JPS62263231A - Production of carbon fiber-reinforced thermosetting resin - Google Patents

Production of carbon fiber-reinforced thermosetting resin

Info

Publication number
JPS62263231A
JPS62263231A JP61104965A JP10496586A JPS62263231A JP S62263231 A JPS62263231 A JP S62263231A JP 61104965 A JP61104965 A JP 61104965A JP 10496586 A JP10496586 A JP 10496586A JP S62263231 A JPS62263231 A JP S62263231A
Authority
JP
Japan
Prior art keywords
pitch
carbon fiber
resin
thermosetting resin
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61104965A
Other languages
Japanese (ja)
Other versions
JPH075766B2 (en
Inventor
Tadashi Ito
正 伊藤
Tsunehiko Nishimura
恒彦 西村
Yuji Matsumura
松村 雄次
Keihachiro Tanaka
田中 啓八郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Nippon Sheet Glass Co Ltd
Osaka Gas Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Osaka Gas Co Ltd
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd, Osaka Gas Co Ltd, Dainippon Ink and Chemicals Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP61104965A priority Critical patent/JPH075766B2/en
Publication of JPS62263231A publication Critical patent/JPS62263231A/en
Publication of JPH075766B2 publication Critical patent/JPH075766B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Working-Up Tar And Pitch (AREA)

Abstract

PURPOSE:To obtain the titled resin improved in electrical conductance and sliding characteristics, suitable as an electromagnetic shielding material, by impregnating a thermosetting resin in a carbon fiber mat prepared by making pitch fiber formed through a spiral flow process infusible followed by carbonization. CONSTITUTION:First, a viscous pitch is delivered through olifice, while blowing high-speed hot gas flow linearly through three or more jet nozzles located at an internal in the circumferential direction around said olifice, to make the pitch into fibrous and spiral form followed by drawing to convert to fiber. The resulting pitch fiber is made infusible followed by carbonization to make a bulky carbon fiber mat with a density 0.008-0.08g/cm<3>. This mat is impregnated with such an amount of thermosetting resin (e.g. epoxy resin) that the resulting content of the carbon fiber falls between 0.5-60wt% to make a sheet. This sheet is then subjected to forming process.

Description

【発明の詳細な説明】 本発明は炭素N&雄で補強された樹脂の製造法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing carbon N & male reinforced resins.

軽量にして耐熱性、耐薬品性があシ、機械物性が良好な
炭素繊維により、熱硬化性樹脂を補強する研究は盛んに
行なわれており、既に航空機など飛行体の一次、二次構
造材の一部に、またテニスラケット、釣等、ゴルフシャ
フト等のスポーツ用品の部材として実用化されている。
Carbon fiber, which is lightweight, has good heat resistance, chemical resistance, and mechanical properties, is being actively researched to reinforce thermosetting resins, and is already being used as a primary and secondary structural material for aircraft and other flying objects. It has also been put into practical use as a component of sports equipment such as tennis rackets, fishing rods, and golf shafts.

一方、炭素繊維を安価な原料から製造する研究も盛んと
なり、特に近年、石油あるいは石炭系のタールピッチよ
り高強度・高弾性の高性能炭素、繊維を製造する研究、
あるいは、それ糧の性能でなくとも経済的で汎用性のあ
る汎用型炭素率麦維を製造する研究が行なわれている。
On the other hand, research into producing carbon fiber from inexpensive raw materials has become active, particularly in recent years, and research into producing high-performance carbon and fibers with higher strength and higher elasticity than petroleum or coal-based tar pitch has become active.
Alternatively, research is being conducted to produce general-purpose carbon-containing wheat fiber that is economical and versatile, even if it does not have the performance of food.

ピッチから得られる炭素繊維は、紡糸用ピッチの物性(
等方性、異方性)、溶融紡糸の方法及びピッチ繊維の炭
化温度により、種々の物性になるが、特に溶融紡糸の方
法によって炭素繊維の形態が決ってくるのである。
Carbon fiber obtained from pitch is based on the physical properties of pitch for spinning (
Although the physical properties vary depending on the pitch fiber carbonization temperature (isotropy, anisotropy), melt spinning method, and pitch fiber carbonization temperature, the form of the carbon fiber is determined by the melt spinning method in particular.

一般にピッチの溶融繊維化方法には3種類ある。Generally, there are three types of pitch melt-fiberization methods.

その1つは、ポリエステル繊維やポリプロピレン礒雄の
ような溶融紡糸と同様な方法であるが、エクストルーダ
ーで溶融体を多数孔のノズルに押出し、これをワインダ
ーでドラフトをかけ細糸として連続的に巻取る「連続紡
糸法」である。この方法で製造された炭素繊維は長いフ
ィラメントの形態を取る。さらに1つは、孔をうがった
高速回転体へ溶融ピッチをフィードし、遠心力で細糸へ
と繊維化するいわゆる「遠心繊維化法」である。この方
法で製造された炭素繊維は連続的に巻取れないので長さ
に限界があり、比較的長い綿状の形態を取る。
One method is similar to melt spinning for polyester fibers and polypropylene fibers, but an extruder extrudes the melt into a multi-hole nozzle, and a winder drafts it and continuously winds it as a fine thread. This is the ``continuous spinning method''. Carbon fibers produced in this way take the form of long filaments. Another method is the so-called "centrifugal fiberization method," in which molten pitch is fed to a high-speed rotary body with bored holes and is fiberized into fine threads by centrifugal force. Carbon fibers produced by this method cannot be continuously wound, so there is a limit to their length, and they take the form of relatively long fluff.

さらに1つの方法は、ノズルへ溶融ピッチをフィードす
ると同時に周辺から渦流気体を吹付け、随伴させて繊維
化するいわゆる「渦流繊維化法」である(例えば特公昭
58−57374号参照)。
Another method is the so-called "vortex fiberization method" in which molten pitch is fed into a nozzle and at the same time vortex gas is blown from the periphery to form fibers (for example, see Japanese Patent Publication No. 58-57374).

この方法で製造された炭素繊維も連続的に巻取れないの
で長さに限界があシ、やはシ綿状の形態を取る。
Carbon fibers produced by this method cannot be wound continuously, so there is a limit to their length, or they take a fluffy form.

遠心繊維化法と渦流繊維化法は短かい炭素繊維しか製造
できないが、繊維化工程が経済的であるから、汎用型炭
素線維の製造に適している。
Although the centrifugal fiberization method and the vortex fiberization method can only produce short carbon fibers, the fiberization process is economical, so they are suitable for producing general-purpose carbon fibers.

両方法のうち、渦流繊維化法ではより細い糸へ繊維化で
き、かつ繊維化装置も安価である利点はあるものの、よ
シ短かいピッチ繊維しかでき危い欠点がある。
Of the two methods, the vortex fiberization method has the advantage of being able to fiberize into thinner threads and the fiberization equipment is inexpensive, but it has the disadvantage that it can only produce very short pitch fibers.

さらに、渦流法で得た繊維は、その方法の特性からベル
トコンベア上に堆積し連続的に不融化次いで炭化し、嵩
高いマット状で炭素?J、mへ製造される本性が最も技
術的にも経済的にも有利である。
Furthermore, due to the characteristics of the method, the fibers obtained by the eddy current method are deposited on a belt conveyor, continuously infusible, and then carbonized, forming a bulky mat-like carbon fiber. The nature produced into J, m is the most technically and economically advantageous.

しかし、遠心fRa化法と比較すると、より短かい繊維
しか紡糸できな−ので、遠心繊維化法からなる炭素繊維
のように紡いで一本のトウとなし、切断してチョップに
したシ、ブレードを編んだシする炭化後工程が技術的に
困難である。従って、通常繊維強化熱可塑樹脂に使われ
るような炭素繊維のチョップを取得するのは困難である
However, compared to the centrifugal fRa method, only shorter fibers can be spun, so carbon fibers made by the centrifugal fiberization method are spun into a single tow, cut into chops, and then cut into a single tow. The post-carbonization process that involves knitting is technically difficult. Therefore, it is difficult to obtain carbon fiber chops such as those normally used in fiber-reinforced thermoplastics.

本発明者らは、渦流繊維化法の優位性に着目しつつ綿状
炭素繊維を後加工することなく利用できる方法について
鋭意検討した結果、本発明に到達した。すなわち、本発
明は、例えば特公昭58−57374号公報に記載され
た方法(粘稠状態にあるピッチを流出オリフィスから流
出させ、前記オリフィスの周りに周方向に間隔を置いて
配置した少なくとも3本の気体噴出ノズルから直線状に
高速気体流を吹き出させミここにおいて前記気体流の各
々は前記物質の中心軸線を横断する断面の外周に沿う接
線方向の成分と前記物質の流出方向に向って先ず前記物
質の中心軸線に徐々て接近し次に前記中心軸線から徐々
に離れてゆく成分とを有しておシ、それにより前記粘稠
状態にあるピッチの流出流れが中心軸線の周りに自転し
ながら徐々に細まり、繊維状にされ、渦巻状に飛び出さ
れ、引き伸ばされて線維化される、いわゆる渦流繊維化
法)によって繊維化され堆積されたピッチ繊維を不融化
、炭化して成る密度がo、oos〜0.08r/cm’
の嵩高い炭素繊維マットに熱硬化性樹脂を含浸させてシ
ート状になし、次いで成型加工することを特徴とする炭
素線維強化熱硬化性樹脂の製造法を提供する。尚、該渦
流法では、熱ガス流として高圧空気、高圧水蒸気、ガス
燃焼廃ガスなどが用いられる。
The present inventors focused on the superiority of the eddy current fiberization method, and as a result of intensive study on a method that can utilize cotton-like carbon fibers without post-processing, they arrived at the present invention. That is, the present invention relates to the method described in, for example, Japanese Patent Publication No. 58-57374 (in which pitch in a viscous state is caused to flow out from an outflow orifice, and at least three pipes are arranged around the orifice at intervals in the circumferential direction). A high-speed gas stream is blown out in a straight line from a gas jet nozzle, and each of the gas streams has a tangential component along the outer periphery of a cross section that crosses the central axis of the substance, and a component in the tangential direction along the outer circumference of the cross section that crosses the central axis of the substance, and a component in the tangential direction along the outer circumference of the cross section that intersects the central axis of the substance, and a component in the tangential direction along the outer circumference of the cross section that crosses the central axis of the substance, and and a component that gradually approaches the central axis of the substance and then gradually moves away from the central axis, so that the outflow flow of the pitch in the viscous state rotates around the central axis. The pitch fibers are gradually thinned, made into fibers, spun out in a spiral, and stretched to make them into fibers. o, oos~0.08r/cm'
Provided is a method for producing a carbon fiber-reinforced thermosetting resin, which comprises impregnating a bulky carbon fiber mat with a thermosetting resin to form a sheet, followed by molding. In the eddy current method, high pressure air, high pressure steam, gas combustion waste gas, etc. are used as the hot gas flow.

渦流法で繊維化したピッチ繊維は通常長さ5u〜50c
Ms直径4〜20μmであり、例えばメツシュベルトコ
ンベア上に堆積させる。堆積密度や量はコンベアの速度
と繊維化の速度を変えコントロールできる。続けて不融
化及び炭化するために堆積密度は空気や窒素ガスが十分
流通するように嵩高い堆積体である必要がある。一方、
炉の効率を考えれば密度が高い方が好ましいので、炭素
繊維マットは密度で0.008〜0.08 p/crI
L”が好ましい。この嵩高い炭素繊維マットは、炭化後
に場合によっては表面処理さらにはサイジング処理され
る。かかるマットは一般にはロール状に巻いて保存され
るか、あるいは、炭化炉から連続的に含浸機ヘフイード
し、場合によっては連続的に乾燥して、シートとして巻
取り保存する。本発明における炭素繊維マットは、平面
的に二次元的に堆積しているので、マット平面の垂直方
向から圧縮しても糸の折れ損傷が少なく、 4位までも
圧縮が可能である。圧縮はマットに樹脂を含浸する前で
も後でも良いが、糸の損失がなく圧縮操作がより容易に
なる樹脂を含浸させたシート状体を圧縮する含浸後圧綿
の方が好ましい。圧縮操作は加圧ロールが好ましい。
Pitch fibers made by the eddy current method usually have a length of 5u to 50c.
Ms has a diameter of 4 to 20 μm and is deposited, for example, on a mesh belt conveyor. The deposition density and amount can be controlled by changing the speed of the conveyor and the speed of fiberization. In order to continue to infusible and carbonize, the deposit needs to be bulky enough to allow sufficient air and nitrogen gas flow. on the other hand,
Considering the efficiency of the furnace, higher density is preferable, so carbon fiber mat has a density of 0.008 to 0.08 p/crI.
L" is preferred. This bulky carbon fiber mat is optionally surface treated and sized after carbonization. Such mats are generally stored in rolls or continuously removed from a carbonization furnace. The carbon fiber mat is fed to an impregnation machine, dried continuously in some cases, and then rolled up and stored as a sheet.The carbon fiber mat of the present invention is deposited two-dimensionally on a flat surface, so it is compressed from the perpendicular direction of the mat plane. Even if the mat is impregnated with resin, there is little damage from yarn breakage, and compression can be performed up to the 4th position.Compaction can be done before or after impregnating the mat with resin, but it is better to impregnate the mat with resin, which makes the compression operation easier without loss of yarn. It is preferable to use impregnated compressed cotton, which compresses the sheet-like material.The compression operation is preferably performed using a pressure roll.

本発明のマットに樹脂を含浸する工程は、マットが十分
な破断強度を有する場合には、フィードロール、絞りロ
ール、乾燥機、含浸浴、巻取りロールなどを備えた含浸
装置で連続的におこなえる。
The process of impregnating the mat of the present invention with resin can be carried out continuously using an impregnating device equipped with a feed roll, a squeezing roll, a dryer, an impregnating bath, a winding roll, etc., if the mat has sufficient breaking strength. .

破断強度が不足の場合だけ、プラスチック等のキャリア
ーフィルムにのせて同様な装置で行なえる。
Only if the breaking strength is insufficient can it be carried out using a similar device by placing it on a carrier film such as plastic.

また、含浸の方法も、溶液中に浸す方法の他に、必要量
を上からスプレーする方法、キスリングロールから付着
させる方法等がある。
In addition, as for impregnation methods, there are methods such as immersing in a solution, spraying the required amount from above, and applying from a kiss ring roll.

本発明でいう熱硬化性樹脂とは、架橋剤の存在下又は不
存在下に加熱して自己支持性のある固体となる樹脂であ
ればいずれでも良いが、一般に、エポキシ樹脂、ポリエ
ステル樹脂、ビニルエステル樹脂、フェノール樹脂、ポ
リイミド樹脂あるいはこれらの混合物がある。この樹脂
の中に、架橋剤、粘度調節剤、あるいは炭素繊維以外の
補強材を配合できる。これら熱硬化性樹脂は、そのま\
でも、溶剤溶液としてでも、かかる炭素繊維マットに付
着できる。一般に、樹脂の付着したシート状体は、半硬
化状態(Bステージ)で保存し、成型時にシートを切り
出して、もちろんシートは何枚も重ねて加工する。尚、
熱硬化性樹脂と炭素繊維との配合割合は、炭素繊維が0
.5〜60重量%となるように配合されるのが好ましい
、本発明でいう炭素繊維は、石油系、石炭系を問わず、
また等方性、異方性を問わず、ピッチを原料として得ら
れる。炭化温度は800℃〜2800℃と変えられ、そ
の結果、炭素繊維も黒鉛化繊維も本発明には有用である
The thermosetting resin used in the present invention may be any resin that becomes a self-supporting solid when heated in the presence or absence of a crosslinking agent, but generally includes epoxy resin, polyester resin, vinyl resin, etc. These include ester resins, phenolic resins, polyimide resins, or mixtures thereof. A crosslinking agent, a viscosity modifier, or a reinforcing material other than carbon fibers can be blended into this resin. These thermosetting resins are
However, it can also be applied to such carbon fiber mats as a solvent solution. Generally, a sheet-like body with resin attached is stored in a semi-cured state (B stage), and the sheet is cut out at the time of molding, and of course, many sheets are stacked and processed. still,
The blending ratio of thermosetting resin and carbon fiber is 0 for carbon fiber.
.. The carbon fiber referred to in the present invention, which is preferably blended in an amount of 5 to 60% by weight, may be petroleum-based or coal-based.
Moreover, it can be obtained using pitch as a raw material, regardless of whether it is isotropic or anisotropic. The carbonization temperature can vary from 800°C to 2800°C, so that both carbon fibers and graphitized fibers are useful in the present invention.

本発明のシート状体は、加圧成型、ハンドレイアップ、
ワインディング等の成型法で必要とする成型体となる。
The sheet-like body of the present invention can be produced by pressure molding, hand lay-up,
It becomes a molded body required for molding methods such as winding.

成型体中で炭素繊維は機械物性の強化材となるが、本発
明のマットは無定型であるから、クロスプリプレグ、一
方向プリプレグのように一定方向の強化というよりも、
シートモールディングコンパウンドのように平面上の全
方向の強化に有効である。
Carbon fiber serves as a reinforcing material for mechanical properties in the molded body, but since the mat of the present invention is amorphous, it is not reinforced in a fixed direction as in cross prepreg or unidirectional prepreg.
Effective for reinforcing flat surfaces in all directions, such as sheet molding compounds.

また、本発明は成型体の電気電導度や、摺動特性を上げ
ることもできる。特に、チョップやミルド炭素繊維にく
らべて長い繊維のま\存在するから電気電導効果が顕著
であシ、電磁遮外材として利用できる。
Further, the present invention can also improve the electrical conductivity and sliding characteristics of the molded body. In particular, since it has longer fibers than chopped or milled carbon fibers, it has a remarkable electrical conductivity effect and can be used as an electromagnetic shielding material.

次に、本発明を実施例によって具体的に説明する。部は
重量部を意味する。
Next, the present invention will be specifically explained using examples. Parts mean parts by weight.

実施例1 コールタールピッチを調節して得た等方性ピッチを特公
昭58 57374号の方法(高圧空気使用)で渦流繊
維化した後、ベルトコンベア上で堆積して連続的に不融
化、次いで1000℃で炭化し、高さ42藺1幅300
ma+の嵩高いマットを得た。密度は0.02 t /
cr!L” 、炭素繊維長は80藺が中心で最長120
1u1、最短50u1炭素繊維の糸径は7〜9μmであ
った。また、糸の引張強度は80 kg7m” 、引張
弾性率は4 Ton/ XI”であった。
Example 1 The isotropic pitch obtained by adjusting the coal tar pitch was made into vortex fibers by the method of Japanese Patent Publication No. 58-57374 (using high-pressure air), deposited on a belt conveyor, continuously infusible, and then Carbonized at 1000℃, height 42cm 1 width 300cm
A bulky mat of ma+ was obtained. The density is 0.02 t/
CR! L", the carbon fiber length is mainly 80mm and the longest is 120mm.
The yarn diameter of the 1u1 carbon fiber and the shortest 50u1 carbon fiber was 7 to 9 μm. Further, the tensile strength of the yarn was 80 kg7m'', and the tensile modulus was 4 Ton/XI''.

このマットを300(縦)X300(横)×42(高さ
)uに切り、エポキシ樹脂(エピクロン850:大日本
インキ)100部、無水メチルナジック酸90部、クロ
ルフェニル化尿素4部及びアセトン146部から成る樹
脂溶液をこれに含浸後、イに絞った。−日風転後、11
0℃×8分乾燥して、ペーパ一様のシートを得た。この
シートを20に9部cm”王で150℃で60分加圧成
型して、約2m/mの板にした。炭素繊維の含有率は、
約20i1i−%であった。JIS −に−6911に
よる本成型板の曲げ強度は、15.8 k(il / 
U”であった。
This mat was cut into 300 (vertical) x 300 (width) x 42 (height) u, 100 parts of epoxy resin (Epicron 850: Dainippon Ink), 90 parts of methylnadic anhydride, 4 parts of chlorphenylated urea, and 146 parts of acetone. After impregnating this with a resin solution consisting of 1.5 parts, it was squeezed to 1. -After the Japanese wind turn, 11
It was dried at 0°C for 8 minutes to obtain a paper-like sheet. This sheet was pressure-molded at 150°C for 60 minutes using a 20 to 9 cm inch mold to form a plate with a thickness of approximately 2 m/m.The content of carbon fiber was as follows:
It was about 20i1i-%. The bending strength of this molded plate according to JIS-6911 is 15.8 k (il /
It was U”.

実施例2 実施例1の嵩高い炭素繊維マットを、樅300U、横3
001Ij、高さ42ma+に切り、これて、エポキシ
樹脂〔エピクロン850 (大日本インキ)1        100部無水ナジ
ック酸           90部クロルフェニル尿
素          4部アセトン        
     129部から成る樹脂溶液を含浸後、 ≦5
に絞った。−日風乾後、llO℃×8分乾燥してシート
を得た。
Example 2 The bulky carbon fiber mat of Example 1 was
001 Ij, cut to a height of 42 m+, and use epoxy resin [Epicron 850 (Dainippon Ink) 1 100 parts nadic anhydride 90 parts chlorphenylurea 4 parts acetone
After impregnation with a resin solution consisting of 129 parts ≦5
I narrowed it down to. - After drying in the sun, it was dried at 110° C. for 8 minutes to obtain a sheet.

このシートを20 ’に97cm”圧で150℃で60
分加圧成型して、約2m/mの板にした。炭素繊維の含
有率は約60重量%であった。JIS−に−6911に
よる本成型板の曲げ強度は、28.2に9/藺2であっ
た。
This sheet was heated to 20' to 97cm'' at 150℃ for 60 minutes.
It was press-molded into a plate with a thickness of about 2 m/m. The carbon fiber content was approximately 60% by weight. The bending strength of this molded plate according to JIS-6911 was 28.2 to 9/2.

実施例3 実施例1のマットを、縦300m、横30o&II、高
さ42Ulに切り、これに、 ビニルエステル樹脂〔ディックライ )5210(犬日本インキ)〕    loo部ジイソ
クジイソシアネートCミリ オネート0(日本ポリウレタン)〕      110
部触媒ベンゾイルパーオキサイド)   1部アセトン
             17部から成る樹脂溶液を
含浸後、′/、5に絞った。−日風乾後、110℃×8
分乾燥してシートを得た。
Example 3 The mat of Example 1 was cut into pieces of 300 m long, 30 mm wide, and 42 Ul high. )] 110
After impregnation with a resin solution consisting of 1 part benzoyl peroxide, 1 part acetone, and 17 parts, the resin solution was reduced to 1/5. - After sun drying, 110℃ x 8
A sheet was obtained by drying for several minutes.

80に9/cIIL”圧で130℃XIO分加圧成型し
て、約2m/mの板にした。炭素繊維の含有基は、約4
01i′Ek%であった。JIS−に−6911による
本成型板の曲げ強度は、18.2 kg/ msr”で
あった。
It was press-molded at 130℃XIO minutes at 80 to 9/cIIL'' pressure to form a plate of about 2 m/m.The carbon fiber contains groups of about 4
It was 01i'Ek%. The bending strength of this molded plate according to JIS-6911 was 18.2 kg/msr''.

実施例4 実施例1のマットを縦300fIJ1、横300龍、高
さ42wに切り、これに、 フェノール樹脂〔プライオー フェン5900(犬日本イン キ)〕             1100部アセトン
             20部から成る樹脂溶液を
含浸し、−日風乾後、llO℃×lO分乾燥してペーパ
ー状のシートを得た。
Example 4 The mat of Example 1 was cut to a length of 300 fIJ1, width of 300 mm, and height of 42 W, and this was impregnated with a resin solution consisting of 1100 parts of phenolic resin [Pryophen 5900 (Inu Nippon Ink)] and 20 parts of acetone. - After drying in the sun, it was dried for 110° C.×10 minutes to obtain a paper-like sheet.

このシートを20に9/を2圧で150℃で60分間加
圧成型して、約2 m / mの板にした。炭素繊維の
含有率は、約35重量%であった。JIS −に−69
11による本成型品の曲げ強度は、28゜2kg/II
jtであった。
This sheet was pressure-molded at 150° C. for 60 minutes at 20×9/2 pressure to form a plate of about 2 m/m. The carbon fiber content was approximately 35% by weight. JIS-ni-69
The bending strength of this molded product according to 11 is 28゜2kg/II
It was jt.

実施例5 コールタールピッチを調整して得た異方性ピッチを実施
例1と同様にして渦流繊維化した後、ベルトコンベア上
に堆積し、連続的に不融化、続いて1300℃に炭化し
、高さ40131%幅300suの嵩高いマットを得た
。比重は0.03 ? /an”、炭素繊維長は40m
が中心で最長60w、最短20+u+、炭素#!II!
維の糸径は7〜9μmであった。
Example 5 The anisotropic pitch obtained by adjusting the coal tar pitch was turned into vortex fibers in the same manner as in Example 1, deposited on a belt conveyor, continuously infusible, and then carbonized at 1300°C. A bulky mat with a height of 40131% and a width of 300su was obtained. Is the specific gravity 0.03? /an”, carbon fiber length is 40m
The maximum power is 60w, the shortest power is 20+u+, carbon #! II!
The diameter of the fibers was 7 to 9 μm.

糸の引張強度は220′に9/ILa!、引張弾性率は
4TOnΔiであった。このマットをμへ加圧ロールで
圧縮後、これに フェノール樹脂〔プライオーフェン 5900(大日本インキ)]      1100部ア
セトン             20部から成る樹脂
溶液を含浸後、さらにμに絞った。
The tensile strength of the thread is 9/ILa at 220'! , the tensile modulus was 4TOnΔi. This mat was compressed to a μ size using a pressure roll, impregnated with a resin solution consisting of 1100 parts of a phenolic resin [Priophen 5900 (Dainippon Ink)] and 20 parts of acetone, and further compressed to a μ size.

−日風乾後、110℃×12分乾燥してペー・り2状の
シートを得た。このシートを20 kg /crn !
圧で150℃で60分間加圧成型して、約2 m / 
mの板にした。炭素繊維の含有率は、約40重量%であ
った。JIS−に−6911による本成型品の曲げ強度
は、28.2kg/y”であった。
- After drying in the sun, it was dried at 110°C for 12 minutes to obtain a paper-like sheet. This seat costs 20 kg/crn!
Pressure molded at 150°C for 60 minutes, approximately 2 m /
I made it to a board of m. The carbon fiber content was approximately 40% by weight. The bending strength of this molded product according to JIS-6911 was 28.2 kg/y''.

特許出願人 大日本インキ化学工業株式会社同  大阪
瓦斯株式会社
Patent applicant Dainippon Ink & Chemicals Co., Ltd. Osaka Gas Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  粘稠状態にあるピッチを流出オリフィスから流出させ
、前記オリフィスの周りに周方向に間隔を置いて配置し
た少なくとも3本の気体噴出ノズルから直線状に高速熱
気体流を吹き出させ、ここにおいて前記気体流の各々は
前記ピッチの中心軸線を横断する断面の外周に沿う接線
方向の成分と前記ピッチの流出方向に向つて先ず前記ピ
ッチの中心軸線に徐々に接近し次に前記中心軸線から徐
々に離れてゆく成分とを有しており、それにより前記粘
稠状態にあるピッチの流出流れが中心軸線の周りに自転
しながら徐々に細まり、繊維状にされ、渦巻状に飛び出
され、引き伸ばされて繊維化される、いわゆる渦流法で
繊維化され堆積されたピッチ繊維を不融化、炭化して成
る密度が0.008〜0.08g/cm^3の嵩高い炭
素繊維マットに、熱硬化性樹脂を含浸させてシート状に
なし、次いで成型加工することを特徴とする炭素繊維強
化熱硬化性樹脂の製造法。
The pitch in a viscous state is caused to flow out of an outflow orifice, and a high velocity stream of hot gas is blown out in a straight line from at least three gas ejection nozzles circumferentially spaced around said orifice, wherein said gas is Each of the flows has a tangential component along the outer periphery of a cross section transverse to the central axis of the pitch, and a component in the outflow direction of the pitch that first gradually approaches the central axis of the pitch and then gradually moves away from the central axis. As a result, the pitch outflow flow in the viscous state gradually narrows while rotating around the central axis, becomes fibrous, is spun out in a spiral, and is stretched. A thermosetting resin is added to a bulky carbon fiber mat with a density of 0.008 to 0.08 g/cm^3, which is made by infusible and carbonized pitch fibers that have been fiberized and deposited using the so-called vortex method. A method for producing a carbon fiber-reinforced thermosetting resin, which comprises impregnating the resin into a sheet, and then molding the resin.
JP61104965A 1986-05-09 1986-05-09 Method for producing carbon fiber reinforced thermosetting resin Expired - Lifetime JPH075766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61104965A JPH075766B2 (en) 1986-05-09 1986-05-09 Method for producing carbon fiber reinforced thermosetting resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61104965A JPH075766B2 (en) 1986-05-09 1986-05-09 Method for producing carbon fiber reinforced thermosetting resin

Publications (2)

Publication Number Publication Date
JPS62263231A true JPS62263231A (en) 1987-11-16
JPH075766B2 JPH075766B2 (en) 1995-01-25

Family

ID=14394814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61104965A Expired - Lifetime JPH075766B2 (en) 1986-05-09 1986-05-09 Method for producing carbon fiber reinforced thermosetting resin

Country Status (1)

Country Link
JP (1) JPH075766B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213312A (en) * 2005-01-06 2006-08-17 Nissan Motor Co Ltd Vehicular energy absorbing member and door guard beam therewith
CN102643515A (en) * 2012-04-25 2012-08-22 中国工程物理研究院电子工程研究所 Low-resistivity composite conductive plate and preparation method thereof
JP2022023246A (en) * 2019-11-25 2022-02-07 Dic株式会社 Sheet molding compound and manufacturing method of molded product
CN114804908A (en) * 2022-05-27 2022-07-29 诸暨市幄肯中智新材料有限公司 Short carbon fiber/carbon thermal field material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213312A (en) * 2005-01-06 2006-08-17 Nissan Motor Co Ltd Vehicular energy absorbing member and door guard beam therewith
CN102643515A (en) * 2012-04-25 2012-08-22 中国工程物理研究院电子工程研究所 Low-resistivity composite conductive plate and preparation method thereof
JP2022023246A (en) * 2019-11-25 2022-02-07 Dic株式会社 Sheet molding compound and manufacturing method of molded product
CN114804908A (en) * 2022-05-27 2022-07-29 诸暨市幄肯中智新材料有限公司 Short carbon fiber/carbon thermal field material and preparation method thereof

Also Published As

Publication number Publication date
JPH075766B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
US4868038A (en) Carbonaceous fiber reinforced composites
US4229397A (en) Method for forming fiber-reinforced composite material
TWI504501B (en) Carbon fiber prepreg and method of making same, carbon fiber reinforced composite material
CN111101371B (en) High-performance carbon nanotube/carbon composite fiber and rapid preparation method thereof
WO2013115337A1 (en) Random mat and fibre-reinforced composite material
JPS62135537A (en) Flexible composite material and production thereof
US4534919A (en) Production of a carbon fiber multifilamentary tow which is particularly suited for resin impregnation
WO2014017612A1 (en) Random mat and molding of fiber-reinforced composite material
CN113002024A (en) Method for toughening carbon fiber prepreg between nano-particle polymer composite nano-fiber film layers
JPH0253923A (en) Unshrinkable hybrid yarn
Bajpai Update on carbon fibre
Nayana et al. Advanced polymeric composites via commingling for critical engineering applications
WO2015156880A2 (en) Sheath and core yarn for thermoplastic composite
US5004511A (en) Process for producing non-woven fabrics of carbon fibers
CN111534093B (en) Polyimide prepreg, composite material and preparation method thereof
JPH07122190B2 (en) Preform yarn for thermoplastic composite material and method for producing the same
JPS62263231A (en) Production of carbon fiber-reinforced thermosetting resin
CN110904674A (en) High-surface-activity asphalt-based graphite fiber, preparation method thereof and resin-based composite material prepared based on high-surface-activity asphalt-based graphite fiber
JPH04122631A (en) Carbon fiber reinforced plastic tubular material and manufacture thereof
WO1998030374A1 (en) Process for preparing preforms and molded articles
JPH0280639A (en) Unidirectional preform sheet and production thereof
Fennessey Continuous carbon nanofibers prepared from electrospun polyacrylonitrile precursor fibers
US3779789A (en) Production of pervious low density carbon fiber reinforced composite articles
JPS62263232A (en) Production of carbon fiber-reinforced thermoplastic resin
Li et al. Solution Blow Spun High Performance Co-Polyimide Nanofibers