JP2008008666A - Limiting current type oxygen sensor and concentration detecting and measuring method of oxygen using it - Google Patents

Limiting current type oxygen sensor and concentration detecting and measuring method of oxygen using it Download PDF

Info

Publication number
JP2008008666A
JP2008008666A JP2006176883A JP2006176883A JP2008008666A JP 2008008666 A JP2008008666 A JP 2008008666A JP 2006176883 A JP2006176883 A JP 2006176883A JP 2006176883 A JP2006176883 A JP 2006176883A JP 2008008666 A JP2008008666 A JP 2008008666A
Authority
JP
Japan
Prior art keywords
gas diffusion
hole
internal space
electrode
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006176883A
Other languages
Japanese (ja)
Other versions
JP4897369B2 (en
Inventor
Riyouji Nagano
僚治 永野
Yukio Matsuki
幸生 松木
Kiyoteru Kato
清輝 加藤
Hitoshi Yasumatsu
斉 泰松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006176883A priority Critical patent/JP4897369B2/en
Priority to EP09000670A priority patent/EP2042862A1/en
Priority to EP07011976A priority patent/EP1873517A1/en
Priority to US11/768,407 priority patent/US8052862B2/en
Priority to KR1020070063501A priority patent/KR101011296B1/en
Publication of JP2008008666A publication Critical patent/JP2008008666A/en
Priority to KR1020100085245A priority patent/KR20100110763A/en
Application granted granted Critical
Publication of JP4897369B2 publication Critical patent/JP4897369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a limiting current type oxygen sensor which detects and measures the concentration of oxygen with high precision even if the concentration of oxygen is low, is easy to manufacture and is reduced in cost. <P>SOLUTION: The limiting current type oxygen sensor 10 is equipped with: an ion conductor 11; electrodes 12a and 12b; a gas diffusion mechanism 16 for supplying a gas limited in its diffusion rate; and a heater 17 for heating the ion conductor 11. The gas diffusion mechanism 16 has: a gas diffusion hole 14 formed so as to pierce a cap 13; and the internal space 15 communicating with the gas diffusion hole 14. The gas diffusion mechanism 16 is constituted so that the concentration gradient of oxygen in the internal space 15 satisfies the condition of a predetermined formula. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、酸素濃度の検知測定を行うために用いられる限界電流式酸素センサ及びこれを用いた酸素濃度の検知測定方法に関し、特に低酸素濃度であっても精度良く酸素濃度を検知測定することができる限界電流式酸素センサ及びこれを用いた酸素濃度の検知測定方法に関する。   The present invention relates to a limiting current type oxygen sensor used for detecting and measuring oxygen concentration and an oxygen concentration detecting and measuring method using the same, and particularly to detect and measure oxygen concentration accurately even at a low oxygen concentration. The present invention relates to a limiting current type oxygen sensor that can perform and a method for detecting and measuring oxygen concentration using the same.

従来より、限界電流式酸素センサとして、例えば酸化イットリウム(YtO)を添加物とする固体電解質の安定化ジルコニア(Yttria Stabilized Zirconia:YSZ)をイオン伝導体として用いたものが知られている。図8は、従来の限界電流式酸素センサの構造を示す模式図である。図8に示すように、一般的な従来の限界電流式酸素センサ100は、固体電解質のイオン伝導体101の両面に監視電圧を印加するための多孔質材料からなるアノード側及びカソード側の電極102,103をそれぞれ形成し、一方の電極103側に拡散律速されたガスを供給するための気体拡散孔104,105と内部空間106aとからなるガス拡散機構が形成されたキャップ106を取り付けて構成されている。   Conventionally, as a limiting current type oxygen sensor, for example, a solid electrolyte stabilized zirconia (Ytria Stabilized Zirconia: YSZ) using, for example, yttrium oxide (YtO) as an additive is known as an ion conductor. FIG. 8 is a schematic diagram showing the structure of a conventional limiting current oxygen sensor. As shown in FIG. 8, a general conventional limiting current type oxygen sensor 100 includes an anode side electrode 102 and a cathode side electrode 102 made of a porous material for applying a monitoring voltage to both surfaces of an ion conductor 101 of a solid electrolyte. , 103, and a cap 106 having a gas diffusion mechanism composed of gas diffusion holes 104, 105 and an internal space 106a for supplying a diffusion-controlled gas to one electrode 103 side. ing.

また、このキャップ106の外側には、イオン伝導体101を、例えば数百℃の監視温度に設定するためのヒータ107が設けられており、このヒータ107にはリード線108が接続されている。なお、気体拡散孔104は、電極103に向かってキャップ106を貫通した状態で、また、気体拡散孔105は、電極103の表面に沿った方向に向かって貫通した状態でそれぞれ形成されている。ここで、限界電流式酸素センサとしては、これら気体拡散孔104,105のうち、例えば気体拡散孔105が形成されていないようなタイプのものも多く用いられている。   Further, a heater 107 for setting the ion conductor 101 to a monitoring temperature of, for example, several hundred degrees C. is provided outside the cap 106, and a lead wire 108 is connected to the heater 107. The gas diffusion hole 104 is formed in a state of penetrating the cap 106 toward the electrode 103, and the gas diffusion hole 105 is formed in a state of penetrating in the direction along the surface of the electrode 103. Here, as the limiting current type oxygen sensor, among these gas diffusion holes 104 and 105, for example, a type in which the gas diffusion hole 105 is not formed is often used.

そして、このような限界電流式酸素センサ100は、各電極102,103間に監視電圧を印加した場合、電圧が小さい間はその電圧に比例する出力電流がイオン伝導体101を通って流れる構造からなる。また、この限界電流式酸素センサ100は、監視電圧をさらに上昇させると、やがて出力電流が飽和する特性を備えている。このような飽和領域の出力電流を限界電流といい、この限界電流の大きさは酸素濃度と一定の関係を有している。したがって、このような限界電流式酸素センサ100では、監視電圧で得られる限界電流値から酸素濃度を検知測定することが可能となる。   Such a limiting current type oxygen sensor 100 has a structure in which when a monitoring voltage is applied between the electrodes 102 and 103, an output current proportional to the voltage flows through the ion conductor 101 while the voltage is small. Become. Further, the limiting current type oxygen sensor 100 has a characteristic that the output current eventually saturates when the monitoring voltage is further increased. The output current in such a saturation region is called a limit current, and the magnitude of this limit current has a certain relationship with the oxygen concentration. Therefore, in such a limit current type oxygen sensor 100, it is possible to detect and measure the oxygen concentration from the limit current value obtained by the monitoring voltage.

また、限界電流式酸素センサ100のイオン伝導体101に流れる電流は、酸素イオンの移動に基づくもので、その電流値は電圧と温度とに依存するものである。このため、限界電流式酸素センサ100では、例えば400℃〜500℃程度の監視温度に設定されて電圧駆動がなされる。通常、この監視温度の設定は、上述したような限界電流式酸素センサ100の本体部分であるキャップ106にヒータ107を設け、これに通電することによって行われる。   Further, the current flowing through the ion conductor 101 of the limiting current oxygen sensor 100 is based on the movement of oxygen ions, and the current value depends on the voltage and temperature. For this reason, the limiting current oxygen sensor 100 is driven at a voltage set to a monitoring temperature of about 400 ° C. to 500 ° C., for example. Normally, the monitoring temperature is set by providing a heater 107 on the cap 106, which is the main body of the limiting current oxygen sensor 100 as described above, and energizing it.

なお、このような限界電流式酸素センサ100の駆動には、多くの場合ヒータ107を常時通電した状態で、各電極102,103間に監視電圧を与えるという方法が採られている(例えば、特許文献1参照。)。そして、このように構成された従来の限界電流式酸素センサ100では、低濃度の酸素濃度を検知測定するに際して、出力電流値を大きくするために、キャップ106に気体拡散孔104のみならず気体拡散孔105を形成したガス拡散機構を備えている。   In many cases, such a limiting current oxygen sensor 100 is driven by applying a monitoring voltage between the electrodes 102 and 103 while the heater 107 is always energized (for example, a patent). Reference 1). In the conventional limiting current type oxygen sensor 100 configured as described above, in order to increase the output current value when detecting and measuring a low concentration of oxygen, not only the gas diffusion hole 104 but also the gas diffusion hole is formed in the cap 106. A gas diffusion mechanism in which holes 105 are formed is provided.

こうした気体拡散孔104,105などの孔部をキャップ106に設けた構造のガス拡散機構を有する限界電流式酸素センサ100では、ガス拡散機構が、ファラデー定数(F)、拡散係数(D)、孔部の孔面積(S)、ガス全圧(P)、気体定数(R)、温度(T)、孔部の孔長(l)、酸素分圧(PO2)、及び出力電流値(IL)の関係として、次式(1)の条件を満たすように構成されていることによって、酸素濃度を測定している。 In the limiting current type oxygen sensor 100 having a gas diffusion mechanism having a structure in which holes such as the gas diffusion holes 104 and 105 are provided in the cap 106, the gas diffusion mechanism includes a Faraday constant (F), a diffusion coefficient (D), a hole, and the like. Pore area (S), gas total pressure (P), gas constant (R), temperature (T), hole length (l), oxygen partial pressure (P O2 ), and output current value (IL) Therefore, the oxygen concentration is measured by being configured to satisfy the condition of the following formula (1).

Figure 2008008666
Figure 2008008666

特許第3373741号公報Japanese Patent No. 3373741

しかしながら、上述した従来の限界電流式酸素センサ100では、低濃度の酸素濃度を検知測定するために、キャップ106に気体拡散孔104のみならず気体拡散孔105を新たに形成しなければならない。このため、限界電流式酸素センサ100の製造工程における工程数が多くなり、センサ構造自体も複雑となって、結果的にコスト増大に繋がってしまうという問題がある。   However, in the above-described conventional limiting current oxygen sensor 100, not only the gas diffusion hole 104 but also the gas diffusion hole 105 must be newly formed in the cap 106 in order to detect and measure a low concentration oxygen concentration. For this reason, the number of processes in the manufacturing process of the limiting current type oxygen sensor 100 increases, and the sensor structure itself becomes complicated, resulting in an increase in cost.

また、限界電流式酸素センサ100における新たな気体拡散孔105をイオン伝導体101の電極103の表面(電極面)に沿った方向に向かって貫通するように形成するため、気体拡散孔105が形成されていないタイプのものに比べて加工精度によっては製造精度のバラつきが大きくなりやすく、結果的にセンサ特性にバラつきが生じ、測定精度が安定しないという問題がある。   Further, since the new gas diffusion hole 105 in the limiting current oxygen sensor 100 is formed so as to penetrate in the direction along the surface (electrode surface) of the electrode 103 of the ion conductor 101, the gas diffusion hole 105 is formed. There is a problem that variation in manufacturing accuracy is likely to increase depending on processing accuracy compared to a type that is not performed, resulting in variations in sensor characteristics and unstable measurement accuracy.

さらに、上述した特許文献1に記載の従来の限界電流式酸素センサのような気体拡散孔105の代わりに気体拡散孔104の孔径を大きくして、気体拡散孔105を設けないタイプの場合、例えば酸素濃度が1%以下と低い状態における限界電流領域では、限界電流値が上記数式(1)の条件を満たさないため、正確な酸素濃度の検知測定ができなくなるという問題がある。   Furthermore, in the case of a type in which the gas diffusion hole 105 is not provided in place of the gas diffusion hole 105 instead of the gas diffusion hole 105 as in the conventional limiting current oxygen sensor described in Patent Document 1 described above, for example, In the limiting current region in a state where the oxygen concentration is as low as 1% or less, the limiting current value does not satisfy the condition of the above formula (1), so that there is a problem that accurate oxygen concentration detection and measurement cannot be performed.

本発明は、このような点に鑑みてなされたもので、低酸素濃度であっても高精度で良好に酸素濃度を検知測定することができるとともに、容易に製造可能で特性のバラつきを防止しコストを削減することができる限界電流式酸素センサ及びこれを用いた酸素濃度の検知測定方法を提供することを目的とする。   The present invention has been made in view of these points, and can detect and measure the oxygen concentration with good accuracy even at a low oxygen concentration, and can be easily manufactured to prevent variation in characteristics. It is an object of the present invention to provide a limiting current type oxygen sensor capable of reducing cost and a method for detecting and measuring oxygen concentration using the same.

本発明に係る限界電流式酸素センサは、固体電解質からなるイオン伝導体と、このイオン伝導体に設けられた電界を印加するための多孔質の電極対と、この電極対の一方の面側に拡散律速されたガスを供給するためのガス拡散機構と、前記イオン伝導体を加熱するヒータとを備え、前記ガス拡散機構は、前記電極対の一方の電極と接する内部空間と、この内部空間と外部とを連通する気体拡散孔とを有し、前記内部空間における酸素濃度勾配が、ファラデー定数(F)、拡散係数(D)、酸素濃度(CO2)、気体拡散孔の孔面積(S)、気体拡散孔の貫通方向の孔長(l)、内部空間の前記電極とそれに対向する内面の間の距離(lin)、内部空間の有効断面積(Sin)、及び出力電流値(Ilim)の関係に基づく、1/Ilim=(1/4FDCO2){(l/S)+(lin/Sin)}の式を満たすように構成されていることを特徴とする。 The limiting current type oxygen sensor according to the present invention includes an ion conductor made of a solid electrolyte, a porous electrode pair for applying an electric field provided on the ion conductor, and one electrode side of the electrode pair. A gas diffusion mechanism for supplying a diffusion-controlled gas; and a heater for heating the ion conductor, wherein the gas diffusion mechanism includes an internal space in contact with one electrode of the electrode pair, and the internal space A gas diffusion hole communicating with the outside, and an oxygen concentration gradient in the internal space includes a Faraday constant (F), a diffusion coefficient (D), an oxygen concentration (C O2 ), and a hole area (S) of the gas diffusion hole , The hole length (l) in the penetration direction of the gas diffusion hole, the distance (l in ) between the electrode in the internal space and the inner surface facing it, the effective sectional area (S in ) of the internal space, and the output current value (I based on the relationship of lim), 1 / I l m = (1 / 4FDC O2), characterized in that it is configured to satisfy the equation of {(l / S) + ( l in / S in)}.

本発明に係る酸素濃度の検知測定方法は、固体電解質からなるイオン伝導体と、このイオン伝導体に設けられた電界を印加するための多孔質の電極対と、この電極対の一方の面側に拡散律速されたガスを供給するためのガス拡散機構と、前記イオン伝導体を加熱するヒータとを備える限界電流式酸素センサを用いた酸素濃度の検知測定方法であって、前記ガス拡散機構に、前記電極対の一方の電極と接する内部空間及びこの内部空間と外部とを連通する気体拡散孔を形成し、前記内部空間における酸素濃度勾配が、ファラデー定数(F)、拡散係数(D)、酸素濃度(CO2)、前記気体拡散孔の孔面積(S)、前記気体拡散孔の貫通方向の孔長(l)、前記内部空間の前記電極とそれに対向する内面の間の距離(lin)、前記内部空間の有効断面積(Sin)、及び出力電流値(Ilim)の関係に基づく、1/Ilim=(1/4FDCO2){(l/S)+(lin/Sin)}の式の条件を満たすように演算を行って酸素濃度を検知測定することを特徴とする。 An oxygen concentration detection and measurement method according to the present invention includes an ion conductor made of a solid electrolyte, a porous electrode pair for applying an electric field provided on the ion conductor, and one surface side of the electrode pair. A method for detecting and measuring oxygen concentration using a limiting current oxygen sensor comprising a gas diffusion mechanism for supplying a diffusion-controlled gas to a gas and a heater for heating the ion conductor, Forming an internal space that is in contact with one electrode of the electrode pair and a gas diffusion hole that communicates the internal space with the outside, and an oxygen concentration gradient in the internal space includes a Faraday constant (F), a diffusion coefficient (D), Oxygen concentration (C O2 ), hole area (S) of the gas diffusion hole, hole length (l) in the penetration direction of the gas diffusion hole, distance between the electrode in the internal space and the inner surface facing it (l in ), The internal space 1 / I lim = (1/4 FDC O2 ) {(l / S) + (l in / S in )} based on the relationship between the effective area (S in ) and the output current value (I lim ) The oxygen concentration is detected and measured by performing an operation so as to satisfy the above condition.

また、ガス拡散機構は、内部空間の電極とそれに対向する内面の間の距離が、気体拡散孔の孔径よりも大きくなるように形成される。また、ガス拡散機構は、気体拡散孔の孔面積(S)と孔長(l)との比率(S/l)が50μm〜250μmとなるように構成されている。   The gas diffusion mechanism is formed so that the distance between the electrode in the internal space and the inner surface facing the electrode is larger than the diameter of the gas diffusion hole. The gas diffusion mechanism is configured such that the ratio (S / l) of the hole area (S) to the hole length (l) of the gas diffusion holes is 50 μm to 250 μm.

本発明によれば、ガス拡散機構が、電極対の一方の電極と接する内部空間と、この内部空間と外部とを連通する気体拡散孔とを有し、内部空間における酸素濃度勾配が所定の式の条件を満たすように構成されている。このため、従来のように気体拡散孔を複数設ける場合と比較して気体拡散孔の加工が簡単となるとともに、所定の式の条件を満たす濃度勾配に基づいて酸素濃度の検知測定を正確に行うことが可能となる。これにより、例えば酸素濃度が1%以下の低酸素濃度であっても高精度で良好に検知測定することができ、容易に製造可能で加工精度特性のバラつきを抑え製造コストを削減することができる。   According to the present invention, the gas diffusion mechanism has an internal space that is in contact with one electrode of the electrode pair and a gas diffusion hole that communicates the internal space with the outside, and the oxygen concentration gradient in the internal space is a predetermined formula. It is configured to satisfy the following conditions. For this reason, the processing of the gas diffusion hole is simplified as compared with the case where a plurality of gas diffusion holes are provided as in the prior art, and the oxygen concentration detection measurement is accurately performed based on the concentration gradient satisfying the condition of the predetermined formula. It becomes possible. Thereby, for example, even if the oxygen concentration is a low oxygen concentration of 1% or less, it can be detected and measured with high accuracy and can be easily manufactured, and variations in processing accuracy characteristics can be suppressed and manufacturing costs can be reduced. .

以下、添付の図面を参照して、本発明の一実施形態に係る限界電流式酸素センサ及びこれを用いた酸素濃度の検知測定方法について説明する。   Hereinafter, a limiting current type oxygen sensor according to an embodiment of the present invention and a method for detecting and measuring oxygen concentration using the same will be described with reference to the accompanying drawings.

図1は、本発明の一実施形態に係る限界電流式酸素センサの構造を示す模式図である。また、図2は、同限界電流式酸素センサを図1における矢印A方向から見た斜視図である。また、図3は、同限界電流式酸素センサを図1における矢印B方向から見た斜視図である。図1〜図3に示すように、本発明の一実施形態に係る限界電流式酸素センサ10は、固体電解質からなるイオン導電体11と、このイオン導電体11に設けられた電界を印加するための多孔質材料からなる電極対である電極12a,12bと、これら電極12a,12bのうちの一方の電極12aを覆うキャップ13と、イオン伝導体11を加熱するヒータ17とを備えて構成されている。   FIG. 1 is a schematic diagram showing the structure of a limiting current oxygen sensor according to an embodiment of the present invention. FIG. 2 is a perspective view of the limiting current oxygen sensor as viewed from the direction of arrow A in FIG. FIG. 3 is a perspective view of the limiting current type oxygen sensor as viewed from the direction of arrow B in FIG. As shown in FIGS. 1 to 3, a limiting current oxygen sensor 10 according to an embodiment of the present invention applies an ionic conductor 11 made of a solid electrolyte and an electric field provided on the ionic conductor 11. Electrode 12a, 12b which is an electrode pair made of a porous material, a cap 13 which covers one of the electrodes 12a, 12b, and a heater 17 which heats the ion conductor 11. Yes.

イオン伝導体11は、数百℃の高温になると内部イオンの移動によって導電性を示す絶縁体であり、例えば安定化ジルコニアからなる。各電極12a,12bは、例えば多孔質な白金(Pt)あるいは銀(Ag)などからなり、イオン伝導体11の両面に形成されている。なお、本例の限界電流式酸素センサ10は、電極12aがカソード電極となり、電極12bがアノード電極となるように構成されている。   The ion conductor 11 is an insulator that exhibits conductivity by movement of internal ions at a high temperature of several hundred degrees Celsius, and is made of, for example, stabilized zirconia. Each of the electrodes 12 a and 12 b is made of, for example, porous platinum (Pt) or silver (Ag), and is formed on both surfaces of the ion conductor 11. The limiting current oxygen sensor 10 of this example is configured such that the electrode 12a serves as a cathode electrode and the electrode 12b serves as an anode electrode.

キャップ13は、例えば有底円筒形の外観を有するセラミックなどからなり、イオン伝導体11に取り付けられる側が凹状に形成されている。また、キャップ13の有底円筒形の底部分中央には、厚さ方向に貫通する気体拡散孔14が一つ形成されている。そして、キャップ13は、イオン伝導体11のカソード電極となる電極12a側の面に、気体拡散孔14のみからガスが電極12aに供給されるように密着した状態で取り付けられており、これらキャップ13とイオン伝導体11の電極12a側の面によって内部空間15を形成している。これら内部空間15及び気体拡散孔14によって、電極12aに拡散律速されたガスを供給するガス拡散機構16が構成されている。   The cap 13 is made of, for example, ceramic having a bottomed cylindrical appearance, and the side attached to the ion conductor 11 is formed in a concave shape. Further, one gas diffusion hole 14 penetrating in the thickness direction is formed in the center of the bottom portion of the bottomed cylindrical shape of the cap 13. The cap 13 is attached to the surface of the ion conductor 11 on the side of the electrode 12a serving as the cathode electrode so that the gas is supplied from only the gas diffusion hole 14 to the electrode 12a. An internal space 15 is formed by the surface of the ion conductor 11 on the electrode 12a side. The internal space 15 and the gas diffusion hole 14 constitute a gas diffusion mechanism 16 that supplies a diffusion-controlled gas to the electrode 12a.

したがって、限界電流式酸素センサ10において、電極12aは内部空間15に接し、電極12bは外部雰囲気に接するように設けられている。また、このキャップ13のイオン伝導体11取付側と反対側の外面には、イオン導電体11を例えば400℃〜500℃程度の監視温度に加熱するためのヒータ17が設けられている。   Therefore, in the limiting current oxygen sensor 10, the electrode 12a is provided in contact with the internal space 15, and the electrode 12b is provided in contact with the external atmosphere. Further, a heater 17 for heating the ion conductor 11 to a monitoring temperature of, for example, about 400 ° C. to 500 ° C. is provided on the outer surface of the cap 13 opposite to the side on which the ion conductor 11 is attached.

ガス拡散機構16の気体拡散孔14は、図1に示すように、所定の孔径(Sl)と、貫通方向の所定の長さである孔長(l)とを有するようにキャップ13に形成されている。また、ガス拡散機構16の内部空間15は、気体拡散孔14の貫通方向に所定の厚さ(すなわち、具体的には電極12aの表面と、この表面と対向配置されたキャップ13の内壁面との間の距離)(lin)を備えるように形成されている。そして、ガス拡散機構16は、内部空間15における酸素濃度勾配が後述する所定の式の条件を満たすように構成されている。また、ガス拡散機構16は、ここでは内部空間15の厚さ(lin)が、気体拡散孔14の孔径(Sl)よりも大きくなるように形成されているが、これに限るものではない。   As shown in FIG. 1, the gas diffusion hole 14 of the gas diffusion mechanism 16 is formed in the cap 13 so as to have a predetermined hole diameter (Sl) and a hole length (l) that is a predetermined length in the penetration direction. ing. Further, the internal space 15 of the gas diffusion mechanism 16 has a predetermined thickness in the penetrating direction of the gas diffusion hole 14 (that is, specifically, the surface of the electrode 12a and the inner wall surface of the cap 13 disposed to face this surface. (Distance) between (lin). And the gas diffusion mechanism 16 is comprised so that the oxygen concentration gradient in the internal space 15 may satisfy | fill the conditions of the predetermined formula mentioned later. Moreover, although the gas diffusion mechanism 16 is formed so that the thickness (lin) of the internal space 15 is larger than the hole diameter (Sl) of the gas diffusion hole 14 here, it is not limited to this.

なお、電極12a,12bにはそれぞれリード線18a,18bが接続されており、これらリード線18a,18bは、外部に取り出されて監視電圧を与えるための電源30に接続されている。また、この電源30には、それぞれ直列及び並列に電流計31及び電圧計32が接続されている。さらに、ヒータ17にはリード線19が接続されており、このリード線19はヒータ電源33に接続されている。ヒータ17は、例えば使用期間中、常にヒータ電源33によって通電され、400℃程度の監視温度に設定されている。   Lead wires 18a and 18b are connected to the electrodes 12a and 12b, respectively, and these lead wires 18a and 18b are connected to a power source 30 for taking out and supplying a monitoring voltage. Further, an ammeter 31 and a voltmeter 32 are connected to the power supply 30 in series and in parallel, respectively. Further, a lead wire 19 is connected to the heater 17, and the lead wire 19 is connected to a heater power source 33. For example, the heater 17 is always energized by the heater power supply 33 during the period of use, and is set to a monitoring temperature of about 400 ° C.

このように構成された限界電流式酸素センサ10では、ヒータ電源33からヒータ17に給電して抵抗発熱させることにより、限界電流式酸素センサ10自体を上記監視温度に加熱するとともに、電源30によって電極12a,12b間に所定の監視電圧(V)を印加する。監視電圧を印加すると、イオン伝導体11とキャップ13とに囲まれたガス拡散機構16の内部空間15内に存在する気体中に含有されている酸素分子は、電極12aを介して電子を得て酸素イオンになり、イオン伝導体11内に入る。そして、この酸素イオンは、イオン伝導体11内の酸素イオン空孔を介してイオン伝導体11内を、例えば図1中におけるその厚さ方向上方に移動する。移動した酸素イオンは、電極12bに到達して電子を放出し、再度酸素分子となって外部雰囲気中に放出される。この酸素イオンの移動によって、各電極12a,12b間に電流(A)が流れる。   In the limit current type oxygen sensor 10 configured as described above, the heater current is supplied from the heater power source 33 to the heater 17 to generate resistance heat, thereby heating the limit current type oxygen sensor 10 itself to the above monitoring temperature and the power source 30 to generate electrodes. A predetermined monitoring voltage (V) is applied between 12a and 12b. When the monitoring voltage is applied, oxygen molecules contained in the gas existing in the internal space 15 of the gas diffusion mechanism 16 surrounded by the ion conductor 11 and the cap 13 obtain electrons through the electrode 12a. It becomes oxygen ions and enters the ion conductor 11. And this oxygen ion moves the inside of the ion conductor 11 through the oxygen ion void | hole in the ion conductor 11, for example in the thickness direction upper direction in FIG. The moved oxygen ions reach the electrode 12b, emit electrons, and become oxygen molecules again and are released into the external atmosphere. Due to the movement of oxygen ions, a current (A) flows between the electrodes 12a and 12b.

このとき、酸素イオンの移動により限界電流式酸素センサ10の内部空間15は負圧となり、気体拡散孔14を介して外部雰囲気から気体が流入する。この場合の気体の流入量は、気体拡散孔14によって制限されるため、限界電流式酸素センサ10の電流(I)−電圧(V)特性においては、各電極12a,12b間に印加する監視電圧を上昇させても電流が変化しない限界電流値を検知することができる。   At this time, due to the movement of oxygen ions, the internal space 15 of the limiting current oxygen sensor 10 becomes negative pressure, and gas flows from the external atmosphere through the gas diffusion hole 14. In this case, since the gas inflow amount is limited by the gas diffusion hole 14, in the current (I) -voltage (V) characteristics of the limiting current type oxygen sensor 10, the monitoring voltage applied between the electrodes 12a and 12b. It is possible to detect a limit current value at which the current does not change even when the value is increased.

このような限界電流式酸素センサ10の限界電流値は、気体拡散孔14の形状や測定時のセンサ温度、雰囲気の圧力などが一定であるとすると、雰囲気中の酸素濃度に依存するものである。したがって、本発明者等は、限界電流値と酸素濃度との関係に基づき、適切な酸素濃度勾配を解析し、ガス拡散機構16に適用することによって、限界電流式酸素センサ10により低酸素濃度においても良好に酸素濃度を検知測定することを可能とした。   The limit current value of the limit current type oxygen sensor 10 depends on the oxygen concentration in the atmosphere, assuming that the shape of the gas diffusion hole 14, the sensor temperature at the time of measurement, the pressure of the atmosphere, etc. are constant. . Therefore, the present inventors analyze an appropriate oxygen concentration gradient based on the relationship between the limit current value and the oxygen concentration and apply it to the gas diffusion mechanism 16 so that the limit current oxygen sensor 10 can be used at a low oxygen concentration. It was also possible to detect and measure the oxygen concentration well.

図4及び図5は、同限界電流式酸素センサにおける気体拡散孔の孔面積及び孔長と出力電流との関係を表わすグラフである。まず、本発明者等は、限界電流式酸素センサ10において、上述したように気体拡散孔14をキャップ13の底部分中央に一つだけ形成したうえで、気体拡散孔14の孔面積(S)と孔長(l)とを様々に変化させた環境にて、センサ出力電流(IL)である限界電流値の測定を行った。その結果、気体拡散孔14の孔面積(S)と孔長(l)との比(以下、「S/l」とする)と限界電流(IL)には、図4に示すような関係が成り立つことを確認し、破線41及び実線42によって表わされる特性を得ることができた。なお、破線41は、上述した従来の数式(1)を用いて算出した理論値により表わされる特性を示しており、実線42は、実測値により表わされる特性を示している。   4 and 5 are graphs showing the relationship between the area and length of the gas diffusion holes and the output current in the limiting current type oxygen sensor. First, in the limiting current type oxygen sensor 10, the present inventors formed only one gas diffusion hole 14 at the center of the bottom portion of the cap 13 as described above, and then the hole area (S) of the gas diffusion hole 14. And the limit current value which is the sensor output current (IL) was measured in an environment where the hole length (l) was varied. As a result, the ratio between the hole area (S) of the gas diffusion hole 14 and the hole length (l) (hereinafter referred to as “S / l”) and the limit current (IL) have a relationship as shown in FIG. It was confirmed that this was true, and the characteristics represented by the broken line 41 and the solid line 42 were obtained. The broken line 41 indicates the characteristic represented by the theoretical value calculated using the above-described conventional equation (1), and the solid line 42 indicates the characteristic represented by the actual measurement value.

図4に示すように、実線42によって示す実測値による限界電流(IL)は、S/lの値が大きくなるにつれて、破線41によって示す従来の数式(1)を用いて算出した理論値よりも小さな値を示すようになることが判明した。そして、例えばS/lの値が約50μm〜約250μmの範囲においては、S/lと限界電流(IL)とが直線関係を示すことが判明した。このことから、例えば1%以下の低酸素濃度では、ガス拡散機構16の気体拡散孔14内だけではなく内部空間15においても濃度勾配があると仮定し、近似式の解析を行って、ガス拡散機構16に適用される酸素濃度勾配を満たす条件の次式(2)を算出した。なお、S/lの値が約50μm〜約250μmの範囲である場合には、気体拡散孔14は一つでなくても良い。   As shown in FIG. 4, the limit current (IL) based on the actual measurement value indicated by the solid line 42 is larger than the theoretical value calculated using the conventional equation (1) indicated by the broken line 41 as the value of S / l increases. It turned out to show a small value. For example, when the value of S / l is in the range of about 50 μm to about 250 μm, it has been found that S / l and the limit current (IL) show a linear relationship. Therefore, for example, at a low oxygen concentration of 1% or less, it is assumed that there is a concentration gradient not only in the gas diffusion hole 14 of the gas diffusion mechanism 16 but also in the internal space 15, and an approximate expression is analyzed to analyze the gas diffusion. The following equation (2) that satisfies the oxygen concentration gradient applied to the mechanism 16 was calculated. When the value of S / l is in the range of about 50 μm to about 250 μm, the number of gas diffusion holes 14 may not be one.

すなわち、本発明者等は、ファラデー定数(F)、拡散係数(D)、酸素濃度(CO2)、気体拡散孔の孔面積(S)、気体拡散孔の貫通方向の孔長(l)、内部空間の厚さ(lin)、内部空間の有効断面積(Sin)、及び出力電流値(Ilim)の関係が、 That is, the present inventors have Faraday constant (F), diffusion coefficient (D), oxygen concentration (C O2 ), hole area (S) of the gas diffusion hole, hole length (l) in the penetration direction of the gas diffusion hole, The relationship among the thickness (l in ) of the internal space, the effective cross-sectional area (S in ) of the internal space, and the output current value (I lim )

Figure 2008008666
Figure 2008008666

となるような条件の酸素濃度勾配を限界電流式酸素センサ10に適用することによって、図5に示すような実線51によって表わされる特性の気体拡散孔14の孔長(l)と孔面積(S)との比(以下、「l/S」とする)と限界電流の逆数(1/IL)との関係を得ることができた。この結果、例えば上述したS/lが50μm以下のときは、ガス拡散機構16に従来の数式(1)を適用して酸素濃度の検知測定を行うことができるが、限界電流(IL)の値が小さいためあまり実用的であるとはいえない。   5 is applied to the limiting current oxygen sensor 10, the hole length (l) and the hole area (S) of the gas diffusion hole 14 having the characteristics represented by the solid line 51 as shown in FIG. ) (Hereinafter referred to as “l / S”) and the reciprocal of the limit current (1 / IL). As a result, for example, when the above-mentioned S / l is 50 μm or less, the oxygen concentration can be detected and measured by applying the conventional equation (1) to the gas diffusion mechanism 16, but the value of the limit current (IL) Is not practical because of its small size.

なお、上記出力電流値(Ilim)は限界電流(IL)と等価である。また、内部空間15の有効断面積(Sin)は、内部空間15における酸素分子の流れが、気体拡散孔14から電極12aに向かって台形形状に広がっているとの推測に基づき、気体拡散孔14の断面積と内部空間15の断面積の半分程度を目安とすることによって設定されている。 The output current value (I lim ) is equivalent to the limit current (IL). The effective cross-sectional area (S in ) of the internal space 15 is based on the assumption that the flow of oxygen molecules in the internal space 15 spreads in a trapezoidal shape from the gas diffusion hole 14 toward the electrode 12a. It is set by taking about a half of the cross-sectional area of 14 and the cross-sectional area of the internal space 15 as a guide.

図6は、同限界電流式酸素センサの電圧(V)−電流(I)特性を示すグラフである。また、図7は、同限界電流式酸素センサのガス濃度特性を示すグラフである。限界電流式酸素センサ10において、例えばガス拡散機構16の気体拡散孔14のS/lを150μmとし、1000ppmの酸素ガス中で監視電圧(Vs)−出力電流(Is)特性を評価した場合、図6に示すような実線61,62によって表わされる結果を得ることができた。ここで、実線61は、ガス拡散機構16に従来の数式(1)を適用した場合を表わしている。   FIG. 6 is a graph showing voltage (V) -current (I) characteristics of the limiting current type oxygen sensor. FIG. 7 is a graph showing the gas concentration characteristics of the limiting current type oxygen sensor. In the limiting current type oxygen sensor 10, for example, when the S / l of the gas diffusion hole 14 of the gas diffusion mechanism 16 is 150 μm and the monitoring voltage (Vs) -output current (Is) characteristics are evaluated in 1000 ppm oxygen gas, The result represented by the solid lines 61 and 62 as shown in FIG. Here, the solid line 61 represents the case where the conventional mathematical formula (1) is applied to the gas diffusion mechanism 16.

このように、ガス拡散機構16に上述した数式(2)によって定義される酸素濃度勾配を適用した場合は、実線62で示す出力電流値は実線61が示す出力電流値よりは低い値を示すこととなる。しかし、数式(2)で定義される酸素濃度勾配を適用した場合の方が、限界電流を示すフラット域63を明確に得ることができる。また、図7に示すように、限界電流式酸素センサ10のガス拡散機構16の内部空間15において、上記数式(2)の酸素濃度勾配を適用した場合、実線71で示すような直線関係を有するガス濃度と出力電流との特性を得ることができた。   As described above, when the oxygen concentration gradient defined by the above equation (2) is applied to the gas diffusion mechanism 16, the output current value indicated by the solid line 62 is lower than the output current value indicated by the solid line 61. It becomes. However, when the oxygen concentration gradient defined by Equation (2) is applied, the flat region 63 indicating the limit current can be clearly obtained. Further, as shown in FIG. 7, when the oxygen concentration gradient of the above formula (2) is applied in the internal space 15 of the gas diffusion mechanism 16 of the limiting current type oxygen sensor 10, the linear relationship shown by the solid line 71 is obtained. The characteristics of gas concentration and output current can be obtained.

このため、例えば1%以下の低酸素濃度であっても本発明の限界電流式酸素センサ10によれば、高精度で良好に酸素濃度を検知測定することができる。また、本発明の限界電流式酸素センサ10によれば、ガス拡散機構16の気体拡散孔14が一つであるため、製造工程において容易に製造することができ、加工精度特性のバラつきを抑えて製造コストを削減することが可能となる。   For this reason, for example, even with a low oxygen concentration of 1% or less, according to the limiting current type oxygen sensor 10 of the present invention, it is possible to detect and measure the oxygen concentration with good accuracy. Further, according to the limiting current type oxygen sensor 10 of the present invention, since the gas diffusion hole 14 of the gas diffusion mechanism 16 is one, it can be easily manufactured in the manufacturing process, and the variation in processing accuracy characteristics is suppressed. Manufacturing costs can be reduced.

以上述べたように、本発明によれば、限界電流式酸素センサ10のガス拡散機構16が、キャップ13に形成され電極12aに向かって貫通された気体拡散孔14及びこの気体拡散孔14と連通する内部空間15を有し、内部空間15における酸素濃度勾配が所定の条件として上記数式(2)を満たすように構成されている。また、例えばこの内部空間15の厚さ(lin)が気体拡散孔14の孔径(Sl)よりも大きくなるように形成されている。このため、気体拡散孔14の加工が簡単となるとともに、所定の条件を満たす酸素濃度勾配に基づいて酸素濃度の検知測定を正確に行うことが可能となる。これにより、例えば酸素濃度が1%以下の低酸素濃度であっても高精度で良好に検知測定することができ、容易に製造可能で加工精度特性のバラつきを抑え製造コストを削減することができる。   As described above, according to the present invention, the gas diffusion mechanism 16 of the limiting current oxygen sensor 10 is connected to the gas diffusion hole 14 formed in the cap 13 and penetrating toward the electrode 12a, and the gas diffusion hole 14. And the oxygen concentration gradient in the internal space 15 satisfies the above formula (2) as a predetermined condition. For example, the thickness (lin) of the internal space 15 is formed to be larger than the hole diameter (Sl) of the gas diffusion hole 14. For this reason, the processing of the gas diffusion hole 14 becomes simple, and it becomes possible to accurately detect and measure the oxygen concentration based on the oxygen concentration gradient that satisfies a predetermined condition. Thereby, for example, even if the oxygen concentration is a low oxygen concentration of 1% or less, it can be detected and measured with high accuracy and can be easily manufactured, and variations in processing accuracy characteristics can be suppressed and manufacturing costs can be reduced. .

本発明の一実施形態に係る限界電流式酸素センサの構造を示す模式図である。It is a schematic diagram which shows the structure of the limiting current type oxygen sensor which concerns on one Embodiment of this invention. 同限界電流式酸素センサを図1における矢印A方向から見た斜視図である。It is the perspective view which looked at the same limiting current type oxygen sensor from the arrow A direction in FIG. 同限界電流式酸素センサを図1における矢印B方向から見た斜視図である。It is the perspective view which looked at the same limiting current type oxygen sensor from the arrow B direction in FIG. 同限界電流式酸素センサにおける気体拡散孔の孔面積及び孔長と出力電流との関係を表わすグラフである。It is a graph showing the relationship between the hole area and hole length of a gas diffusion hole and output current in the limiting current type oxygen sensor. 同限界電流式酸素センサにおける気体拡散孔の孔面積及び孔長と出力電流との関係を表わすグラフである。It is a graph showing the relationship between the hole area and hole length of a gas diffusion hole and output current in the limiting current type oxygen sensor. 同限界電流式酸素センサの電圧(V)−電流(I)特性を示すグラフである。It is a graph which shows the voltage (V) -current (I) characteristic of the limiting current type oxygen sensor. 同限界電流式酸素センサのガス濃度特性を示すグラフである。It is a graph which shows the gas concentration characteristic of the same limiting current type oxygen sensor. 従来の限界電流式酸素センサの構造を示す模式図である。It is a schematic diagram which shows the structure of the conventional limiting current type oxygen sensor.

符号の説明Explanation of symbols

10…限界電流式酸素センサ、11…イオン伝導体、12a,12b…電極、13…キャップ、14…気体拡散孔、15…内部空間、16…ガス拡散機構、17…ヒータ、18a,18b,19…リード線。   DESCRIPTION OF SYMBOLS 10 ... Limit current type oxygen sensor, 11 ... Ion conductor, 12a, 12b ... Electrode, 13 ... Cap, 14 ... Gas diffusion hole, 15 ... Internal space, 16 ... Gas diffusion mechanism, 17 ... Heater, 18a, 18b, 19 …Lead.

Claims (5)

固体電解質からなるイオン伝導体と、
このイオン伝導体に設けられた電界を印加するための多孔質の電極対と、
この電極対の一方の面側に拡散律速されたガスを供給するためのガス拡散機構と、
前記イオン伝導体を加熱するヒータとを備え、
前記ガス拡散機構は、前記電極対の一方の電極と接する内部空間と、この内部空間と外部とを連通する気体拡散孔とを有し、前記内部空間における酸素濃度勾配が、ファラデー定数(F)、拡散係数(D)、酸素濃度(CO2)、前記気体拡散孔の孔面積(S)、前記気体拡散孔の貫通方向の孔長(l)、前記内部空間の前記電極とそれに対向する内面の間の距離(lin)、前記内部空間の有効断面積(Sin)、及び出力電流値(Ilim)の関係に基づく、
1/Ilim=(1/4FDCO2){(l/S)+(lin/Sin)}
の式を満たすように構成されていることを特徴とする限界電流式酸素センサ。
An ionic conductor made of a solid electrolyte;
A porous electrode pair for applying an electric field provided on the ion conductor;
A gas diffusion mechanism for supplying a diffusion-controlled gas to one surface side of the electrode pair;
A heater for heating the ion conductor,
The gas diffusion mechanism has an internal space that is in contact with one electrode of the electrode pair, and a gas diffusion hole that communicates the internal space with the outside, and an oxygen concentration gradient in the internal space has a Faraday constant (F). , Diffusion coefficient (D), oxygen concentration (C O2 ), hole area (S) of the gas diffusion hole, hole length (l) in the penetration direction of the gas diffusion hole, the electrode in the internal space and the inner surface facing it Based on the relationship between the distance (l in ), the effective cross-sectional area (S in ) of the internal space, and the output current value (I lim ),
1 / I lim = (1/4 FDC O2 ) {(l / S) + (l in / S in )}
A limiting current type oxygen sensor configured to satisfy the formula:
前記ガス拡散機構は、前記内部空間の前記電極とそれに対向する内面の間の距離が、前記気体拡散孔の孔径よりも大きくなるように形成されていることを特徴とする請求項1記載の限界電流式酸素センサ。   2. The limit according to claim 1, wherein the gas diffusion mechanism is formed such that a distance between the electrode of the internal space and an inner surface facing the electrode is larger than a diameter of the gas diffusion hole. Current-type oxygen sensor. 前記ガス拡散機構は、前記気体拡散孔の前記孔面積(S)と前記孔長(l)との比率(S/l)が50μm〜250μmとなるように構成されていることを特徴とする請求項1又は2記載の限界電流式酸素センサ。   The gas diffusion mechanism is configured such that a ratio (S / l) between the hole area (S) and the hole length (l) of the gas diffusion hole is 50 μm to 250 μm. Item 3. The limiting current type oxygen sensor according to item 1 or 2. 固体電解質からなるイオン伝導体と、このイオン伝導体に設けられた電界を印加するための多孔質の電極対と、この電極対の一方の面側に拡散律速されたガスを供給するためのガス拡散機構と、前記イオン伝導体を加熱するヒータとを備える限界電流式酸素センサを用いた酸素濃度の検知測定方法であって、
前記ガス拡散機構に、前記電極対の一方の電極と接する内部空間及びこの内部空間と外部とを連通する気体拡散孔を形成し、
前記内部空間における酸素濃度勾配が、ファラデー定数(F)、拡散係数(D)、酸素濃度(CO2)、前記気体拡散孔の孔面積(S)、前記気体拡散孔の貫通方向の孔長(l)、前記内部空間の前記電極とそれに対向する内面の間の距離(lin)、前記内部空間の有効断面積(Sin)、及び出力電流値(Ilim)の関係に基づく、
1/Ilim=(1/4FDCO2){(l/S)+(lin/Sin)}
の式の条件を満たすように演算を行って酸素濃度を検知測定する
ことを特徴とする酸素濃度の検知測定方法。
An ion conductor made of a solid electrolyte, a porous electrode pair for applying an electric field provided on the ion conductor, and a gas for supplying a diffusion-controlled gas to one side of the electrode pair A method for detecting and measuring oxygen concentration using a limiting current oxygen sensor comprising a diffusion mechanism and a heater for heating the ion conductor,
In the gas diffusion mechanism, an internal space that is in contact with one electrode of the electrode pair and a gas diffusion hole that communicates the internal space with the outside are formed.
The oxygen concentration gradient in the internal space includes a Faraday constant (F), a diffusion coefficient (D), an oxygen concentration (C O2 ), a hole area (S) of the gas diffusion hole, and a hole length in the penetration direction of the gas diffusion hole ( l), based on the relationship between the distance between the electrode of the internal space and the inner surface facing the electrode (l in ), the effective cross-sectional area of the internal space (S in ), and the output current value (I lim ),
1 / I lim = (1/4 FDC O2 ) {(l / S) + (l in / S in )}
A method for detecting and measuring oxygen concentration, wherein the oxygen concentration is detected and measured by performing an operation so as to satisfy the condition of the equation (1).
前記ガス拡散機構の前記内部空間は、前記電極とそれに対向する内面の間の距離が、前記気体拡散孔の孔径よりも大きくなるように形成されることを特徴とする請求項4記載の酸素濃度の検知測定方法。   5. The oxygen concentration according to claim 4, wherein the internal space of the gas diffusion mechanism is formed such that a distance between the electrode and an inner surface facing the electrode is larger than a diameter of the gas diffusion hole. Detection measurement method.
JP2006176883A 2006-06-27 2006-06-27 Limit current type oxygen sensor and method for detecting and measuring oxygen concentration using the same Active JP4897369B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006176883A JP4897369B2 (en) 2006-06-27 2006-06-27 Limit current type oxygen sensor and method for detecting and measuring oxygen concentration using the same
EP09000670A EP2042862A1 (en) 2006-06-27 2007-06-19 Limiting current type oxygen sensor and method of sensing and measuring oxygen concentrations using the same
EP07011976A EP1873517A1 (en) 2006-06-27 2007-06-19 Limiting current type oxygen sensor and method of sensing and measuring oxygen concentrations using the same
US11/768,407 US8052862B2 (en) 2006-06-27 2007-06-26 Limiting current type oxygen sensor and method of sensing and measuring oxygen concentrations using the same
KR1020070063501A KR101011296B1 (en) 2006-06-27 2007-06-27 Limiting current type oxygen sensor and method of sensing and measuring oxygen concentrations using the same
KR1020100085245A KR20100110763A (en) 2006-06-27 2010-09-01 Limiting current type oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006176883A JP4897369B2 (en) 2006-06-27 2006-06-27 Limit current type oxygen sensor and method for detecting and measuring oxygen concentration using the same

Publications (2)

Publication Number Publication Date
JP2008008666A true JP2008008666A (en) 2008-01-17
JP4897369B2 JP4897369B2 (en) 2012-03-14

Family

ID=39067023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006176883A Active JP4897369B2 (en) 2006-06-27 2006-06-27 Limit current type oxygen sensor and method for detecting and measuring oxygen concentration using the same

Country Status (1)

Country Link
JP (1) JP4897369B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5272286A (en) * 1975-12-12 1977-06-16 Toyoda Chuo Kenkyusho Kk Oxygen concentration analyzer
JPS6091251A (en) * 1983-10-26 1985-05-22 Hitachi Ltd Air-fuel ratio sensor
JPS6093342A (en) * 1983-10-27 1985-05-25 Toyota Motor Corp Method for regulating output of element for detecting oxygen concentration
JPS62145161A (en) * 1985-12-19 1987-06-29 Sanyo Electric Co Ltd Oxygen sensor
JPS62263458A (en) * 1986-05-09 1987-11-16 Matsushita Electric Ind Co Ltd Oxygen sensor element
JPH03165254A (en) * 1989-11-25 1991-07-17 Fuji Electric Co Ltd Oxygen sensor
JPH05209860A (en) * 1992-01-30 1993-08-20 Riken Corp Oxygen concentration sensing apparatus
JPH10185862A (en) * 1996-12-20 1998-07-14 Fujikura Ltd Oxygen sensor
JP2000131271A (en) * 1998-10-26 2000-05-12 Hitachi Chem Co Ltd Limiting current type oxygen sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5272286A (en) * 1975-12-12 1977-06-16 Toyoda Chuo Kenkyusho Kk Oxygen concentration analyzer
JPS6091251A (en) * 1983-10-26 1985-05-22 Hitachi Ltd Air-fuel ratio sensor
JPS6093342A (en) * 1983-10-27 1985-05-25 Toyota Motor Corp Method for regulating output of element for detecting oxygen concentration
JPS62145161A (en) * 1985-12-19 1987-06-29 Sanyo Electric Co Ltd Oxygen sensor
JPS62263458A (en) * 1986-05-09 1987-11-16 Matsushita Electric Ind Co Ltd Oxygen sensor element
JPH03165254A (en) * 1989-11-25 1991-07-17 Fuji Electric Co Ltd Oxygen sensor
JPH05209860A (en) * 1992-01-30 1993-08-20 Riken Corp Oxygen concentration sensing apparatus
JPH10185862A (en) * 1996-12-20 1998-07-14 Fujikura Ltd Oxygen sensor
JP2000131271A (en) * 1998-10-26 2000-05-12 Hitachi Chem Co Ltd Limiting current type oxygen sensor

Also Published As

Publication number Publication date
JP4897369B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP5253165B2 (en) Gas sensor and nitrogen oxide sensor
JPH09113484A (en) Method and apparatus for measuring specific gas component in gas to be measured
US10309923B2 (en) Gas sensor device
EP2803990B1 (en) Hydrocarbon gas sensor
JP2008008665A (en) Limiting current type oxygen sensor
JP2009092431A (en) Nox sensor
KR101011296B1 (en) Limiting current type oxygen sensor and method of sensing and measuring oxygen concentrations using the same
JP6350359B2 (en) Gas sensor
US10690621B2 (en) Sensor element for detecting at least one property of a measuring gas in a measuring gas chamber
US20140353174A1 (en) SOx GAS SENSOR AND METHOD OF MEASURING CONCENTRATION OF SOx GAS
JP4897369B2 (en) Limit current type oxygen sensor and method for detecting and measuring oxygen concentration using the same
JP3771569B2 (en) NOx sensor
EP2803991B1 (en) Hydrocarbon gas sensor
US10895553B2 (en) Gas sensor
JP3798412B2 (en) NOx sensor
WO2024062818A1 (en) Gas sensor, and concentration measuring method employing gas sensor
JPS63172953A (en) Method for measuring alcohol concentration by using solid electrolyte
JP2016521855A (en) Gas sensor for measuring a plurality of different gases and associated manufacturing method
JP6298659B2 (en) NOx sensor processing method
US20230314367A1 (en) Gas sensor and concentration measurement method using gas sensor
JP2009287939A (en) Nox sensor element
JP2022070552A (en) Solid electrolyte sensor
JP3520217B2 (en) Gas sensor
Voronova et al. The Oxygen Permeability of an Analytic Solid-Electrolyte Cell with a Palladium–Palladium Oxide Medium
JP2003043011A (en) Oxygen sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R151 Written notification of patent or utility model registration

Ref document number: 4897369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250