例を添付図面にもとづいて説明する
Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.

第1図は本発明の一実施例である酸素センサ素子の概略
断面図である。同図において1は酸素イオン伝導性固体
電解質体であり、ZrO2・Y 203、ZrO2・C
aO1Zr02 ・Mho%CaO2・Y2O3、Ce
O2・CaO1Th02・Y2O3、Th02・CaO
、B i 203 ・E r 203、B i 203
 ・Y2O3,B i 203 ・Nb、205などの
固溶体が挙げられ特に限定されるものではない。前記固
体電解質体1の両面には一対の電極2が形成される。こ
の電極2の材料としては、酸素分子の解離能力(イオン
化)に優れたP t、 Pd、 Auなどを主成分とす
る金属が挙げられ、特に多孔質のものが良い。
FIG. 1 is a schematic cross-sectional view of an oxygen sensor element that is an embodiment of the present invention. In the same figure, 1 is an oxygen ion conductive solid electrolyte body, ZrO2・Y 203, ZrO2・C
aO1Zr02 ・Mho%CaO2・Y2O3, Ce
O2・CaO1Th02・Y2O3, Th02・CaO
, B i 203 ・E r 203, B i 203
・Y2O3, B i 203 ・Nb, solid solutions such as 205 can be mentioned, but are not particularly limited. A pair of electrodes 2 are formed on both sides of the solid electrolyte body 1 . Materials for the electrode 2 include metals whose main components are Pt, Pd, Au, etc., which have excellent ability to dissociate (ionize) oxygen molecules, and porous materials are particularly preferred.

6は拡散抵抗体保持部材であり、これに雰囲気ガスの拡
散孔8を設けた拡散抵抗体7を挿入して構成される。拡
散抵抗体保持部材6、拡散抵抗体7の材質は、固体電解
質体1と接着されるので固体電解質体1と同等の熱膨張
率を有するものが適用され、例えば固体電解質体1がZ
rO2・Y2O3の固溶体を適用した場合、拡散抵抗体
保持部材6はZrO2・Y2O3セラミック、フF/L
/ステライト、K2O・PbO・Si○2糸ガラメガラ
ス20−に2() Pb()Si02系ガラヌ、Na2
()BaO・5i02系ガラスなどが適用される。また
、拡散抵抗体7も拡散抵抗体保持部材と同一の材質が好
ましいが、拡散孔8の加工が簡単なガラス系材質が好ま
しい。なお、実施例では拡散抵抗体保持部材6と拡散抵
抗体7を区別し“Cいるが、これらを一体化したもので
もよい。
Reference numeral 6 denotes a diffusion resistor holding member, into which a diffusion resistor 7 provided with diffusion holes 8 for atmospheric gas is inserted. Since the materials of the diffusion resistor holding member 6 and the diffusion resistor 7 are bonded to the solid electrolyte body 1, materials having the same coefficient of thermal expansion as the solid electrolyte body 1 are used. For example, if the solid electrolyte body 1 is
When a solid solution of rO2/Y2O3 is applied, the diffused resistor holding member 6 is made of ZrO2/Y2O3 ceramic, F/L.
/Stellite, K2O・PbO・Si○2 thread galame glass 20-2() Pb()Si02 series galanu, Na2
( ) BaO・5i02 glass or the like is applied. Further, the diffusion resistor 7 is also preferably made of the same material as the diffusion resistor holding member, but is preferably made of a glass-based material that allows easy processing of the diffusion holes 8. In the embodiment, the diffused resistor holding member 6 and the diffused resistor 7 are distinguished, but they may be integrated.

前記拡散抵抗体7の拡散孔8には拡散孔の孔径を調整す
るための線材9が挿入される。この線材9の材質は酸素
センサ素子が動作可能な温度に加熱されるため、少なく
とも動作温度以上の融点を有し、かつ耐酸化性の優れた
ものが良く、pt、Au、Icテンレヌ、ガラスファイ
バー、セラミファイバーなどが挙げられる。
A wire 9 is inserted into the diffusion hole 8 of the diffusion resistor 7 to adjust the diameter of the diffusion hole. Since the material of the wire 9 is heated to a temperature at which the oxygen sensor element can operate, it is preferable to use a material that has a melting point at least higher than the operating temperature and has excellent oxidation resistance, such as PT, Au, Ic tenene, or glass fiber. , ceramic fiber, etc.

次に、前述の拡散抵抗体保持部材6(または拡散抵抗体
7)は固体電解質体1の陰W2bの面と一定の空間が形
成されるようにシール層10が設けられる。このシール
層10はガラスペースト10aと耐熱性微粒子10bと
で構成される。ガラスペーストの材質は前述の如く、固
体電解質体1や拡散抵抗体保持部材6(tたは拡散抵抗
体7)と同等の熱膨張率を有するものが良い。また、耐
熱性微粒子10bはガラスペースト10aの作業温度よ
りも融点の高い材料が適用され、例えば、ZrO2、T
iO2、Ae203などの金属酸化物粉末や、Ba04
’102Si○2系、SiO2のガラ7粉末が挙げられ
る。
Next, a sealing layer 10 is provided on the aforementioned diffused resistor holding member 6 (or diffused resistor 7) so that a certain space is formed with the surface of the shadow W2b of the solid electrolyte body 1. This sealing layer 10 is composed of glass paste 10a and heat-resistant fine particles 10b. As mentioned above, the material of the glass paste should preferably have a coefficient of thermal expansion equivalent to that of the solid electrolyte body 1 and the diffused resistor holding member 6 (t or diffused resistor 7). Further, the heat-resistant fine particles 10b are made of a material having a melting point higher than the working temperature of the glass paste 10a, such as ZrO2, T
Metal oxide powder such as iO2, Ae203, Ba04
Examples include '102Si○2 series and SiO2 Gala 7 powder.

次に具体的実験例にもとづいてその作用と効果について
説明する。
Next, its action and effects will be explained based on specific experimental examples.

本発明の酸素センサ素子の構成材料及び製造方法は次の
通りである。
The constituent materials and manufacturing method of the oxygen sensor element of the present invention are as follows.

固体電解質体−Z r 02 ・Y2O3(Y2O38
mo e%)、10X 10X0.4 mm 電極−Ptペースト 電極径6mm 固体電解質体の両面にスクリーン印刷法により膜厚約5
μmの電極膜を形成(焼成温度850°C) 拡散抵抗体保持部材−フすルステライト、外径10mm
、内径1 mm、厚み0.8mm、熱膨張係数10×1
0−6X°C 拡散抵抗体−に2O−Pbo・5i02系ガラスキヤピ
ラリ、熱膨張係数9.5 X 10−6/’C外径 1
 mm、  長さ 5mm、 このキャピラリ全拡散抵抗体保持部材に挿入し、ガラス
ペーストでシール 線材−Au線、 この線材をキャピラリに挿入し、拡散孔径を調整 シール層−外径 9mm、  内径 7mm・ガラスペ
ースト−pb○、ZnO・B2O3系ガラスベーヌト 
熱膨張係数9.7×10−6/C耐熱性微粒子−BaO
・T i 02・5i02系ガラメガラス粉末平均約5
0μニ ガラスペースト1gに対し、耐熱性微粒子10m、9を
混合し、スクリーン印刷法により固体電解質体の面に印
刷し、これに拡散抵抗体を挿入した拡散抵抗体保持部材
を合わせ約50gの加重を加えて焼成(焼成温度450
°C)し、シール層を形成 と記製造過程において拡散抵抗体(ガラスキャピラリ)
の拡散孔の孔径を90μmと130μmの二種類を用い
、酸素センサ素子を作製した。この酸素センサ素子の電
極よりリード線を引き出した後、空気中で450°Cに
加熱し、電極間に直流電圧を印加したところ、1v〜2
.2■の範囲において発生する電流が一定値を示した。
Solid electrolyte body-Z r 02 ・Y2O3 (Y2O38
mo e%), 10X 10X0.4 mm Electrode-Pt paste Electrode diameter 6 mm A film thickness of approximately 5 mm was printed on both sides of the solid electrolyte by screen printing.
Forming a μm electrode film (firing temperature 850°C) Diffused resistor holding member - fustellite, outer diameter 10mm
, inner diameter 1 mm, thickness 0.8 mm, thermal expansion coefficient 10 x 1
0-6X°C Diffused resistor with 2O-Pbo/5i02 glass capillary, thermal expansion coefficient 9.5 x 10-6/'C outer diameter 1
mm, length 5mm, insert this capillary into the fully diffused resistor holding member and seal it with glass paste wire - Au wire, insert this wire into the capillary and adjust the diffusion hole diameter Seal layer - outer diameter 9mm, inner diameter 7mm, glass Paste-pb○, ZnO・B2O3 based glass beanute
Thermal expansion coefficient 9.7×10-6/C heat-resistant fine particles-BaO
・T i 02/5i02 series galame glass powder average about 5
1 g of 0μ Nigarasu paste was mixed with 10 m of heat-resistant fine particles, 9 was printed on the surface of the solid electrolyte body by screen printing, and a diffusion resistor holding member into which the diffusion resistor was inserted was combined with a load of approximately 50 g. and baked (firing temperature 450
°C) and form a sealing layer on the diffused resistor (glass capillary) during the manufacturing process.
Oxygen sensor elements were fabricated using two types of diffusion pore diameters: 90 μm and 130 μm. After pulling out the lead wire from the electrode of this oxygen sensor element, it was heated to 450°C in air and a DC voltage was applied between the electrodes.
.. The current generated within the range of 2.5 mm showed a constant value.

この一定値を示す電流が限界電流であり、拡散孔の孔径
が90μmの酸素センサ素子は約220μA、120μ
mのそれは約400μAであった。この限界電流は近似
的に次式で表わされる。
The current that shows this constant value is the limiting current, and the oxygen sensor element with a diffusion hole diameter of 90 μm is approximately 220 μA and 120 μm.
m was approximately 400 μA. This limiting current is approximately expressed by the following equation.

I g = K −S/e ここで Ie:限界電流値 に:比例定数 S:拡散孔の開口面積(キャピラリ 開口面積) e:拡散孔の長さくキャピラリ長さ) 上式より、前記酸素センサ素子の限界電流が異なる理由
は拡散孔の孔径の差によるものであることがわかり、こ
の拡散孔の孔径を同一にすれば同一の限界電流が得られ
ることになる。
I g = K - S/e where Ie: limit current value: proportionality constant S: opening area of diffusion hole (capillary opening area) e: length of diffusion hole (capillary length) From the above equation, the oxygen sensor element It turns out that the reason why the limiting currents differ is due to the difference in the diameter of the diffusion holes, and if the diameters of the diffusion holes are made the same, the same limiting current can be obtained.

ここで限界電流値を100μAと設定するとと式より拡
散孔の孔径は約60μmとなる。前述の二種類の酸素セ
ンサ素子について拡散孔の孔径とこれに挿入されるAu
!liの直径の差により生ずる空間が直径に換算して約
60μmとなるようにAu線の直径を算出した。その結
果、拡散孔の孔径が120μmのものは直径104μm
のAu m。
If the limiting current value is set to 100 μA, the diameter of the diffusion hole will be approximately 60 μm from the formula. The diameter of the diffusion hole and the Au inserted into it for the two types of oxygen sensor elements mentioned above.
! The diameter of the Au wire was calculated so that the space created by the difference in diameter of li would be approximately 60 μm in terms of diameter. As a result, the diameter of the diffusion pore of 120 μm was 104 μm.
Au m.

孔径90μmのものは直径67μmのAu線を挿入すれ
ばよいことがわかった。
It was found that it is sufficient to insert an Au wire with a diameter of 67 μm into a hole having a diameter of 90 μm.

そこで前述の酸素センサ素子について各々算出した直径
を有するAu線を拡散孔に挿入し前述と同様にして限界
電流を測定したところ、両者ともに約100μAが得ら
れた。したがって、酸素センサ素子において拡散抵抗体
に設けた拡散孔の孔径が大きくばらついてもAu線など
の線材を前記拡散孔に挿入することにより一定孔径が実
現可能となり限界電流値のばらつきを抑制することがで
きるとともに、目的の限界電流値が設定可能となる。
Therefore, when an Au wire having the diameter calculated for each of the oxygen sensor elements described above was inserted into the diffusion hole and the limiting current was measured in the same manner as described above, a value of about 100 μA was obtained for both. Therefore, even if the diameter of the diffusion hole provided in the diffusion resistor in the oxygen sensor element varies greatly, by inserting a wire such as an Au wire into the diffusion hole, it is possible to maintain a constant diameter, thereby suppressing variations in the limiting current value. At the same time, it becomes possible to set the desired limit current value.

なお、Au線の代わりにPt1ヌテンレス、ガラスファ
イバー、セラミックファイバーの線材についても同様に
実施したがAu線の場合とほぼ同等の効果を確認した。
In addition, the same procedure was carried out using wires made of Pt1 Nutenless, glass fiber, and ceramic fiber instead of the Au wire, and it was confirmed that almost the same effect as in the case of the Au wire was obtained.

次に、前述の酸素センサ素子の製法に従い作製した酸素
センサ素子と、比較例としてシール層をガラスペースト
のみで構成し、加重の有無の条件で作製した酸素センサ
素子について前述と同一条件で限界電流特性を評価した
。なお、酸素センサ素子の作製数はそれぞれn = 1
0とした。
Next, we examined the limiting current under the same conditions as above for an oxygen sensor element fabricated according to the oxygen sensor element manufacturing method described above, and an oxygen sensor element fabricated as a comparative example in which the sealing layer was made of only glass paste and with and without loading. Characteristics were evaluated. Note that the number of oxygen sensor elements manufactured was n = 1.
It was set to 0.

その結果を次表に記す。The results are shown in the table below.

表 各酸素センサ素子の特性比較 ※ 拡散孔の孔径はすべて同一とした 比較例1におい−〔、成果電流値が低く、しかもばらつ
きが大きい理由は、ガラスペーストのみを加重をかけて
加熱融着した際、ガラスが電極面(陰極側χに流出し、
電極面を被覆して酸素分子のイオン化反応を抑制したこ
とによるもので、その被覆の度合により限界電流の値が
異なったと考えられる。
Table Comparison of characteristics of each oxygen sensor element * In Comparative Example 1, in which all the pore diameters of the diffusion holes were the same, the reason why the resulting current value was low and the variation was large was that only the glass paste was heated and fused by applying weight. At this time, the glass flows out to the electrode surface (cathode side χ,
This is because the electrode surface was coated to suppress the ionization reaction of oxygen molecules, and it is thought that the value of the limiting current differed depending on the degree of coverage.

一方、比較例2におい・C1無加重で加熱融着した場合
、接着界面でのガラスの濡れ性が悪くなり、接着界面で
連通した空洞が生じやすくなる。その空洞から雰囲気ガ
スがリークし、拡散抵抗体の機能が損われ限界電流特性
が得られなかったものと考えられる。事実、光学顕微鏡
観察の結果、空洞が確認された。また、限界電流特性が
得られた素子のばらつきが大きい理由はシール層に微少
な空洞が存在するためと考えられる。
On the other hand, in Comparative Example 2, when C1 was heat-fused without applying any load, the wettability of the glass at the bonding interface deteriorated, and communicating cavities were likely to occur at the bonding interface. It is thought that atmospheric gas leaked from the cavity, impairing the function of the diffused resistor and preventing the limiting current characteristics from being obtained. In fact, as a result of optical microscopic observation, cavities were confirmed. Further, the reason why the variations in the devices with which the limiting current characteristics were obtained is large is thought to be due to the presence of minute cavities in the sealing layer.

本発明がn=10すべ°Cはぼ一定の限界電流特性が得
られた理由は、接着の際に加重をかけ”Cいるので接着
界面での空洞の発生が抑制され、かつ、シール層に接着
の作業温度よりも高い融点を有するガラス粉末が存在し
ているため、この粉末粒子が拡散抵抗体保持部材(又は
拡散抵抗体)の支えとなり、溶融したガラスが圧縮によ
り電極面へ流出するのを防止していることにあると考え
られる。
The reason why the present invention was able to obtain a nearly constant limiting current characteristic at n=10°C is that the application of weight during bonding suppresses the formation of cavities at the bonding interface, and the sealing layer Since there is glass powder with a melting point higher than the working temperature of the adhesive, this powder particle supports the diffusion resistor holding member (or the diffusion resistor) and prevents the molten glass from flowing out to the electrode surface due to compression. This is thought to be due to the prevention of

なお、ガラス粉末の代わりに、Zr○2粉末、TlO2
粉末、Ae203粉末についても同様に実施したが前記
ガラス粉末と同等の効果が得られた。
In addition, instead of glass powder, Zr○2 powder, TlO2
The same procedure was carried out using Ae203 powder, and the same effect as that of the glass powder was obtained.

発明の効果 以上のように本発明の酸素センサ素子によれば次の効果
が得られる。
Effects of the Invention As described above, the oxygen sensor element of the present invention provides the following effects.

(1)拡散抵抗体に形成している拡散孔の中に耐熱性線
材を挿入することにより前記拡散孔孔径を簡単に調整で
きるので目的のレベルの限界電流特性が得られるととも
に、前記拡散孔孔径が加工の際大きくばらついてもこの
ばらつきに応じた直径の線材を挿入することにより酸素
センサ素子の限界電流値のばらつきを抑制することがで
きる。
(1) By inserting a heat-resistant wire into the diffusion hole formed in the diffusion resistor, the diameter of the diffusion hole can be easily adjusted, so that the desired level of limiting current characteristics can be obtained, and the diameter of the diffusion hole can be easily adjusted. Even if there is a large variation during processing, by inserting a wire rod with a diameter that corresponds to this variation, variation in the limiting current value of the oxygen sensor element can be suppressed.

(2)  シー/L/層に存在する前記ガラスペースト
の作業温度よりも高い融点を有する耐熱性微粒子が拡散
抵抗体保持部材(又は拡散抵抗体)を支える構成となっ
ているので加重をかけて加熱融着してもガラスの圧縮に
よる電極面への流出を防止できるとともに、加重をかけ
ているので接着界面でのガラスの濡れがよくなり空洞の
発生が抑制され、酸素センサ素子の限界電流特性が常に
安定して得られる。
(2) Since the heat-resistant fine particles present in the C/L/layer and having a melting point higher than the working temperature of the glass paste support the diffused resistor holding member (or the diffused resistor), a load is applied. Even when heated and fused, it is possible to prevent the glass from flowing out to the electrode surface due to compression, and since the glass is loaded, the wetting of the glass at the bonding interface improves, suppressing the formation of cavities, and improving the limiting current characteristics of the oxygen sensor element. is always obtained stably.

(3)本発明では拡散孔の孔径の調整を素子作製後に行
なえるので拡散抵抗体の拡散孔の形成工程において寸法
精度など厳しい管理が不必要となり、工程が簡素化され
生産性の向上が図れる。
(3) In the present invention, the diameter of the diffusion hole can be adjusted after the device is fabricated, so there is no need for strict control over dimensional accuracy in the process of forming the diffusion hole of the diffusion resistor, which simplifies the process and improves productivity. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す酸素センサ素子の断面
図、第2図は従来の酸素センサ素子の断面図である。 6・・・・・・拡散抵抗体保持部材、7・・・・・・拡
散抵抗体、9・・・・・・耐熱性線材、10・・・・・
・シール層、10a・・・・・・ガラスペースト、10
b・・・・・・微粒子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名7−
一一面本電挙質体 2−一一電糧 2a・−陽極 2b−陰極 6− 拡散抵抗体保持部材 第1図     7°゛拡散抵坑体 8−・拡散孔 b  2a (−5−一)
FIG. 1 is a sectional view of an oxygen sensor element showing an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional oxygen sensor element. 6... Diffused resistor holding member, 7... Diffused resistor, 9... Heat resistant wire, 10...
・Seal layer, 10a...Glass paste, 10
b...Fine particles. Name of agent: Patent attorney Toshio Nakao and 1 other person7-
One side main electrolyte body 2--11 Electrolyte 2a--Anode 2b-Cathode 6- Diffusion resistor holding member Fig. 1 7° Diffusion resistor 8-- Diffusion hole b 2a (-5-1 )

Claims (3)

【特許請求の範囲】[Claims] (1)両面に一対の電極を形成した酸素イオン伝導性の
固体電解質体と、前記固体電解質体の一方の面に位置す
るように設けられた気体の拡散孔を有する拡散抵抗体と
、前記固体電解質体と拡散抵抗体との間に一定の空間を
形成するように設けられたシール層と、前記拡散孔の内
部に挿入された拡散孔径を調整するための線材よりなる
孔径調整手段とからなる酸素センサ素子。
(1) An oxygen ion conductive solid electrolyte body having a pair of electrodes formed on both sides, a diffusion resistor having a gas diffusion hole located on one surface of the solid electrolyte body, and the solid electrolyte body. It consists of a sealing layer provided to form a certain space between the electrolyte body and the diffusion resistor, and a hole diameter adjusting means made of a wire inserted into the diffusion hole for adjusting the diameter of the diffusion hole. Oxygen sensor element.
(2)シール層がガラスペーストと前記ガラスペースト
の作業温度より融点の高い耐熱性微粒子の混合物よりな
る特許請求の範囲第1項記載の酸素センサ素子。
(2) The oxygen sensor element according to claim 1, wherein the sealing layer is made of a mixture of glass paste and heat-resistant fine particles having a melting point higher than the working temperature of the glass paste.
(3)孔径調整手段である線材が、Pt、Au、ステン
レス、ガラスファイバー、セラミックファイバーの群か
ら選択された1種よりなる特許請求の範囲第1項記載の
酸素センサ素子。
(3) The oxygen sensor element according to claim 1, wherein the wire serving as the pore size adjusting means is made of one selected from the group consisting of Pt, Au, stainless steel, glass fiber, and ceramic fiber.
JP61107085A 1986-05-09 1986-05-09 Oxygen sensor element Pending JPS62263458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61107085A JPS62263458A (en) 1986-05-09 1986-05-09 Oxygen sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61107085A JPS62263458A (en) 1986-05-09 1986-05-09 Oxygen sensor element

Publications (1)

Publication Number Publication Date
JPS62263458A true JPS62263458A (en) 1987-11-16

Family

ID=14450093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61107085A Pending JPS62263458A (en) 1986-05-09 1986-05-09 Oxygen sensor element

Country Status (1)

Country Link
JP (1) JPS62263458A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6370940B2 (en) * 1998-01-21 2002-04-16 Industrial Scientific Corporation Apparatus for determining concentration of a gas
JP2008008666A (en) * 2006-06-27 2008-01-17 Fujikura Ltd Limiting current type oxygen sensor and concentration detecting and measuring method of oxygen using it
JP2008008665A (en) * 2006-06-27 2008-01-17 Fujikura Ltd Limiting current type oxygen sensor
US8052862B2 (en) 2006-06-27 2011-11-08 Fujikura Ltd. Limiting current type oxygen sensor and method of sensing and measuring oxygen concentrations using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6370940B2 (en) * 1998-01-21 2002-04-16 Industrial Scientific Corporation Apparatus for determining concentration of a gas
JP2008008666A (en) * 2006-06-27 2008-01-17 Fujikura Ltd Limiting current type oxygen sensor and concentration detecting and measuring method of oxygen using it
JP2008008665A (en) * 2006-06-27 2008-01-17 Fujikura Ltd Limiting current type oxygen sensor
US8052862B2 (en) 2006-06-27 2011-11-08 Fujikura Ltd. Limiting current type oxygen sensor and method of sensing and measuring oxygen concentrations using the same

Similar Documents

Publication Publication Date Title
US4571285A (en) Oxygen sensor for and method of determining concentration of oxygen
JP5638984B2 (en) Gas sensor
JP4646167B2 (en) Exhaust gas sensor
US3855098A (en) Ion-responsive electrode construction
JPS62263458A (en) Oxygen sensor element
JPH0418261B2 (en)
US4808293A (en) Oxygen sensor and method of making such sensor
US7132798B2 (en) Joined bodies, high pressure discharge lamps and assemblies therefor
JPS62294957A (en) Oxygen sensor element
JPH0277619A (en) Hot-wire type air flowmeter and preparation thereof
JP2643501B2 (en) Limit current type oxygen sensor
JPH11307118A (en) Glass joint of solid electrolyte body and insulating member, its manufacture and high-temperature type secondary battery using the glass joint
JP3275427B2 (en) Method for manufacturing plasma display panel
JPH08506906A (en) Insulating layer system for electrical isolation of current circuits
JPH08136497A (en) Electrochemical element
JPS63265159A (en) Oxygen sensor
JP4524787B2 (en) Metal halide lamp
JPH0664006B2 (en) Oxygen sensor
JP3518534B2 (en) Foil sealed lamp
JPS63154959A (en) Oxygen sensor
WO2022072209A1 (en) Lead free glass composition for microchannel plate fabrication
JP2565897B2 (en) Limiting current type gas sensor
JPS63265158A (en) Oxygen sensor
JPH04204369A (en) Sensor
JPH07263022A (en) Sodium-sulfur battery and manufacture thereof