JPS6226318Y2 - - Google Patents

Info

Publication number
JPS6226318Y2
JPS6226318Y2 JP16033581U JP16033581U JPS6226318Y2 JP S6226318 Y2 JPS6226318 Y2 JP S6226318Y2 JP 16033581 U JP16033581 U JP 16033581U JP 16033581 U JP16033581 U JP 16033581U JP S6226318 Y2 JPS6226318 Y2 JP S6226318Y2
Authority
JP
Japan
Prior art keywords
deviation
ship
amount
heading
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16033581U
Other languages
Japanese (ja)
Other versions
JPS5865200U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16033581U priority Critical patent/JPS5865200U/en
Publication of JPS5865200U publication Critical patent/JPS5865200U/en
Application granted granted Critical
Publication of JPS6226318Y2 publication Critical patent/JPS6226318Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【考案の詳細な説明】 本考案は先願の特開昭57−191191号発明の改良
に係り、先願発明の実施を円滑に達成することを
目的とする。
[Detailed Description of the Invention] The present invention relates to an improvement of the invention of Japanese Patent Application Laid-Open No. 57-191191, and aims to smoothly implement the invention of the earlier application.

以下順次これを説明する。 This will be explained in order below.

第1図は本願考案が利用される装置のブロツク
図である。
FIG. 1 is a block diagram of an apparatus in which the present invention is utilized.

1は目的地方位を設定する針路設定器、2は自
船の船首方向を検出する方位検出器で例えばマグ
ネツトコンパスが用いられる。
1 is a course setting device for setting the destination position; 2 is a direction detector for detecting the heading direction of the ship; for example, a magnetic compass is used.

針路設定器1の設定針路と方位検出器2の検出
方位は比較回路3において比較される。比較回路
3は船首方位が設定方位に対してどの程度ずれて
いるかを検出する。なお、針路設定器1と方位検
出器2と比較回路3とは方位差信号発生器4を溝
成する。方位差信号は加算回路5を介して、制御
回路6へ加わる。制御回路6は舵7の舵角を制御
して検出した船首方位を設定針路に一致させるも
ので、舵7を駆動させる駆動部8へ制御出力を送
出する。9は舵角検出器であつて検出した舵角出
力を制御回路6へ送出することにより舵角制御の
ハンチング現象を防止して円滑な舵角制御を行な
わせる。
The set course of the course setter 1 and the detected direction of the direction detector 2 are compared in a comparator circuit 3. The comparison circuit 3 detects how much the ship's heading deviates from the set heading. Note that the course setter 1, the azimuth detector 2, and the comparator circuit 3 form a azimuth difference signal generator 4. The orientation difference signal is applied to a control circuit 6 via an adder circuit 5. The control circuit 6 controls the rudder angle of the rudder 7 to match the detected heading with the set course, and sends a control output to the drive unit 8 that drives the rudder 7. Reference numeral 9 denotes a rudder angle detector which sends the detected rudder angle output to the control circuit 6 to prevent the hunting phenomenon of rudder angle control and to perform smooth rudder angle control.

加算回路5には航路ずれ量演算回路10から航
路ずれに対応する電圧が供給される。
The adding circuit 5 is supplied with a voltage corresponding to the course deviation from the course deviation amount calculation circuit 10 .

航路ずれ量演算回路10は、ロラン受信機に代
表されるように、異なる送信局からの航法信号を
受信して該受信した各局航法信号間の時間差ある
いは位相差を測定し、この時間差等を用いてロラ
ン地図上のおける自船位置を知る航法装置と、ロ
ランチヤート上の自船の出発位置と目的位置とを
結ぶ直線状設定航路に対し、上記自船位置から垂
直に降した垂線の長さを測定することによつて自
船の設定航路からのずれ量を演算する。このずれ
量を加算回路5で方位差信号と加算することによ
つて、自船の船首方位が設定針路に一致するよう
に舵が制御される(オートパイロツトの通常の動
作)のではなく、設定針路よりさらに設定航路に
近づく方法に一定量だけずらした方位に船首を指
向せしめるのである。この関係を電気信号で説明
すると第2図に示すようになる。すなわち、横軸
に方位誤差を縦軸に転舵電圧をとり、方位差信号
発生器4の出力を示すと実線のようになる。これ
で理解できるように、方位差+L1〜−L1間は転
舵電圧は+E1〜−E2まで比例的に変化するが、
それ以上の方位差に対しては飽和する特性を示
す。
The course deviation calculation circuit 10 receives navigation signals from different transmitting stations, such as a Loran receiver, measures the time difference or phase difference between the received navigation signals of each station, and uses this time difference etc. The length of the perpendicular line drawn perpendicularly from the own ship's position to the straight line route that connects the navigation device that knows the own ship's position on the Loran chart, and the ship's departure position and destination position on the Loran chart. By measuring this, the amount of deviation from the own ship's set course is calculated. By adding this amount of deviation to the heading difference signal in the adding circuit 5, the rudder is controlled so that the own ship's heading matches the set course (the normal operation of an autopilot), but instead of The bow is directed in a direction that is shifted by a certain amount in a way that brings the ship closer to the set course than the course. This relationship can be explained using electrical signals as shown in FIG. That is, when the horizontal axis represents the azimuth error and the vertical axis represents the steering voltage, the output of the azimuth difference signal generator 4 is shown as a solid line. As can be understood from this, the steering voltage changes proportionally from +E 1 to -E 2 during the azimuth difference between +L 1 and -L 1 , but
It exhibits a characteristic of saturation for orientation differences greater than that.

今例えば船首方位が設定方位に対して右寄にな
ると舵を左舵側に倒すこととなり、船首は左転回
する。逆に船首が設定方位に対し左寄であれば負
電圧が発生して船首を右転回させる。しかし、い
づれも船首が設定方位と一致すれば電圧は零とな
り舵は直進状態に保持される。もし、潮流等の影
響を受け船が所定の方位を保つたまま偏流される
と、コースからずれることになるが、船首方位は
設定方位に一致したままで電圧は発生しない。
For example, if the heading of the boat is to the right relative to the set heading, the rudder will be tilted to the port side, causing the bow to turn to the left. Conversely, if the bow is to the left with respect to the set heading, a negative voltage will be generated, causing the bow to turn to the right. However, in either case, if the bow of the ship matches the set heading, the voltage becomes zero and the rudder is maintained in a straight line. If the ship is drifted while maintaining a predetermined heading due to the influence of tidal currents, etc., it will deviate from the course, but the heading will remain in line with the set heading and no voltage will be generated.

したがつて、元のコースに戻すためには設定方
位を訂正しなければならない。しかし、今加算回
路5にコースからのずれ量に相当する電圧Ex=
Eoを外部から加算すれば、特性曲線は点線P1
示すように基準位置よりEoだけ持ち上げられ、
この結果設定方位により−Lo分だけ余計に船首
を左転するように転舵信号が発生される。このた
め結果的には設定コースに近づうように制御され
る。
Therefore, in order to return to the original course, the set heading must be corrected. However, now the voltage Ex= corresponding to the deviation from the course in the adding circuit 5
If Eo is added externally, the characteristic curve will be lifted by Eo from the reference position as shown by the dotted line P1 .
As a result, a steering signal is generated to further turn the bow of the ship to left by -Lo depending on the set heading. As a result, the course is controlled to approach the set course.

この場合転舵信号が余り大きいと、船は左旋回
し続ける。このために、先願発明では、航路ずれ
量信号が方位差信号の最大値を越えないように制
限されるように構成されている。
In this case, if the steering signal is too large, the ship will continue turning to the left. For this reason, the prior invention is configured to limit the course deviation amount signal so that it does not exceed the maximum value of the azimuth difference signal.

本案は、この方位差信号の最大値を変更する場
合に船の本来航路への進入角度が変るのを防止す
ることを目的とする。
The purpose of this proposal is to prevent the angle at which the ship approaches the original route from changing when changing the maximum value of the heading difference signal.

方位差信号すなわちオートパイロツトの出力最
大値は天候調整によりすなわち感度がボリウムに
より決定される。これを第3図で示す。この特性
図から明らかなように感度ボリウムの調整によつ
て最大値ばかりでなく直線特性部の傾斜も同時に
変更されることがわかる。このため第4図に示す
ように、最大値をボリユウム最小値にしたとき、
船は予定の航路Cに対しAなる進入路で近づくも
のと仮定した場合、天候調整を感度最大方向に設
定すると、予定航路からのずれ量が同一でも転舵
信号は大きくなる。このため予定航路への進入角
度はBのように深くなつて急激な転舵作用を営む
欠点がある。
The maximum output value of the azimuth difference signal, that is, the autopilot, is determined by the weather adjustment, that is, the sensitivity is determined by the volume. This is shown in FIG. As is clear from this characteristic diagram, by adjusting the sensitivity volume, not only the maximum value but also the slope of the linear characteristic portion is changed at the same time. Therefore, as shown in Figure 4, when the maximum value is set to the minimum volume value,
Assuming that the ship approaches the planned route C by the approach route A, if the weather adjustment is set to the maximum sensitivity direction, the steering signal will become larger even if the amount of deviation from the planned route is the same. Therefore, the approach angle to the planned route becomes deep as shown in B, and there is a drawback that a sudden steering action is performed.

本案はオートパイロツト出力の最大値を検出
し、これによつて天候調整ボリユウムの位置を判
断し、航路ずれ量信号出力の感度を調整するもの
である。
The present invention detects the maximum value of the autopilot output, determines the position of the weather adjustment volume based on this, and adjusts the sensitivity of the route deviation amount signal output.

以下実施例によつてこれを説明する。 This will be explained below using examples.

第5図において、11は入力にオートパイロツ
ト出力が加るピーク検出ホールド回路であつて第
2図+E1又は−E2が出力される。これら出力は
逆極性ダイオードD1,D2を介して出力端に出力
される。又一方これら出力のうち正出力はダイオ
ードD3を介し、又負出力は極性反転回路12を
介してD−A変換器13の基準電圧入力端へ入力
される。D−A変換器13の入力端には航法装置
10から航路ずれ量信号がデイジタル信号の形態
で入力される。D−A変換器13の出力は積分器
14を介して出力端に出力させる。
In FIG. 5, numeral 11 is a peak detection hold circuit to which the autopilot output is applied as an input, and outputs + E1 or -E2 as shown in FIG. These outputs are outputted to the output end via reverse polarity diodes D 1 and D 2 . On the other hand, among these outputs, the positive output is inputted to the reference voltage input terminal of the DA converter 13 via the diode D3, and the negative output is inputted to the reference voltage input terminal of the DA converter 13 via the polarity inverting circuit 12. A course deviation amount signal is input from the navigation device 10 to the input end of the DA converter 13 in the form of a digital signal. The output of the DA converter 13 is outputted to an output terminal via an integrator 14.

上記回路で、オートパイロツト出力4はそのピ
ーク電圧がピーク検出ホールド回路11で検出さ
れ、これがD−A変換器13の基準電圧とされる
ので、D−A変換器の出力特性が変更される。こ
のためオートパイロツト側で天候調整を変更して
も、ほぼ同等の進入角で航路復帰が可能となる。
In the above circuit, the peak voltage of the autopilot output 4 is detected by the peak detection and hold circuit 11, and this is used as the reference voltage of the DA converter 13, so that the output characteristics of the DA converter are changed. Therefore, even if the autopilot changes the weather adjustment, it is possible to return to the course at approximately the same approach angle.

なお、ダイオードD1,D2は積分器14からの
航路ずれ信号値がオートパイロツト出力4の最大
値を越えないように制限する。又積分器14はず
れ信号値の急激な変化を防止するために設けられ
る。
Note that the diodes D 1 and D 2 limit the value of the course deviation signal from the integrator 14 so that it does not exceed the maximum value of the autopilot output 4. Further, the integrator 14 is provided to prevent sudden changes in the deviation signal value.

なお、ずれ信号の制御はD−A変換器による他
フオトカプラ管を利用して抵抗値を変化させる等
により行なつても同等の効果を得る。
The same effect can be obtained by controlling the deviation signal by using a DA converter or by changing the resistance value using a photocoupler tube.

以上説明したように、本案によればオートパイ
ロツトの天候調整の変更により、予定航路への複
帰コースが影響を受けることがないので、自動航
行操作が安全、確実に行なえる利点を有する。
As explained above, according to the present invention, the return course to the planned route is not affected by changes in the autopilot's weather adjustment, so it has the advantage that automatic navigation operations can be performed safely and reliably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本案を実施する従来装置のブロツク
図、第2図はその電気的特性曲線図、第3図は天
候調整変化時の電気的特性曲線図、第4図は第3
図に対応する予定航路復帰説明図、第5図は本案
の要部回路系統図である。
Figure 1 is a block diagram of a conventional device that implements the present invention, Figure 2 is its electrical characteristic curve diagram, Figure 3 is its electrical characteristic curve diagram when weather adjustment changes, and Figure 4 is its electrical characteristic curve diagram.
FIG. 5 is an explanatory diagram for returning to the planned route corresponding to the figure, and FIG. 5 is a circuit system diagram of the main part of the present invention.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 自船の目的地方位を設定する方位設定器と、自
船の船首方位を検出する方位検出器と、上記方位
設定器の出力と方位検出器の出力とから方位差信
号を得る方位差信号発生器と、該方位差信号に基
づいて自船の船首方位を上記方位設定器の設定方
位に一致させる制御装置と、異なる送信局からの
航法信号を受信して該受信した各局航法信号間の
時間差あるいは位相差を測定し、上記各局航法信
号間の時間差あるいは位相差を用いて地図上の自
船位置を知る航法装置と、上記地図上の自船の出
発位置と目的位置とによつて設定される自船の設
定航路に対する上記航法装置によつて測定される
上記地図上の現在位置のずれ量を演算する演算手
段と、該演算手段が演算したずれ量に基づいて上
記方位設定器の設定方位を等価的に若干変更して
上記ずれ量を減少させる手段と、上記ずれ量を代
表する信号が上記方位差信号の最大値を越えない
ようにずれ量代表信号を抑圧する手段と、上記方
位差信号の最大値の検出手段と、この検出出力に
基ずいて、上記ずれ量演算手段の感度を調節する
手段を具備してなる自動航行装置。
A bearing setter that sets the destination position of own ship, a bearing detector that detects the heading direction of own ship, and a bearing difference signal generation that obtains a bearing difference signal from the output of the bearing setter and the output of the bearing detector. a control device that matches the heading of the own ship with the heading set by the heading setting device based on the heading difference signal; and a time difference between the received navigation signals of each station by receiving navigation signals from different transmitting stations. Alternatively, a navigation device that measures the phase difference and uses the time difference or phase difference between the navigation signals of each station to determine the own ship's position on the map, and the departure position and destination position of the own ship on the map. a calculation means for calculating the amount of deviation of the current position on the map measured by the navigation device with respect to the set route of the own ship; and a set azimuth of the azimuth setting device based on the amount of deviation calculated by the calculation means. means for reducing the amount of deviation by equivalently slightly changing the amount of deviation; means for suppressing the amount of deviation representative signal so that the signal representing the amount of deviation does not exceed the maximum value of the azimuth difference signal; An automatic navigation system comprising means for detecting a maximum value of a signal, and means for adjusting the sensitivity of the deviation amount calculating means based on the detected output.
JP16033581U 1981-10-29 1981-10-29 automatic navigation device Granted JPS5865200U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16033581U JPS5865200U (en) 1981-10-29 1981-10-29 automatic navigation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16033581U JPS5865200U (en) 1981-10-29 1981-10-29 automatic navigation device

Publications (2)

Publication Number Publication Date
JPS5865200U JPS5865200U (en) 1983-05-02
JPS6226318Y2 true JPS6226318Y2 (en) 1987-07-06

Family

ID=29952749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16033581U Granted JPS5865200U (en) 1981-10-29 1981-10-29 automatic navigation device

Country Status (1)

Country Link
JP (1) JPS5865200U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7116187B2 (en) 2018-04-03 2022-08-09 エルジー エレクトロニクス インコーポレイティド clothing processing equipment

Also Published As

Publication number Publication date
JPS5865200U (en) 1983-05-02

Similar Documents

Publication Publication Date Title
US5172324A (en) Electronic steering system
US5202835A (en) Trolling motor with heading lock
WO1999056188A1 (en) Aircraft course correction for wind and fuzzy logic course intercept profile based upon accuracy and efficiency
CN108052122A (en) A kind of method of the antenna tracking of boat-carrying communication in moving
CN114527747A (en) Unmanned ship trajectory tracking method based on self-adaptive pre-aiming point and projection positioning
JPS6226318Y2 (en)
JP3472831B2 (en) Ship route control method and apparatus, and ship
JP2002178990A (en) Automatic navigation device
JPS6169388A (en) Pole position detecting method and device
JPS6234597B2 (en)
JPS6159210A (en) Real course calculating method
JPS6038291A (en) Autopilot device for sailing ship
JPH0363083B2 (en)
US3670227A (en) Electrical automatic pilot
JPH0633076B2 (en) Auto pilot device
JPS6038290A (en) Autopilot device for sailing ship
JPS6234000B2 (en)
CN108759808B (en) Horizontal device for azimuth compass
JPH0631074B2 (en) Automatic steering device
JPS6233998B2 (en)
JPH0213324B2 (en)
JPH0417837B2 (en)
JPS59156896A (en) Controller for automatic steering of ship
CN114019989B (en) PID-based underwater vehicle track indirect automatic control method
JPH0222712Y2 (en)