JPS62261606A - Controller of steam turbine - Google Patents

Controller of steam turbine

Info

Publication number
JPS62261606A
JPS62261606A JP10632886A JP10632886A JPS62261606A JP S62261606 A JPS62261606 A JP S62261606A JP 10632886 A JP10632886 A JP 10632886A JP 10632886 A JP10632886 A JP 10632886A JP S62261606 A JPS62261606 A JP S62261606A
Authority
JP
Japan
Prior art keywords
steam
steam turbine
turbine
load
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10632886A
Other languages
Japanese (ja)
Inventor
Hideo Hosaka
英夫 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10632886A priority Critical patent/JPS62261606A/en
Publication of JPS62261606A publication Critical patent/JPS62261606A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable quick speed settling of a turbine by mounting a control means which selectively opens appropriate ones of a plurality of interception valves (IVs) after load of a steam turbine is cut off, to restrain secondary peak of the steam turbine. CONSTITUTION:A power load unbalance circuit 30 is integrated in the control circuits of some of a plurality of IVs which are opened again to settle the revolution speed of a steam turbine after load thereof is cut off. When load of the steam turbine is cut off, the power load unbalance circuit 30 is activated to close a switch 32 and a bias signal 31 is added to an IV opening command signal 16 so that the IVs would not be opened. Among a plurality of IVs, some to which bias signal is not added will then be opened to reduce steam flow rate of IVs with respect to revolution speed signals. The energy for reaccelerating the steam turbine can then be also reduced so that stable speed control can be performed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は蒸気タービン制御装置に係り、特に火力または
原子力による発電用大容量の蒸気タービンを速度制御す
るに当り、負荷遮断後に迅速な整定特性を得るのに好適
な蒸気タービン制御装置に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention relates to a steam turbine control device, and is particularly useful for controlling the speed of a large-capacity steam turbine for thermal or nuclear power generation. The present invention relates to a steam turbine control device suitable for later obtaining rapid settling characteristics.

(従来の技術) 大容量再熱サイクル蒸気タービンには、ボイラから高圧
タービンに流入づ°る主蒸気流量を制御する蒸気加減弁
(以下、C■と称する)と、高圧タービン排気からボイ
ラ再熱器を通り中圧タービンに流入する再熱蒸気流量を
制tillするインターセブト弁(以下、IVと称する
)とが設けられている。
(Prior art) A large-capacity reheat cycle steam turbine has a steam control valve (hereinafter referred to as C) that controls the flow rate of main steam flowing from the boiler to the high-pressure turbine, and a steam control valve (hereinafter referred to as C) that controls the flow rate of main steam flowing from the boiler to the high-pressure turbine, and An intercept valve (hereinafter referred to as IV) is provided to control the flow rate of reheated steam flowing through the vessel and into the intermediate pressure turbine.

通常、タービンの運転中はIVは全開しており、蒸気タ
ービンを通過する蒸気量をC■により加減してタービン
の回転速度あるいは負荷を制御している。
Normally, during operation of the turbine, IV is fully opened, and the amount of steam passing through the steam turbine is controlled by C⊛ to control the rotational speed or load of the turbine.

第5図はかかる周知の再熱サイクル蒸気タービンの系統
構成図を示すものである。同図に丞すように、給水ポン
プからの給水はボイラ1で加熱されて蒸気となり、CV
2を通じて高圧タービン3に供給される。高圧タービン
3の排蒸気は再度ボイラ1の再熱器1aに導入されて再
熱蒸気とされ、並設されたIV4a、4bを通じて中圧
タービン5に並列に導入される。中圧タービン5からの
蒸気はさらに低圧タービン6で仕事をして復水器に送出
される。このようにして駆動される高圧タービン3、中
圧タービン5、低圧タービン6により発電ta7が駆動
され、発電が行なわれる。
FIG. 5 shows a system configuration diagram of such a well-known reheat cycle steam turbine. As shown in the figure, the water supplied from the water pump is heated in boiler 1 and turned into steam, which then flows into the CV
2 to the high pressure turbine 3. The exhaust steam from the high-pressure turbine 3 is again introduced into the reheater 1a of the boiler 1 to be converted into reheated steam, and is introduced in parallel to the intermediate-pressure turbine 5 through the parallel IVs 4a and 4b. The steam from the intermediate pressure turbine 5 further undergoes work in the low pressure turbine 6 and is sent to the condenser. The high-pressure turbine 3, intermediate-pressure turbine 5, and low-pressure turbine 6 driven in this manner drive the power generation ta7 to generate power.

かかる構成において、蒸気タービンのCV2やIV4a
、4b (以下、これらのIVをIV4と総称する)等
の制御弁を制御する方法としては、一般に機械油圧式と
電気油圧式とが知られている。
In such a configuration, CV2 and IV4a of the steam turbine
, 4b (hereinafter, these IVs are collectively referred to as IV4) and other control valves are generally known as mechanical-hydraulic type and electro-hydraulic type.

第6図および第7図は従来の電気油圧式の蒸気タービン
i、II御装置のブロック図を示すものである。
FIGS. 6 and 7 are block diagrams of conventional electrohydraulic steam turbine i and II control devices.

さて、第6図の構成においては、蒸気タービンの回転速
度を速度ピックアップ等の速度検出部9で検出し、その
検出信号を速度設定部10からの速度設定信号と比較し
、その偏差信号11はCV調定率設定部12とIV調定
率設定部13に送出される。CVa定率設定部12の出
力に対しては負荷設定部14からの信号が加算され、C
V開度指令信号15が送出される。一方、IVm定率設
定部13の出力に対しては負荷設定部14からの信号を
(CVli定率/IVI定率)倍した信号が加算されて
■■開度指令信号16となる。なお、通常運転中はIV
4を全開とさせておくために、IV開度指令信号16に
はIV全開バイアス17が加算される。
Now, in the configuration shown in FIG. 6, the rotational speed of the steam turbine is detected by a speed detecting section 9 such as a speed pickup, and the detected signal is compared with the speed setting signal from the speed setting section 10, and the deviation signal 11 is It is sent to the CV adjustment rate setting section 12 and the IV adjustment rate setting section 13. The signal from the load setting section 14 is added to the output of the CVa constant rate setting section 12, and the C
A V opening command signal 15 is sent out. On the other hand, a signal obtained by multiplying the signal from the load setting section 14 by (CVli constant rate/IVI constant rate) is added to the output of the IVm constant rate setting section 13 to obtain the opening command signal 16. In addition, during normal operation, the IV
4, an IV full open bias 17 is added to the IV opening command signal 16.

第7図はIV4の弁開度制御装置を示すものである。図
に示すように、IV開度指令信号16は各IVc:とに
IVM度1!1tiif&118a、18bを通り、以
下、IV4aの系統のみを示せば、前置増幅器19、サ
ーボ増幅器20、サーボ弁21を介してIV油筒22の
位置III御を行なう。一方、前置増幅器19からの出
力がある値以下のマイナス信号となった場合、つまりI
VrlB度指令が急に減少した場合には、これを閉方向
偏差検出部25を介して検出し、急速作動電磁弁26を
励磁、IV油筒22を急速に閉める。また、IV油筒2
2の弁開度は弁開度検出器23により検出され、復調器
24で復調され、前置増幅器19の入力側に負帰還され
る。
FIG. 7 shows the valve opening degree control device of IV4. As shown in the figure, the IV opening command signal 16 passes through the IVM degrees 1! The position III of the IV oil cylinder 22 is controlled via. On the other hand, if the output from the preamplifier 19 becomes a negative signal below a certain value, that is, I
When the VrlB degree command suddenly decreases, this is detected via the closing direction deviation detection section 25, and the rapid action solenoid valve 26 is energized and the IV oil cylinder 22 is rapidly closed. In addition, IV oil cylinder 2
The valve opening degree of No. 2 is detected by a valve opening degree detector 23, demodulated by a demodulator 24, and negatively fed back to the input side of the preamplifier 19.

一般に、再熱蒸気タービンにはIV4は2111以上設
置されており、各IV4には第7図と同様の構成を有す
るIV弁開度制御I装置がそれぞれ設置されている。
Generally, 2111 or more IV4s are installed in a reheat steam turbine, and each IV4 is installed with an IV valve opening degree control I device having a configuration similar to that shown in FIG. 7.

いま、蒸気タービンの定格負荷運転中を例にとると、負
荷設定部14からの信号でCv開lη指令信号15およ
びIV問度指令信号16は100%の信号を出しており
、図示していないC■油筒は定格位置にあり、IV油筒
22は全開となっている。この状態から蒸気タービン発
i機の負荷遮断が行なわれた場合、負荷設定部14の信
号はただちにゼロとなり、CV2およびIV4が急開し
て蒸気タービンに流入する蒸気を遮断し、蒸気タービン
の回転上昇を抑制する。
Now, taking as an example when the steam turbine is operating at rated load, the Cv open lη command signal 15 and the IV level command signal 16 output 100% signals from the load setting unit 14, which are not shown in the figure. The C■ oil cylinder is at the rated position, and the IV oil cylinder 22 is fully open. When load shedding is performed on the steam turbine generator i from this state, the signal of the load setting unit 14 immediately becomes zero, CV2 and IV4 are suddenly opened to cut off the steam flowing into the steam turbine, and the steam turbine rotates. Control the rise.

このとき、ボイラ再熱部の蒸気はIV4により閉じ込め
られているが、蒸気タービンが最高回転速度に到達した
後、回転速度が降下し始めて約102%となったときに
IV4が開き始め、ボイラ再熱部の蒸気を逃しながら速
度制御を行なう。
At this time, the steam in the boiler reheating section is confined by IV4, but after the steam turbine reaches its maximum rotational speed, when the rotational speed begins to drop to approximately 102%, IV4 begins to open and the boiler is reheated. Speed control is performed while releasing steam from the hot section.

しかる後にボイラ再熱部にとじ込められた蒸気をほぼ逃
し終った時点でCV4が間き始め、蒸気タービンは無負
荷蒸気流愚が流れた状態で整定する。
Thereafter, when almost all of the steam trapped in the boiler reheating section has been released, CV4 begins to slow down, and the steam turbine settles in a state where the no-load steam flow is flowing.

(発明が解決しようとする問題点) 一般に、中圧タービン5に流入する蒸気は比容積が大き
いため、IV4には大口径の弁が必要どされ、複数個の
弁を股飲する場合も多い。従って、負荷遮所後の回転速
度の降下に伴いIV4を聞く時には、微少な開度でも蒸
気タービンを再加速するのに十分な蒸気が流入すること
になってしまう。
(Problem to be solved by the invention) Generally, the steam flowing into the intermediate pressure turbine 5 has a large specific volume, so a large diameter valve is required for the IV4, and multiple valves are often used. . Therefore, when IV4 is heard as the rotational speed decreases after the load interruption, enough steam will flow in to re-accelerate the steam turbine even with a small opening.

このため、第8図(A>の運転特性図のP部に示すよう
な、いわゆる2次ピーク現象を発生する。
For this reason, a so-called secondary peak phenomenon occurs as shown in section P of the operating characteristic diagram in FIG. 8 (A>).

近年、蒸気タービン制御装置にはサンプリング1Ill
 filを行なうデジタル制御装置が実用化されてきて
いる。ところが、サンプリング制御はタービンの回転速
度に対してIV開度指令信号16が若干遅れて発生する
傾向をもっている。つまり、負荷遮断後のタービン回転
速度の降下時に、IV調定率設定部13であらかじめ設
定したタービン回転速度まで降下してもIV4は開かず
、サンプリング周期だけ遅れてIV4が開くことになる
。この間タービン回転速度はさらに降下しているため、
より大きなIV開度指令信号16がIV開度制御装置に
加えられることになる。その結果、IV4がより大きな
開度となり、過多な蒸気が中圧タービン2に流入するこ
とになる。このため、第8図(B)の運転特性図の81
部に示すように、2次ピーク現象をさらに助長させる結
果となる。
In recent years, steam turbine control equipment uses sampling 1Ill.
Digital control devices that perform fil have been put into practical use. However, sampling control tends to generate the IV opening command signal 16 with a slight delay with respect to the rotational speed of the turbine. In other words, when the turbine rotational speed decreases after the load is cut off, IV4 does not open even if the turbine rotational speed decreases to the turbine rotational speed preset by the IV regulation rate setting unit 13, and IV4 opens with a delay of the sampling period. During this time, the turbine rotation speed continues to drop, so
A larger IV opening command signal 16 will be applied to the IV opening control device. As a result, the opening degree of IV4 becomes larger, and excessive steam flows into the intermediate pressure turbine 2. For this reason, 81 in the operating characteristic diagram of Fig. 8(B)
As shown in section 2, this results in further aggravation of the secondary peak phenomenon.

ところが、このとき、回転速度上昇を検出して、再びI
V4を閉とさせるように制御系が作用するが、このとき
のIV閉方向信号により閉方向偏差検出部25が動作し
てしまい、急速作動電磁弁26が作動してしまうことが
ある。この場合、第8図(C)の運転特性図に示すよう
に、IV4が急閉してしまう。
However, at this time, an increase in rotational speed was detected and the I
Although the control system acts to close V4, the IV closing direction signal at this time may cause the closing direction deviation detection section 25 to operate, causing the rapid action solenoid valve 26 to operate. In this case, as shown in the operating characteristic diagram of FIG. 8(C), IV4 is suddenly closed.

一度この現象が発生すると、蒸気タービンの速度制御系
は不連続な制御を行なうこととなり、IV微開、速度上
昇、IV急閉、速度降下を繰り返すことになる。この現
象は再熱蒸気圧力がほぼ逃げ切るまでくり返されること
になり、多い場合で50回程度に達することもある。
Once this phenomenon occurs, the speed control system of the steam turbine will perform discontinuous control, repeating IV slight opening, speed increase, IV sudden closing, and speed drop. This phenomenon is repeated until the reheating steam pressure has almost completely escaped, and may reach about 50 times in most cases.

このように、IV急閉動作が不必要にくり返されると、
蒸気タービンの負荷遮断後の整定時間を長びかせること
になってしまい、蒸気タービンの回転部を高速の状態で
保持することになる。このため、蒸気タービンの寿命を
署しく低下させてしまう結果になってしまう。また、I
V4自身も急速な動作を不必要に繰り返すことにより、
摺動部等の1♀耗を早める結果となる。特に、IV4の
弁数の多い2段再熱形タービンや原子力タービンにおい
てはこの現象が著しくなるという問題がある。
In this way, if the IV quick closing operation is repeated unnecessarily,
This prolongs the settling time of the steam turbine after the load is cut off, and the rotating parts of the steam turbine are maintained at a high speed. This results in a significant reduction in the life of the steam turbine. Also, I
By repeating rapid movements unnecessarily, V4 itself
This results in accelerated wear of sliding parts, etc. In particular, this phenomenon becomes more pronounced in two-stage reheat turbines and nuclear power turbines that have a large number of IV4 valves.

従って、本発明の目的は上記従来技術の問題点、つまり
蒸気タービンの負荷遮断後に発生するIVの開閉の繰り
返し現象による蒸気タービンの2次ピークを抑制し、迅
速なタービン整定を可能とした蒸気タービン制御lll
装置を提供することにある。
Therefore, the object of the present invention is to solve the problems of the prior art as described above, that is, to suppress the secondary peak of the steam turbine due to the repeated opening and closing phenomenon of the IV that occurs after the load is cut off, and to provide a steam turbine that enables rapid turbine settling. controllll
The goal is to provide equipment.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の蒸気タービン制御装置は、ボイラからの主蒸気
を介して高圧タービンに導き、この高圧タービンからの
排出蒸気を再熱器に通して得られた再熱蒸気を、それぞ
れインターセプト弁を介して中圧タービンに並列に導く
再熱サイクル蒸気タービンを制御する蒸気タービン制御
装置において、前記再熱サイクル蒸気タービンの負荷遮
断を検出する第1の検出手段と、前記再熱サイクル蒸気
タービンの回転速度を検出する第2の検出手段と、前記
再熱蒸気の圧力を検出する第3の検出手段と、前記第1
、第2、および第3の検出手段で得られた検出信号に従
い前記再熱サイクル蒸気タービンの負荷遮断後において
前記複数個のインターセプト弁を選択的に閉動作させる
制御手段とを備えたことを特徴とするものである。
(Means for Solving the Problems) The steam turbine control device of the present invention leads main steam from a boiler to a high-pressure turbine, and passes exhaust steam from the high-pressure turbine through a reheater to generate regenerated steam. In a steam turbine control device for controlling a reheat cycle steam turbine that guides hot steam in parallel to an intermediate pressure turbine via each intercept valve, a first detection means for detecting a load cutoff of the reheat cycle steam turbine; a second detection means for detecting the rotation speed of the reheat cycle steam turbine; a third detection means for detecting the pressure of the reheat steam; and a third detection means for detecting the pressure of the reheat steam turbine;
, control means for selectively closing the plurality of intercept valves after load cutoff of the reheat cycle steam turbine according to detection signals obtained by the second and third detection means. That is.

(作 用) 上記構成によれば、蒸気タービンの負荷遮断後のIV再
開時に回転速度制御信号により開<IVの数を制限し、
タービンの速度降下によりIVが開き始めるときのIV
の弁開度の増加に対して、中圧タービンに流入する再熱
蒸気流量の増加が緩慢になるようにし、然気タービンが
不必要に加速されるのを防止することができる。
(Function) According to the above configuration, the number of open<IVs is limited by the rotational speed control signal when the IV restarts after the load cutoff of the steam turbine,
IV when the IV begins to open due to turbine speed reduction
The increase in the flow rate of reheated steam flowing into the intermediate-pressure turbine is made slow with respect to the increase in the valve opening of the intermediate-pressure turbine, thereby preventing the natural-air turbine from being accelerated unnecessarily.

(実施例) 以下、図面を参照しながら本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例に係る蒸気タービン制罪装置
の部分ブロック図である。同図に示すように、パワーロ
ードアンバランス回路30が蒸気タービンによって駆動
される発電線の出力信号と再熱蒸気圧力信号との偏差に
基づいて信号を発生し、スイッチ32を閉動作さける。
FIG. 1 is a partial block diagram of a steam turbine control device according to an embodiment of the present invention. As shown in the figure, a power load unbalance circuit 30 generates a signal based on the deviation between the output signal of the power generation line driven by the steam turbine and the reheat steam pressure signal, and closes the switch 32.

スイッチ32はその閉動作によりバイアス設定器31か
らのバイアス信号を複数個のIV4のうち特定のIVに
対応するIV開度制御関数部18、例えば18aの前段
に印加する。
When the switch 32 closes, the bias signal from the bias setting device 31 is applied to the IV opening degree control function section 18 corresponding to a specific IV among the plurality of IVs 4, for example, the front stage of the IV opening control function section 18a.

かかる構成において、蒸気タービンが負荷遮断した場合
、パワーロードアンバランス回路3oが作動してスイッ
チ32が閉動作し、バイアス設定器31からIV開度指
令信号16に対してバイアス信号が加算される。このと
きのIV開度指令信号16とIV開度i、II御関数部
18の出力との関係は第2図の特性図に示すように実線
特性Q1から破線特性Q2へ移行する。つまり、負荷遮
断後の小さいIV開度指令信号16ではIVが開かなく
なり、バイアス信号が加わっていないIV4のみが回転
速度信号に基づいて通常と同様に動作することになる。
In this configuration, when the steam turbine is load cut off, the power load unbalance circuit 3o is activated, the switch 32 is closed, and a bias signal is added to the IV opening command signal 16 from the bias setting device 31. At this time, the relationship between the IV opening command signal 16 and the output of the IV opening i and II control function section 18 shifts from the solid line characteristic Q1 to the broken line characteristic Q2, as shown in the characteristic diagram of FIG. That is, with the small IV opening command signal 16 after the load is cut off, the IV will not open, and only the IV4 to which the bias signal is not applied will operate as usual based on the rotational speed signal.

その結果、負荷遮断後、複数個のIV4のうち一部の■
vのみが開くことになるため、同転速度信号に対するI
Vの蒸気流通が減少し、蒸気タービンを再加速するエネ
ルギーが減少し、安定した速度制御が行なわれることに
なる。つまり、第3図の運転特性図に示すように、蒸気
タービンの回転速度が低下してきてもIVが急激に開か
ないため、蒸気タービンは2次ピークを持たず安定に整
定してゆく。
As a result, after load shedding, some ■
Since only v will open, I for the same rotation speed signal
The steam flow in V is reduced and the energy to re-accelerate the steam turbine is reduced, resulting in stable speed control. That is, as shown in the operating characteristic diagram of FIG. 3, even if the rotational speed of the steam turbine decreases, the IV does not open suddenly, so the steam turbine stably settles without having a secondary peak.

IV4が開いて再熱蒸気を逃し切るとパワーロードアン
バランス回路30がリセットされる。その結果、特定の
IV4の制御系に加えられていたバイアス信号はオフさ
れるため、IV4は通常の制御状態に復帰する。
When IV4 opens and all the reheated steam is released, the power load imbalance circuit 30 is reset. As a result, the bias signal applied to the control system of the specific IV4 is turned off, so that the IV4 returns to its normal control state.

第4図は本発明の他の実施例に係る蒸気タービン制御装
置の部分ブロック図を示すものである。
FIG. 4 shows a partial block diagram of a steam turbine control device according to another embodiment of the present invention.

同図構成の第1図構成と異なる点は、パワーロードアン
バランス回路30からの信号で複数のIVのうち特定の
IVに対応する制御系の急速作動電磁弁26を直接作動
させることにより、蒸気タービン減速時のIV4の同動
作による2次ピークを抑制していることである。
The difference between the configuration shown in FIG. 1 and the configuration shown in FIG. This suppresses the secondary peak caused by the same operation of IV4 during turbine deceleration.

なお、上記各実施例では、複数のIVのうち特定のIV
の同動作を抑制する場合を例示したが、本発明の実施は
これに限定されるものではなく、すべての弁に開勅作抑
υ1手段を付加し、これを選択的に動作させるようにし
てもよい。
In addition, in each of the above embodiments, a specific IV among a plurality of IVs
Although the case where the same operation is suppressed is illustrated, the implementation of the present invention is not limited to this, but the opening suppression means υ1 may be added to all valves and this may be operated selectively. Good too.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、蒸気タービンの負
荷遮断後の迅速な蒸気タービンの整定を実現することが
でき、蒸気タービンの寿命に影響する高回転域での運転
を最小限に少なくすることを可能とし、さらに通常運転
には全く影響を与えず所望の制御特性を得ることを可能
とした蒸気タービン制御装置を提供することができる。
As described above, according to the present invention, it is possible to quickly settle the steam turbine after the steam turbine load is cut off, and to minimize the operation in the high rotation range that affects the life of the steam turbine. It is possible to provide a steam turbine control device that can achieve desired control characteristics without affecting normal operation at all.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る蒸気タービンυ制御装
置の部分ブロック図、第2図はIV間開1哀指令信 図、第3図は本発明を実施した場合の負荷遮断時のター
ビン回転速度とIVの動きを示す運転特性図、第4図は
本発明の他の実施例に係る蒸気タービン1IIJ ’a
装置の部分ブロック図、第5図は周知の再熱サイクル蒸
気タービンの系統構成図、第6図、第7図は従来の蒸気
タービン制御装置のブロック図、第8図は蒸気ウービン
負荷遮断後の蒸気タービンの回転速度とIVの動きを示
す運転特性図である。 1・・・ボイラ、2・・・蒸気加減弁、3・・・高圧タ
ービン、4・・・インターセプト弁(IV)、5・・・
中圧タービン、7・・・発電機、16・・・I■開度指
令信号、1 8 − I V開度$lIIlf31am
、3 0 ・l< ’7 − 0 − トアンバランス
回路、31・・・バイアス設定器、32・・・スイッチ
。 出願人代理人  tli   藤  −  雄≧四腫罷
語F姫品替ヨR 第4区 第5図 第6図
Fig. 1 is a partial block diagram of a steam turbine υ control device according to an embodiment of the present invention, Fig. 2 is an IV opening 1 command signal diagram, and Fig. 3 is a diagram of the IV opening 1 command signal when the present invention is implemented. An operating characteristic diagram showing the turbine rotational speed and the movement of IV, FIG. 4 is a steam turbine 1IIJ'a according to another embodiment of the present invention.
A partial block diagram of the device, FIG. 5 is a system configuration diagram of a well-known reheat cycle steam turbine, FIGS. 6 and 7 are block diagrams of a conventional steam turbine control device, and FIG. 8 is a diagram of a conventional steam turbine control device. FIG. 3 is an operating characteristic diagram showing the rotational speed of the steam turbine and the movement of IV. DESCRIPTION OF SYMBOLS 1... Boiler, 2... Steam control valve, 3... High pressure turbine, 4... Intercept valve (IV), 5...
Intermediate pressure turbine, 7... Generator, 16... I ■Opening command signal, 18-IV Opening $lIIlf31am
, 30.l<'7-0-unbalance circuit, 31...bias setting device, 32...switch. Applicant's agent tli Fuji - Male ≧ Four tumors F Hime Kaeyo R District 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、ボイラからの主蒸気を、蒸気加減弁を介して高圧タ
ービンに導き、この高圧タービンからの排出蒸気を再熱
器に通して得られた再熱蒸気を、それぞれインターセプ
ト弁を介して中圧タービンに並列に導く再熱サイクル蒸
気タービンを制御する蒸気タービン制御装置において、 前記再熱サイクル蒸気タービンの負荷遮断を検出する第
1の検出手段と、前記再熱サイクル蒸気タービンの回転
速度を検出する第2の検出手段と、前記再熱蒸気の圧力
を検出する第3の検出手段と、前記第1、第2、および
第3の検出手段で得られた検出信号に従い前記再熱サイ
クル蒸気タービンの負荷遮断後において前記複数個のイ
ンターセプト弁を選択的に開動作させる制御手段とを備
えたことを特徴とする蒸気タービン制御装置。 2、制御手段が特定のインターセプト弁の制御系にバイ
アスを印加するバイアス手段を備えていることを特徴と
する特許請求の範囲第1項に記載の蒸気タービン制御装
置。
[Claims] 1. Main steam from the boiler is guided to a high-pressure turbine via a steam control valve, and exhaust steam from the high-pressure turbine is passed through a reheater to obtain reheated steam, which is intercepted. A steam turbine control device for controlling a reheat cycle steam turbine that is guided in parallel to an intermediate pressure turbine via a valve, comprising: a first detection means for detecting load cutoff of the reheat cycle steam turbine; a second detection means for detecting the rotation speed of the reheated steam; a third detection means for detecting the pressure of the reheated steam; and a third detection means for detecting the pressure of the reheated steam. A steam turbine control device comprising: control means for selectively opening the plurality of intercept valves after a load cutoff of a reheat cycle steam turbine. 2. The steam turbine control device according to claim 1, wherein the control means includes bias means for applying a bias to the control system of a specific intercept valve.
JP10632886A 1986-05-09 1986-05-09 Controller of steam turbine Pending JPS62261606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10632886A JPS62261606A (en) 1986-05-09 1986-05-09 Controller of steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10632886A JPS62261606A (en) 1986-05-09 1986-05-09 Controller of steam turbine

Publications (1)

Publication Number Publication Date
JPS62261606A true JPS62261606A (en) 1987-11-13

Family

ID=14430839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10632886A Pending JPS62261606A (en) 1986-05-09 1986-05-09 Controller of steam turbine

Country Status (1)

Country Link
JP (1) JPS62261606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044131A (en) * 2015-08-26 2017-03-02 株式会社東芝 Steam turbine equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044131A (en) * 2015-08-26 2017-03-02 株式会社東芝 Steam turbine equipment

Similar Documents

Publication Publication Date Title
US4007595A (en) Dual turbine power plant and a reheat steam bypass flow control system for use therein
JPS62261606A (en) Controller of steam turbine
JPS628603B2 (en)
JPS607169B2 (en) Turbine control device for driving water pump
CN108757064B (en) Steam supply system for testing dynamic performance of steam turbine generator unit
JP2011052553A (en) Apparatus and method of controlling steam turbine
JP2854665B2 (en) Steam turbine controller
JPH081124B2 (en) Turbine advance emergency control method
JPS6189911A (en) Preventive measure against excessive speed of steam turbine
JP2960950B2 (en) Electric / hydraulic governor
JP3166972B2 (en) Power plant control method and apparatus, and power plant
JP3609450B2 (en) Intermediate steam valve control device
JPS60164602A (en) High speed valve control device of turbine
JPS6155303A (en) Controlling device of steam turbine
JPS6282207A (en) Control device for steam turbine
JP2554704B2 (en) Turbine controller
JPH0751886B2 (en) Control method for steam turbine
JPH0719007A (en) Turbine control device
JPH0243881B2 (en)
JPH04342806A (en) Steam turbine control device for combined power plant
JPS6158903A (en) Turbine controller for nuclear reactor
JP2823347B2 (en) Turbine control device
JPH02298607A (en) Bypass control device for geothermal steam turbine
JPH0688504A (en) Turbine high speed valve control device
JP2740052B2 (en) Turbine control device