JPH075766B2 - Method for producing carbon fiber reinforced thermosetting resin - Google Patents
Method for producing carbon fiber reinforced thermosetting resinInfo
- Publication number
- JPH075766B2 JPH075766B2 JP61104965A JP10496586A JPH075766B2 JP H075766 B2 JPH075766 B2 JP H075766B2 JP 61104965 A JP61104965 A JP 61104965A JP 10496586 A JP10496586 A JP 10496586A JP H075766 B2 JPH075766 B2 JP H075766B2
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- carbon fiber
- central axis
- thermosetting resin
- gradually
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Inorganic Fibers (AREA)
- Nonwoven Fabrics (AREA)
- Reinforced Plastic Materials (AREA)
- Moulding By Coating Moulds (AREA)
- Working-Up Tar And Pitch (AREA)
Description
【発明の詳細な説明】 本発明は炭素繊維で補強された樹脂の製造法に関するも
のである。The present invention relates to a method for producing a resin reinforced with carbon fibers.
軽量にして耐熱性、耐薬品性があり、機械物性が良好な
炭素繊維により、熱硬化性樹脂を補強する研究は盛んに
行なわれており、既に航空機など飛行体の一次、二次構
造材の一部に、またテニスラケツト、釣等、ゴルフシヤ
フト等のスポーツ用品の部材として実用化されている。Carbon fiber, which is lightweight, has heat resistance, chemical resistance, and has good mechanical properties, has been actively researched to reinforce thermosetting resins, and has already been used as a primary and secondary structural material for aircraft such as aircraft. It has been put to practical use as a part of sports equipment such as golf racks and tennis rackets and fishing gears.
一方、炭素繊維を安価な原料から製造する研究も盛んと
なり、特に近年、石油あるいは石炭系のタールピツチよ
り高強度・高弾性の高性能炭素繊維を製造する研究、あ
るいは、それ程の性能でなくとも経済的で汎用性のある
汎用型炭素繊維を製造する研究が行なわれている。On the other hand, research into producing carbon fiber from inexpensive raw materials has also become popular, and particularly in recent years, research into producing high-performance and high-elasticity carbon fiber with higher strength and elasticity than petroleum or coal-based tarpits, or even if the performance is not so high, is economical. Studies have been conducted to manufacture general-purpose carbon fibers that are general and versatile.
ピツチから得られる炭素繊維は、紡糸用ピツチの物性
(等方性、異方性)、溶媒紡糸の方法及びピツチ繊維の
炭化温度により、種々の物性になるが、特に溶媒紡糸の
方法によつて炭素繊維の形態が決つてくるのである。Carbon fibers obtained from pitches have various physical properties depending on the physical properties (isotropic or anisotropic) of the pitch for spinning, the method of solvent spinning, and the carbonization temperature of the pitch fiber, but especially by the method of solvent spinning. The form of carbon fiber is decided.
一般にピツチの溶融繊維化方法には3種類ある。その1
つは、ポリエステル繊維やポリプロピレン繊維のような
溶融紡糸と同様な方法であるが、エクストルーダーで溶
融体を多数孔のノズルに押出し、これをワインダーでド
ラフトをかけ細糸として連続的に巻取る「連続紡糸法」
である。この方法で製造された炭素繊維は長いフイラメ
ントの形態を取る。さらに1つは、孔をうがつた高速回
転体へ溶融ピツチをフイードし、遠心力で細糸へと繊維
化するいわゆる「遠心繊維化法」である。この方法で製
造された炭素繊維は連続的に巻取れないので長さに限界
があり、比較的長い綿状の形態を取る。Generally, there are three types of melt fiberizing methods for pitch. Part 1
One is the same method as that for melt spinning such as polyester fiber and polypropylene fiber, but the melt is extruded into a multi-hole nozzle with an extruder, and this is drafted with a winder and continuously wound as fine yarn. Continuous spinning method "
Is. The carbon fibers produced in this way take the form of long filaments. Further, the first is a so-called "centrifugal fiberizing method" in which a molten pitch is fed to a high-speed rotating body having holes and the fibers are made into fine yarn by centrifugal force. The carbon fiber produced by this method has a limited length because it cannot be wound continuously, and takes a relatively long cotton-like form.
さらに1つの方法は、ノズルへ溶融ピツチをフイードす
ると同時に周辺から渦流気体を吹付け、随伴させて繊維
化するいわゆる「渦流繊維化法」である(例えば特公昭
58-57374号参照)。この方法で製造された炭素繊維も連
続的に巻取れないので長さに限界があり、やはり綿状の
形態を取る。Further, one method is a so-called "vortex fiberizing method" in which a molten pitch is fed to a nozzle and, at the same time, a vortex gas is blown from the periphery and is entrained into fibers (for example, Japanese Patent Publication No.
See 58-57374). Since the carbon fiber produced by this method cannot be wound continuously, it has a limited length and also has a cotton-like shape.
遠心繊維化法と渦流繊維化法は短かい炭素繊維しか製造
できないが、繊維化工程が経済的であるから、汎用型炭
素繊維の製造に適している。The centrifugal fiberizing method and the vortex fiberizing method can produce only short carbon fibers, but the fiberizing process is economical, and is suitable for producing general-purpose carbon fibers.
両方法のうち、渦流繊維化法ではより細い糸へ繊維化で
き、かつ繊維化装置も安価である利点はあるものの、よ
り短かいピツチ繊維しかできない欠点がある。Among the two methods, the eddy current fiberizing method has an advantage that it can be fiberized into a finer yarn and the fiberizing device is inexpensive, but has a drawback that only shorter pitch fibers can be obtained.
さらに、渦流法で得た繊維は、その方法の特性からベル
トコンベア上に堆積し連続的に不融化次いで炭化し、嵩
高いマツト状で炭素繊維へ製造される本法が最も技術的
にも経済的にも有利である。しかし、遠心繊維化法と比
較すると、より短かい繊維しか紡糸できないので、遠心
繊維化法からなる炭素繊維のように紡いで一本のトウと
なし、切断してチヨツプにしたり、ブレードを編んだり
する炭化後工程が技術的に困難である。従つて、通常繊
維強化熱可塑樹脂に使われるような炭素繊維のチヨツプ
を取得するのは困難である。Furthermore, due to the characteristics of the method, the fibers obtained by the vortex method are deposited on the belt conveyor, continuously infusibilized and then carbonized, and the method of producing carbon fibers in the form of a bulky mat is the most technically and economically possible. It is also advantageous. However, as compared with the centrifugal fiberization method, only shorter fibers can be spun, so it is spun like carbon fiber made by the centrifugal fiberization method into one tow, cut into chops, or braided. The post-carbonization process is technically difficult. Therefore, it is difficult to obtain a carbon fiber chip that is usually used for fiber-reinforced thermoplastics.
本発明者らは、渦流繊維化法の優位性に着目しつつ綿状
炭素繊維を後加工することなく利用できる方法について
鋭意検討した結果、本発明に到達した。すなわち、本発
明は、例えば特公昭58-57374号公報に記載された方法
(粘稠状態にあるピツチを流出オリフイスから流出さ
せ、前記オリフイスの周りに周方向に間隔を置いて配置
した少なくとも3本の気体噴出ノズルから直線状に高速
気体流を吹き出させ、ここにおいて前記気体流の各々は
前記物質の中心軸線を横断する断面の外周に沿う接線方
向の成分と前記物質の流出方向に向つて先ず前記物質の
中心軸線に徐々に接近し次に前記中心軸線から徐々に離
れてゆく成分とを有しており、それにより前記粘稠状態
にあるピツチの流出流れが中心軸線の周りに自転しなが
ら徐々に細まり、繊維状にされ、渦巻状に飛び出され、
引き伸ばされて繊維化される、いわゆる渦流繊維化法)
にとつて繊維化され堆積されたピツチ繊維を不融化、炭
化して成る密度が0.008〜0.08g/cm3の嵩高い炭素繊維マ
ツトに熱硬化性樹脂を含浸させてシート状になし、次い
で成型加工することを特徴とする炭素繊維強化熱硬化性
樹脂の製造法を提供する。尚、該渦流法では、熱ガス流
として高圧空気、高圧水蒸気、ガス燃焼廃ガスなどの用
いられる。The present inventors have arrived at the present invention as a result of earnestly investigating a method in which cottony carbon fibers can be used without post-processing while paying attention to the superiority of the vortex fiberizing method. That is, the present invention relates to, for example, the method described in Japanese Patent Publication No. 58-57374 (at least three pipes that are in a viscous state are discharged from an outflow orifice and are circumferentially spaced around the orifice). A high-speed gas stream is linearly blown out from the gas jet nozzle, wherein each of the gas streams is first directed toward the outflow direction of the substance and the tangential component along the outer periphery of the cross section that crosses the central axis of the substance. A component that gradually approaches the central axis of the substance and then gradually separates from the central axis, whereby the outflow of the pitch in the viscous state rotates about the central axis. It gradually becomes thinner, becomes fibrous, and is ejected in a spiral shape.
The so-called vortex fiberizing method that stretches and fiberizes)
The infusible and carbonized Pitch fibers that have been made fibrous and deposited by the method are impregnated with a thermosetting resin into a bulky carbon fiber mat with a density of 0.008 to 0.08 g / cm 3 to form a sheet, and then molded. Provided is a method for producing a carbon fiber reinforced thermosetting resin characterized by being processed. In the swirl method, high pressure air, high pressure steam, gas combustion waste gas, etc. are used as the hot gas flow.
渦流法で繊維化したピツチ繊維は通常長さ5mm〜50cm、
直径4〜20μmであり、例えばメツシユベルトコンベア
上に堆積させる。堆積密度や量はコンベアの速度と繊維
化の速度を変えコントロールできる。続けて不融化及び
炭化するために堆積密度は空気や窒素ガスが十分流通す
るように嵩高い堆積体である必要がある。一方、炉の効
率を考えれば密度が高い方が好ましいので、炭素繊維マ
ツトは密度で0.008〜0.08g/cm3が好ましい。この嵩高い
炭素繊維マツトは、炭化後に場合によつては表面処理さ
らにはサイジング処理される。かかるマツトは一般には
ロール状に巻いて保存されるか、あるいは、炭化炉から
連続的に含浸機へフイードし、場合によつては連続的に
乾燥して、シートとして巻取り保存する。本発明におけ
る炭素繊維マツトは、平面的に二次元的に堆積している
ので、マツト平面の垂直方向から圧縮しても糸の折れ損
傷が少なく、1/15位までも圧縮が可能である。圧縮はマ
ツトに樹脂を含浸する前でも後でも良いが、糸の損失が
なく圧縮操作がより容易になる樹脂を含浸させたシート
状体を圧縮する含浸後圧縮の方が好ましい。圧縮操作は
加圧ロールが好ましい。Pitch fibers made into fibers by the vortex method usually have a length of 5 mm to 50 cm,
It has a diameter of 4 to 20 μm and is deposited on a mesh belt conveyor, for example. The deposition density and amount can be controlled by changing the conveyor speed and the fiberization speed. In order to continuously infusibilize and carbonize, the deposition density must be a bulky deposit so that air and nitrogen gas can sufficiently flow therethrough. On the other hand, considering the efficiency of the furnace, it is preferable that the density is high. Therefore, the density of the carbon fiber mat is preferably 0.008 to 0.08 g / cm 3 . After the carbonization, the bulky carbon fiber mat is optionally surface-treated and then sized. Such mats are generally stored in rolls, or they are continuously fed from a carbonization furnace to an impregnator, optionally dried and stored as a sheet for winding. Since the carbon fiber mat according to the present invention is two-dimensionally accumulated in a plane, even if it is compressed from the direction perpendicular to the mat plane, there is little breakage damage of the yarn, and compression up to 1/15 is possible. The compression may be carried out before or after the mat is impregnated with the resin, but the post-impregnation compression is preferred in which the resin-impregnated sheet-like body which does not cause loss of yarn and facilitates the compression operation is compressed. A pressure roll is preferable for the compression operation.
本発明のマツトに樹脂を含浸する工程は、マツトが十分
な破断強度を有する場合には、フイードロール、絞りロ
ール、乾燥機、含浸浴、巻取りロールなどを備えた含浸
装置で連続的におこなえる。破断強度が不足の場合に
は、プラスチツク等のキヤリアーフイルムにのせて同様
な装置で行なえる。また、含浸の方法も、溶液中に浸す
方法の他に、必要量を上からスプレーする方法、キスリ
ングロールから付着させる方法等がある。The step of impregnating the mat of the present invention with a resin can be continuously carried out by an impregnating apparatus equipped with a feed roll, a squeezing roll, a dryer, an impregnation bath, a winding roll and the like when the mat has a sufficient breaking strength. If the breaking strength is insufficient, it can be placed on a carrier film such as a plastic and the like with a similar device. In addition, as the method of impregnation, in addition to the method of immersing in a solution, there are a method of spraying a necessary amount from above, a method of attaching from a kiss ring roll, and the like.
本発明でいう熱硬化性樹脂とは、架橋剤の存在下又は不
存在下に加熱して自己支持性のある固体となる樹脂であ
ればいずれでも良いが、一般に、エポキシ樹脂、ポリエ
ステル樹脂、ビニルエステル樹脂、フエノール樹脂、ポ
リイミド樹脂あるいはこれらの混合物がある。この樹脂
の中に、架橋剤、粘度調節剤、あるいは炭素繊維以外の
補強材を配合できる。これら熱硬化性樹脂は、そのまゝ
でも、溶剤溶液としてでも、かかる炭素繊維マツトに付
着できる。一般に、樹脂の付着したシート状体は、半硬
化状態(Bステージ)で保存し、成型時にシートを切り
出して、もちろんシートは何枚も重ねて加工する。尚、
熱硬化性樹脂と炭素繊維との配合割合は、炭素繊維が0.
5〜60重量%となるように配合されるのが好ましい。The thermosetting resin referred to in the present invention may be any resin as long as it becomes a solid having self-supporting property when heated in the presence or absence of a cross-linking agent, but generally, epoxy resin, polyester resin, vinyl There are ester resins, phenol resins, polyimide resins or mixtures thereof. A crosslinking agent, a viscosity modifier, or a reinforcing material other than carbon fiber can be blended in this resin. These thermosetting resins can be attached to the carbon fiber mat as it is or as a solvent solution. In general, the sheet-shaped body to which the resin is attached is stored in a semi-cured state (B stage), the sheet is cut out at the time of molding, and, of course, many sheets are stacked and processed. still,
The mixing ratio of thermosetting resin and carbon fiber is 0 for carbon fiber.
It is preferably blended so as to be 5 to 60% by weight.
本発明でいう炭素繊維は、石油系、石炭系を問わず、ま
た等方性、異方性を問わず、ピツチを原料として得られ
る。炭化温度は800℃〜2800℃と変えられ、その結果、
炭素繊維も黒鉛化繊維も本発明には有用である。The carbon fiber referred to in the present invention is obtained from pitch as a raw material regardless of whether it is petroleum-based or coal-based, isotropic or anisotropic. The carbonization temperature can be changed from 800 ° C to 2800 ° C, resulting in
Both carbon fibers and graphitized fibers are useful in the present invention.
本発明のシート状体は、加圧成型、ハンドレイアツプ、
ワインデイング等の成型法で必要とする成型体となる。The sheet-like body of the present invention includes pressure molding, hand layup,
It becomes the molded body required by molding methods such as winding.
成型体中で炭素繊維は機械物性の強化材となるが、本発
明のマツトは無定型であるから、クロスプリプレグ、一
方向プリプレグのように一定方向の強化というよりも、
シートモールデイングコンパウンドのように平面上の全
方向の強化に有効である。Carbon fiber in the molded body serves as a reinforcing material for mechanical properties, but since the mat of the present invention is an amorphous type, rather than crosswise prepreg, unidirectional prepreg, rather than unidirectional strengthening.
It is effective for strengthening in all directions on a plane like a sheet molding compound.
また、本発明は成型体の電気電導度や、摺動特性を上げ
ることもできる。特に、チヨツプやミルド炭素繊維にく
らべて長い繊維のまゝ存在するから電気電導効果が顕著
であり、電磁遮弊材として利用できる。Further, the present invention can improve the electric conductivity and sliding characteristics of the molded body. In particular, since the fibers are longer than the chopped and milled carbon fibers, the electric conduction effect is remarkable, and it can be used as an electromagnetic shielding material.
次に、本発明を実施例によつて具体的に説明する。部は
重量部を意味する。Next, the present invention will be specifically described with reference to examples. Parts mean parts by weight.
実施例1 コールタールピツチを調節して得た等方性ピツチを特公
昭58-57374号の方法(高圧空気使用)で渦流繊維化した
後、ベルトコンベア上で堆積して連続的に不融化、次い
で1000℃で炭化し、高さ42mm、幅300mmの嵩高いマツト
を得た。密度は0.02g/cm3、炭素繊維長は80mmが中心で
最長120mm、最短50mm、炭素繊維の糸径は7〜9μmで
あつた。また、糸の引張強度は80kg/mm2、引張弾性率は
4Ton/mm2であつた。Example 1 An isotropic pitch obtained by adjusting a coal tar pitch was vortexed into fibers by the method of Japanese Patent Publication No. 58-57374 (using high pressure air), and then deposited on a belt conveyor to continuously make it infusible. Then, it was carbonized at 1000 ° C. to obtain a bulky mat having a height of 42 mm and a width of 300 mm. The density was 0.02 g / cm 3 , the carbon fiber length was 80 mm, the longest length was 120 mm, the shortest length was 50 mm, and the carbon fiber yarn diameter was 7 to 9 μm. The tensile strength of the yarn is 80 kg / mm 2 , and the tensile modulus is
It was 4 Ton / mm 2 .
このマツトを300(縦)×300(横)×42(高さ)mmに切
り、エポキシ樹脂(エピクロン850:大日本インキ)100
部、無水メチルナジツク酸90部、クロルフエニル化尿素
4部及びアセトン146部から成る樹脂溶液をこれに含浸
後、1/5に絞つた。一日風転後、110℃×8分乾燥して、
ペーパー様のシートを得た。このシートを20kg/mm2圧で
150℃で60分加圧成型して、約2m/mの板にした。炭素繊
維の含有率は、約20重量%であつた。JIS−K−6911に
よる本成型板の曲げ強度は、15.8kg/mm2であつた。This mat is cut into 300 (length) × 300 (width) × 42 (height) mm, and epoxy resin (Epiclon 850: Dainippon Ink) 100
Part, 90 parts of methylnaphthic acid anhydride, 4 parts of chlorophenylated urea and 146 parts of acetone were impregnated into this and then squeezed to 1/5. After a day's breeze, dry at 110 ° C for 8 minutes,
I got a paper-like sheet. This sheet at 20kg / mm 2 pressure
It was pressure molded at 150 ° C for 60 minutes to make a plate of about 2 m / m. The carbon fiber content was about 20% by weight. The bending strength of this molded plate according to JIS-K-6911 was 15.8 kg / mm 2 .
実施例2 実施例1の嵩高い炭素繊維マツトを、縦300mm、横300m
m、高さ42mmに切り、これに、 エポキシ樹脂〔エピクロン850(大日本インキ)〕100部 無水ナジツク酸 90部 クロルフエニル尿素 4部 アセトン 129部 から成る樹脂溶液を含浸後、1/15に絞つた。一日風乾
後、110℃×8分乾燥してシートを得た。このシートを2
0kg/mm2圧で150℃で60分加圧成型して、約2m/mの板にし
た。炭素繊維の含有率は約60重量%であつた。JIS−K
−6911による本成型板の曲げ強度は、28.2kg/mm2であつ
た。Example 2 The bulky carbon fiber mat of Example 1 was used, with a length of 300 mm and a width of 300 m.
It was cut into m and height of 42 mm, which was impregnated with a resin solution consisting of epoxy resin [Epiclon 850 (Dainippon Ink)] 100 parts, nadic acid anhydride 90 parts, chlorophenyl urea 4 parts, acetone 129 parts, and then squeezed to 1/15. . After air-drying for one day, it was dried at 110 ° C for 8 minutes to obtain a sheet. This sheet 2
It was pressure-molded at 0 ° C./mm 2 pressure at 150 ° C. for 60 minutes to make a plate of about 2 m / m. The carbon fiber content was about 60% by weight. JIS-K
The bending strength of the molded plate according to −6911 was 28.2 kg / mm 2 .
実施例3 実施例1のマツトを、縦300mm、横300mm、高さ42mmに切
り、これに、 ビニルエステル樹脂〔デイツクライト5210(大日本イン
キ)〕 100部 ジイソシアネート〔ミリオネートMR400(日本ポリウレ
タン)〕 10部 触媒(ベンゾイルパーオキサイド) 1部 アセトン 17部 から成る樹脂溶液を含浸後、1/15に絞つた。一日風乾
後、110℃×8分乾燥してシートを得た。80kg/mm2圧で1
30℃×10分加圧成型して、約2m/mの板にした。炭素繊維
の含有率は、約40重量%であつた。JIS−K−6911によ
る本成型板の曲げ強度は、18.2kg/mm2であつた。Example 3 The mat of Example 1 was cut into a length of 300 mm, a width of 300 mm, and a height of 42 mm, and 100 parts of a vinyl ester resin [Decklite 5210 (Dainippon Ink)] diisocyanate [Millionate MR400 (Nippon Polyurethane)] 10 parts After impregnating with a resin solution consisting of 1 part of catalyst (benzoyl peroxide) and 17 parts of acetone, the solution was squeezed to 1/15. After air-drying for one day, it was dried at 110 ° C for 8 minutes to obtain a sheet. 1 at 80kg / mm 2 pressure
It was pressure molded at 30 ° C for 10 minutes to make a plate of about 2 m / m. The carbon fiber content was about 40% by weight. The bending strength of this molded plate according to JIS-K-6911 was 18.2 kg / mm 2 .
実施例4 実施例1のマツトを縦300mm、横300mm、高さ42mmに切
り、これに、 フエノール樹脂〔プライオーフエン5900(大日本イン
キ)〕 100部 アセトン 20部 から成る樹脂溶液を含浸し、一日風乾後、110℃×10分
乾燥してペーパー状のシートを得た。このシートを20kg
/mm2圧で150℃で60分間加圧成型して、約2m/mの板にし
た。炭素繊維の含有率は、約35重量%であつた。JIS−
K−6911による本成型品の曲げ強度は、28.2kg/mm2であ
つた。Example 4 The mat of Example 1 was cut into a length of 300 mm, a width of 300 mm, and a height of 42 mm, and this was impregnated with a resin solution consisting of 100 parts of phenol resin [Priofen 5900 (Dainippon Ink)] and 20 parts of acetone, After air-drying for one day, it was dried at 110 ° C. for 10 minutes to obtain a paper-like sheet. 20kg of this sheet
/ mm 2 pressure and pressure molding at 150 ° C. for 60 minutes to make a plate of about 2 m / m. The carbon fiber content was about 35% by weight. JIS-
The bending strength of this molded product according to K-6911 was 28.2 kg / mm 2 .
実施例5 コールタールピツチを調整して得た異方性ピツチを実施
例1と同様にして渦流繊維化した後、ベルトコンベア上
に堆積し、連続的に不融化、続いて1300℃に炭化し、高
さ40mm、幅300mmの嵩高いマツトを得た。比重は0.03g/c
m3、炭素繊維長は40mmが中心で最長60mm、最短20mm、炭
素繊維の糸径は7〜9μmであつた。糸の引張強度は22
0kg/mm2、引張弾性率は4Ton/mm2であつた。このマツト
を1/3へ加圧ロールで圧縮後、これに フエノール樹脂〔プライオーフエン5900(大日本イン
キ)〕 100部 アセトン 20部 から成る樹脂溶液を含浸後、さらに1/3に絞つた。一日
風乾後、110℃×12分乾燥してペーパー状のシートを得
た。このシートを20kg/cm2圧で150℃で60分間加圧成型
して、約2m/mの板にした。炭素繊維の含有率は、約40重
量%であつた。JIS−K−6911による本成型品の曲げ強
度は、28.2kg/mm2であつた。Example 5 Anisotropic pitch obtained by adjusting coal tar pitch was vortex fiberized in the same manner as in Example 1 and then deposited on a belt conveyor, continuously infusibilized, and subsequently carbonized at 1300 ° C. , A bulky mat with a height of 40 mm and a width of 300 mm was obtained. Specific gravity is 0.03g / c
The center of m 3 and the length of the carbon fiber was 40 mm, the maximum length was 60 mm, the minimum length was 20 mm, and the diameter of the carbon fiber was 7 to 9 μm. The tensile strength of the thread is 22
The tensile elastic modulus was 0 kg / mm 2 and 4 Ton / mm 2 . This mat was compressed to 1/3 by a pressure roll, impregnated with a resin solution consisting of 100 parts of phenol resin [Priofen 5900 (Dainippon Ink)] and 20 parts of acetone, and further squeezed to 1/3. After air-drying for one day, it was dried at 110 ° C for 12 minutes to obtain a paper-like sheet. This sheet was pressure molded at 150 ° C. for 60 minutes at a pressure of 20 kg / cm 2 to give a plate of about 2 m / m. The carbon fiber content was about 40% by weight. The bending strength of this molded product according to JIS-K-6911 was 28.2 kg / mm 2 .
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D01F 9/14 7199−3B D04H 1/42 E 7199−3B 1/58 Z 7199−3B // B29C 70/10 (72)発明者 松村 雄次 兵庫県西宮市六軒町2−17−611 (72)発明者 田中 啓八郎 兵庫県伊丹市春日丘4−32−11Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location D01F 9/14 7199-3B D04H 1/42 E 7199-3B 1/58 Z 7199-3B // B29C 70/10 (72) Inventor Yuji Matsumura 2-17-611 Rokugen-cho, Nishinomiya-shi, Hyogo Prefecture (72) Inventor Keihachiro Tanaka 4-32-11 Kasugaoka, Itami-shi, Hyogo Prefecture
Claims (1)
ら流出させ、前記オリフイスの周りに周方向に間隔を置
いて配置した少なくとも3本の気体噴出ノズルから直線
状に高速熱気体流を吹き出させ、ここにおいて前記気体
流の各々は前記ピツチの中心軸線を横断する断面の外周
に沿う接線方向の成分と前記ピツチの流出方向に向つて
先ず前記ピツチの中心軸線に徐々に接近し次に前記中心
軸線から徐々に離れてゆく成分とを有しており、それに
より前記粘稠状態にあるピツチの流出流れが中心軸線の
周りに自転しながら徐々に細まり、繊維状にされ、渦巻
状に飛び出され、引き伸ばされて繊維化される、いわゆ
る渦流法で繊維化され堆積されたピツチ繊維を不融化、
炭化して成る密度が0.008〜0.08g/cm3の嵩高い炭素繊維
マツトに、熱硬化性樹脂を含浸させてシート状になし、
次いで成型加工することを特徴とする炭素繊維強化熱硬
化性樹脂の製造法。1. A viscous pitch is discharged from an outflow orifice, and a high-speed hot gas stream is linearly blown out from at least three gas ejection nozzles arranged at intervals in the circumferential direction around the orifice. , Where each of the gas streams gradually approaches the central axis of the pitch and then gradually approaches the central axis of the pitch in the direction of the tangential component along the outer periphery of the cross-section crossing the central axis of the pitch and the outflow direction of the pitch. It has a component that gradually separates from the axis, whereby the outflow of the pitch in the viscous state gradually turns around the central axis while gradually thinning, becoming fibrous, and jumping out in a spiral shape. Is melted, stretched and fiberized, infusibilized Pitch fibers deposited by the so-called vortex method,
A bulky carbon fiber mat with a density of 0.008 to 0.08 g / cm 3 formed by carbonization is impregnated with a thermosetting resin to form a sheet,
A method for producing a carbon fiber reinforced thermosetting resin, which is characterized by molding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61104965A JPH075766B2 (en) | 1986-05-09 | 1986-05-09 | Method for producing carbon fiber reinforced thermosetting resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61104965A JPH075766B2 (en) | 1986-05-09 | 1986-05-09 | Method for producing carbon fiber reinforced thermosetting resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62263231A JPS62263231A (en) | 1987-11-16 |
JPH075766B2 true JPH075766B2 (en) | 1995-01-25 |
Family
ID=14394814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61104965A Expired - Lifetime JPH075766B2 (en) | 1986-05-09 | 1986-05-09 | Method for producing carbon fiber reinforced thermosetting resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH075766B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5106775B2 (en) * | 2005-01-06 | 2012-12-26 | 日産自動車株式会社 | Vehicle energy absorbing member and door guard beam using the same |
CN102643515B (en) * | 2012-04-25 | 2016-04-13 | 绵阳中物能源科技有限公司 | A kind of Low-resistivity composite conductive plate and preparation method thereof |
EP4067035A4 (en) * | 2019-11-25 | 2023-12-20 | DIC Corporation | Method for manufacturing sheet molding compound and molded article |
CN114804908B (en) * | 2022-05-27 | 2022-12-09 | 诸暨市幄肯中智新材料有限公司 | Short carbon fiber/carbon thermal field material and preparation method thereof |
-
1986
- 1986-05-09 JP JP61104965A patent/JPH075766B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62263231A (en) | 1987-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4229397A (en) | Method for forming fiber-reinforced composite material | |
Masuelli | Introduction of fibre-reinforced polymers− polymers and composites: concepts, properties and processes | |
TWI504501B (en) | Carbon fiber prepreg and method of making same, carbon fiber reinforced composite material | |
JPH064246B2 (en) | Flexible composite material and manufacturing method thereof | |
CA1323488C (en) | Non-shrinkable hybrid yarn | |
US4534919A (en) | Production of a carbon fiber multifilamentary tow which is particularly suited for resin impregnation | |
JPWO2018143068A1 (en) | Fiber reinforced resin molding material | |
CN109312508A (en) | Carbon fiber random mat and carbon fibre composite | |
Bajpai | Update on carbon fibre | |
JP2646140B2 (en) | Carbon fiber composite and method for producing the same | |
EP0330179A2 (en) | Process for producing non-woven fabrics of carbon fibers | |
JPH075766B2 (en) | Method for producing carbon fiber reinforced thermosetting resin | |
JPH07122190B2 (en) | Preform yarn for thermoplastic composite material and method for producing the same | |
CN111534093B (en) | Polyimide prepreg, composite material and preparation method thereof | |
JP2876028B2 (en) | Unidirectional preform sheet and method of manufacturing the same | |
US5326510A (en) | Carbon composite material incorporating carbon film, forming material and process for producing the carbon film | |
JPH04122631A (en) | Carbon fiber reinforced plastic tubular material and manufacture thereof | |
Fennessey | Continuous carbon nanofibers prepared from electrospun polyacrylonitrile precursor fibers | |
JPH075767B2 (en) | Method for producing carbon fiber reinforced thermoplastic resin | |
US3779789A (en) | Production of pervious low density carbon fiber reinforced composite articles | |
JPH02308824A (en) | Material for thermoplastic composite | |
JP3073083B2 (en) | Fibrous polyimide resin molding for reinforcing composite materials | |
JPH02105830A (en) | Production of carbon fibber braid | |
JP3539577B2 (en) | Fiber reinforced composite material | |
JP3561282B2 (en) | Manufacturing method of composite material |