JPS62260886A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPS62260886A
JPS62260886A JP61103090A JP10309086A JPS62260886A JP S62260886 A JPS62260886 A JP S62260886A JP 61103090 A JP61103090 A JP 61103090A JP 10309086 A JP10309086 A JP 10309086A JP S62260886 A JPS62260886 A JP S62260886A
Authority
JP
Japan
Prior art keywords
liquid crystal
liq
crystal
display element
crystal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61103090A
Other languages
Japanese (ja)
Other versions
JPH0730321B2 (en
Inventor
Tamihito Nakagome
中込 民仁
Yasuhiko Shindo
神藤 保彦
Shinji Hasegawa
真二 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61103090A priority Critical patent/JPH0730321B2/en
Publication of JPS62260886A publication Critical patent/JPS62260886A/en
Publication of JPH0730321B2 publication Critical patent/JPH0730321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a field effect liq. crystal display element which is excellent in time-sharing driving characteristics, exhibits a high transition temp. and is easy to read and to use, and which comprises a liq. crystal comprising an ester cyclohexane liq. crystal material, a phenylcyclohexane liq. crystal material and a particular liq. crystal material. CONSTITUTION:By making use of a liq. crystal obtd. by blending 5-60wt% ester cyclohexane liq. crystal material of formula I (wherein m+n<=6; formula II is a benzene ring; and formula III is a cyclohexane ring) with 5-50wt% phenylcyclohexane of formula IV (wherein n is 2-7) and 5-35wt% liq. crystal material having 3-4 molecules of formulae II and III and having a liq. crystal/liq. transition temp. of 200 deg.C or less, an optically active substance-contg. nematic liq. crystal having positive dielectric anisotropy is sealed in a vertically disposed pair of electrode plates to form a spiral structure in which liq. crystal molecules are twisted by 160-260 deg. in the direction of the liq. crystal thickness, with the polarization axis or absorption axis of a polarizing plate provided so as to sandwich the structure dislocated by 20-70 deg. against the liq. crystal molecule orienting direction of the neighboring electrode plates, thereby obtaining a liq. crystal display element for which the product of the thickness of the liq. crystal layer and the refractive index anisotropy of the liq. crystal is 0.7-1.2mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は優れた時分割駆動特性を有する電界効果型液晶
表示素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field effect liquid crystal display device having excellent time-division driving characteristics.

〔従来の技術〕[Conventional technology]

従来の液晶表示素子のライステンド皐マチックタイプと
呼ばれるものは、2枚の電極基板間に正の誘電異方性を
有するネマチック液晶による90度ねじれた!1’旋構
造を有し、かつ両電極基板の外側には偏光板をその偏光
軸(又は吸収軸)が電極基板に隣接する液晶分子に対し
直交あるいは平行になるように配置したものであった(
特公昭51−13666号)。
The conventional liquid crystal display element, called the Leystened romatic type, is made of nematic liquid crystal that has positive dielectric anisotropy between two electrode substrates and is twisted by 90 degrees! It had a 1'-rotated structure, and a polarizing plate was placed on the outside of both electrode substrates so that its polarization axis (or absorption axis) was perpendicular or parallel to the liquid crystal molecules adjacent to the electrode substrate. (
Special Publication No. 51-13666).

2枚の電極基板間で液晶分子が90度ねじれた螺旋構造
をなすように配向させるには、例えば電極基板の、液晶
に接する表面を布などで一方向にこする方法、いわゆる
ラビング法(チルト角1〜3度)によってなされる。こ
のときのこする方向、すなわちラビング方向が液晶分子
の配列方向となる。このようにして配向処理された2枚
の電極基板を夫々のラビング方向が互いに略90度に交
差するように間隙をもたせて対向させ、2枚の電極基板
をシール剤により接着し、その間隙に正の誘電異方性を
もったネマチック液晶を封入すると、液晶分子はこれら
電極基板間で略90度回転した螺旋構造の分子配列をす
る。このようにして構成された液晶セルの上下には偏光
板が設けられるが、その偏光軸または吸収軸は夫々の電
極基板に隣接する液晶分子の配列方向とほぼ平行にする
。ここで、以降の説明に必要な時分割駆動特性を表す量
の定褒について簡単に説明する。
In order to align the liquid crystal molecules between two electrode substrates so that they form a 90-degree twisted helical structure, for example, the so-called rubbing method (tilt rubbing method), which is a method of rubbing the surface of the electrode substrate in contact with the liquid crystal in one direction with a cloth, etc. angle of 1 to 3 degrees). The rubbing direction at this time, that is, the rubbing direction, becomes the alignment direction of the liquid crystal molecules. The two electrode substrates that have been oriented in this way are placed facing each other with a gap so that their respective rubbing directions intersect with each other at approximately 90 degrees, the two electrode substrates are adhered with a sealant, and the gap is When a nematic liquid crystal having positive dielectric anisotropy is sealed, the liquid crystal molecules are arranged in a helical structure rotated approximately 90 degrees between these electrode substrates. Polarizing plates are provided above and below the liquid crystal cell constructed in this manner, and the polarizing axes or absorption axes thereof are made approximately parallel to the alignment direction of liquid crystal molecules adjacent to each electrode substrate. Here, the fixed reward amount representing the time-sharing drive characteristic, which is necessary for the following explanation, will be briefly explained.

第2図は従来の90度ねじれた液晶分子の螺旋構造を持
つ液晶表示素子の典型的な電圧−輝度特性を示している
。これは印加電圧に対する反射輝度の相対値をとったも
のであり、輝度の初期値を100χ、最終値(印加電圧
が十分大きいときの値)を0%にしている。一般には、
相対輝度が90%となる電圧をしきい値VJL 、10
%となる電圧を飽和値■satとして液晶の特性の目安
にする。しかし、実用上は90%以上あれば画素は十分
明るく液晶は非点灯状態、50%以下であれば画素は十
分に暗く、液晶は点灯状態としてよく、以下本明10書
においては、相対輝度が90%、50%になる電圧をそ
れぞれ、しきい値電圧■藏、飽和電圧Vsatとする。
FIG. 2 shows typical voltage-luminance characteristics of a conventional liquid crystal display element having a helical structure of liquid crystal molecules twisted by 90 degrees. This is a relative value of the reflected brightness with respect to the applied voltage, and the initial value of the brightness is 100χ and the final value (value when the applied voltage is sufficiently large) is 0%. In general,
The voltage at which the relative brightness is 90% is the threshold value VJL, 10
% is taken as the saturation value ■sat and is used as a guideline for the characteristics of the liquid crystal. However, in practice, if it is 90% or more, the pixel is sufficiently bright and the liquid crystal is not lit, and if it is 50% or less, the pixel is sufficiently dark and the liquid crystal is lit. The voltages at 90% and 50% are respectively defined as the threshold voltage and saturation voltage Vsat.

さらに液晶表示素子の電気光学特性は、見る方向によっ
ても変わり、この特性が良好な表示品質が得られる視野
を制限している。
Furthermore, the electro-optical characteristics of a liquid crystal display element vary depending on the viewing direction, and these characteristics limit the field of view in which good display quality can be obtained.

ここで視角角度φの定義を第3図によって説明する。図
において、液晶表示素子1の上側電極基板11のラビン
グ方向を2、下側電極基板12のラビング方向を3とし
、液晶分子のねじれ角を4とする。また液晶表示素子1
の表面に直交座標XY軸をとり、X軸方向を液晶分子の
ねじれ角4を2等分する方向に規定し、Z軸をXY面の
法線方向に定め、観察方向5がZ軸となす角を視角角度
φとする。なお、この場合簡単のために観察方向5はX
2面内にあることとする。また、第3図に示されたφを
正とし、このような方向から見た場合、コントラストが
高くなるので、このような方向を視野方向という。
Here, the definition of the viewing angle φ will be explained with reference to FIG. In the figure, the rubbing direction of the upper electrode substrate 11 of the liquid crystal display element 1 is 2, the rubbing direction of the lower electrode substrate 12 is 3, and the twist angle of the liquid crystal molecules is 4. Also, liquid crystal display element 1
The orthogonal coordinates XY axes are set on the surface of Let the angle be the viewing angle φ. In this case, for simplicity, the observation direction 5 is
It is assumed that it is within two planes. Further, when φ shown in FIG. 3 is positive, and when viewed from this direction, the contrast becomes high, so this direction is called the viewing direction.

第2図において、角度φ−10度の輝度が90%になる
電圧をVt1t1.50%になる電圧をv−1とし、角
度φ=40度の輝度が90%になる電圧をVAzとした
とき、立ち上がり特゛性γ、角度特性Δφ及び時分割能
mを次式のように定義する。
In Figure 2, when the voltage at which the brightness at angle φ-10 degrees is 90% is Vt1, the voltage at which the brightness is 1.50% is v-1, and the voltage at which the brightness at angle φ = 40 degrees is 90% is VAz. , the rise characteristic γ, the angular characteristic Δφ, and the time resolution m are defined as follows.

従来の液晶表示素子の時分割駆動特性は、液晶の屈折率
異方性をΔn、上下電極基板間間隙をdとした場合Δn
−dに依存しており、Δn−dが大きい場合(例えば0
.8μm以上)にはTが良く(小さり)、Δφが悪い(
小さい)。一方、Δn・dが小さい場合(例えば0.8
μm以下)にはTが悪く (大きく)、Δφが良い(大
きい)。しかし、時分割能mで比較した場合には、Δn
−dの小さい方が良い。以上の具体的な例を次頁第1表
に示す。
The time division drive characteristic of a conventional liquid crystal display element is expressed as Δn, where Δn is the refractive index anisotropy of the liquid crystal, and d is the gap between the upper and lower electrode substrates.
-d, and if Δn-d is large (e.g. 0
.. 8μm or more), T is good (small) and Δφ is bad (
small). On the other hand, if Δn・d is small (for example, 0.8
μm or less), T is bad (large) and Δφ is good (large). However, when comparing by time resolution m, Δn
The smaller -d is, the better. Specific examples of the above are shown in Table 1 on the next page.

第1表 ここで時分割駆動について、ドツトマトリクスディスプ
レイを例にとって簡単に説明する。第4図に示すように
下側電極基板12にストライプ状のY電極(信号電極)
 13を、上側電極基板11にX電極(走査電極)14
を形成し、文字等の表示は、X、7両電極の交点部の液
晶を点灯あるいは非点灯にして行う。図においてn本の
走査電極をX、 、X。
Table 1 Here, time-division driving will be briefly explained using a dot matrix display as an example. As shown in FIG. 4, striped Y electrodes (signal electrodes) are formed on the lower electrode substrate 12.
13, and an X electrode (scanning electrode) 14 on the upper electrode substrate 11.
The display of characters, etc. is performed by lighting or not lighting the liquid crystal at the intersection of the X and 7 electrodes. In the figure, n scanning electrodes are denoted by X, ,X.

・−・・−X7、X、 、X、−・・・X、と線順次走
査を繰り返して時分割駆動する。ある走査電極が選択さ
れたとき、その電極上のすべての画素に、信号電極13
であるy、 、y2−・−Y、、により、表示すべき信
号に従い選択または非選択の表示信号を同時に与える。
. . . - X7, X, , X, - . . . When a certain scanning electrode is selected, the signal electrode 13 is applied to all pixels on that electrode.
By y, , y2-...-Y, , a selected or non-selected display signal is simultaneously given according to the signal to be displayed.

このように、走査電極と信号電極に加える電圧パルスの
組合せで交点の点灯、非点灯を選択する。この場合の走
査電極Xの数が時分割数に相当する。
In this way, lighting or non-lighting of the intersection is selected by the combination of voltage pulses applied to the scanning electrode and the signal electrode. The number of scanning electrodes X in this case corresponds to the number of time divisions.

従来の液晶表示素子では、第1表に例示した様な時分割
駆動特性しか得られないために、時分割数32または6
4が実用的には限界であった。しかし、近年、液晶表示
素子の画質の改善と表示情報量増大に対する要求が厳し
くなっており、要求仕様を満足できない状況になってい
る。
With conventional liquid crystal display elements, the number of time divisions is 32 or 6 because only the time division drive characteristics shown in Table 1 can be obtained.
4 was the practical limit. However, in recent years, demands for improving the image quality of liquid crystal display elements and increasing the amount of displayed information have become stricter, making it impossible to satisfy the required specifications.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

時分割数100以上でも良好な画質をもつ液晶表示素子
を提供するために、本発明者等は先にツイスト角及び偏
光板の組合せのセル構造を全く新しい方式に変えること
を提案した(特開昭60−50511号、特願昭60−
50454号、特願昭60−70950号)。
In order to provide a liquid crystal display device with good image quality even when the number of time divisions is 100 or more, the present inventors previously proposed changing the cell structure of the combination of twist angle and polarizing plate to a completely new system (Unexamined Japanese Patent Publication No. 1986-50511, patent application 1986-
No. 50454, Japanese Patent Application No. 60-70950).

そのセルの上面図を第5図に、斜視図を第6図に示す。A top view of the cell is shown in FIG. 5, and a perspective view is shown in FIG.

本発明では、このような構造に特に通した液晶材料を選
択して一層良好な時分割特性、表示画質をもつ液晶表示
素子を提供することを目的とする。
The present invention aims to provide a liquid crystal display element having better time division characteristics and display image quality by selecting a liquid crystal material that is particularly compatible with such a structure.

〔問題点を解決するための手段〕[Means for solving problems]

上記の如く、本発明者は先に、液晶分子の!!旋構造の
ねじれ角を160〜260度とし、かつ、この螺旋構造
を挟んで設けた偏光板の偏光軸または吸収軸が、隣接す
、る重陽基板の液晶分子配列方向と20〜70度ずれて
おり、さらに、μm単位で表した液晶層の厚さdと液晶
の屈折率異方性Δnとの積Δr1・dが0.7〜1.2
μmである液晶表示素子の構造を提案したが、本発明者
はかかる構造に対して、従来のものよりも一層好通な液
晶材料を見出し、この材料を用いて時分割特性、表示画
質ともに一層すぐれた液晶表示素子を得た。
As mentioned above, the present inventor first developed a method for determining the characteristics of liquid crystal molecules. ! The twist angle of the helical structure is 160 to 260 degrees, and the polarization axis or absorption axis of the polarizing plate provided on both sides of the helical structure is deviated by 20 to 70 degrees from the liquid crystal molecule alignment direction of the adjacent double yang substrate. Furthermore, the product Δr1·d of the thickness d of the liquid crystal layer expressed in μm and the refractive index anisotropy Δn of the liquid crystal is 0.7 to 1.2.
The present inventors have proposed a structure of a liquid crystal display element having a micrometer scale, but the present inventors have discovered a liquid crystal material that is more suitable for such a structure than conventional ones, and by using this material, both time division characteristics and display image quality can be improved. An excellent liquid crystal display element was obtained.

〔作用〕[Effect]

このように200度程エライストさせたセル構造の素子
の場合は、従来通常の90度ツイストの場合とは、液晶
材料の選択に際して、下記の如く、物性値の効果が全く
異なる傾向を示す。
In the case of an element having a cell structure in which the cell structure is twisted by about 200 degrees, the effect of physical properties when selecting a liquid crystal material tends to be completely different from that in the case of a conventional 90 degree twist, as described below.

まず、ツイスト角度をこのように大きくした構造の液晶
表示素子がどんな特性を示すか、電圧−透過率特性の視
角角度依存性を、第1図(a)に90度ツイストの、同
図(b)に180度ツイストの場合を示して比較する。
First, to see what kind of characteristics a liquid crystal display element with a structure in which the twist angle is increased in this way shows, the viewing angle dependence of the voltage-transmittance characteristics is shown in Figure 1 (a), with a 90 degree twist, and in Figure 1 (b). ) shows the case of 180 degree twist for comparison.

これらの図から判るように、180度ねじった構造を有
する素子は、透過率の電圧による立下り特性(γ特性)
が急峻であり、従来の90度ツイストの場合に比べて明
らかに特性は向上している。この傾向はツイスト角度を
大きくするにつれて顕著になる。この様に160〜26
0度ねじった素子構造を有する素子は電圧による立下り
特性が急峻なために時分割駆動時における電圧の印加、
不印加による透過率差が大きくなり、従来より高い時分
割駆動が出来るようになる。どんな液晶を用いてもツイ
スト角度を大きくすることによって90度ツイストに比
べれば立下り特性(γ特性)は大きく改善される。′し
かじ、液晶材料により、90度ツイストの場合のγ特性
と、160〜260度ツイストの場合のγ特性の関係は
、同じ傾向を示さず、90度ツイストの場合には一般に
γ特性の良い材料は弾性係数の比(kお/に、ρが小さ
いほど良いという従来の通説(Eurodisplay
 84.”Liquidcrystal proper
ties in relation to Multi
plex−ing requirements’:Gu
nter Bauer)が当てはまらない現象が現れた
。これは、ねじれ角を大きくしたことによる、ねじれの
弾性係数の関係や其の他のことが考えられるが、理論的
には未だ明らかになっていない。
As can be seen from these figures, the element with a 180 degree twisted structure has a falling characteristic (γ characteristic) of transmittance depending on the voltage.
is steep, and the characteristics are clearly improved compared to the conventional 90 degree twist. This tendency becomes more noticeable as the twist angle increases. 160-26 like this
Since an element with a 0 degree twisted element structure has a steep voltage fall characteristic, it is difficult to apply voltage during time-division driving.
The difference in transmittance due to no application of voltage becomes large, making it possible to perform higher time-division driving than in the past. No matter what kind of liquid crystal is used, by increasing the twist angle, the falling characteristics (gamma characteristics) can be greatly improved compared to a 90 degree twist. However, depending on the liquid crystal material, the relationship between the γ characteristics in the case of a 90 degree twist and the γ characteristics in the case of a 160 to 260 degree twist does not show the same tendency, and in the case of a 90 degree twist, the γ characteristics are generally good. The conventional wisdom (Eurodisplay
84. ”Liquid crystal proper
ties in relation to Multi
plex-ing requirements': Gu
A phenomenon has appeared to which the following equation (inter. Bauer) does not apply. This may be due to the relationship of the elastic modulus of twist due to the increase in the twist angle or other factors, but this has not yet been clarified theoretically.

これまでは、90度ツイストでは特性の最も良好な材料
は弾性係数の比(k33/ k++)が小さいピリミジ
ン系(RC静◎OR)などが入った材料が良いとされて
いた。事実、90度ツイストでは、第7図に示すように
、このような傾向がはっきりと現れている。ここで聾−
纒の意味は法線からの角度10度に於ける第1図に示し
た透過率80%と20%の電圧の比を取ったγ特性(電
圧の立上り特性)である。
Up until now, it has been thought that the material with the best properties for a 90 degree twist is a material containing a pyrimidine type material (RC static ◎OR) with a small ratio of elastic modulus (k33/k++). In fact, in the case of a 90 degree twist, such a tendency is clearly seen as shown in FIG. Deaf here
The meaning of the line is the γ characteristic (voltage rise characteristic), which is the ratio of the voltage at 80% transmittance and 20% shown in FIG. 1 at an angle of 10 degrees from the normal line.

第8図に180度ツイストと230度ツイストの場合の
弾性係数の比とγ特性との関係を示す。図から明らかな
ように、この場合は弾性係数の小さいピリミジン系の方
がPCI(フェニルシクロヘキサン)系よりγ特性が悪
い結果となっている。このように、2.00度程度ねじ
った場合は、これまでの考え方が成り立たず、PCII
系が良い結果を示しており、ツイスト90度でのセル構
造の場合とは異なった考え方で液晶材料を渾沢する必要
があることが明らかである。また、この第8図から明ら
かなように、180度ツイストより230度ツイストし
た場合、T特性が向上していることから、ツイスト角度
を大きくとる程γ特性が向上する結果が明らかとなって
いる。
FIG. 8 shows the relationship between the ratio of elastic modulus and the γ characteristic in the case of 180 degree twist and 230 degree twist. As is clear from the figure, in this case, the pyrimidine type having a small elastic modulus has worse γ characteristics than the PCI (phenylcyclohexane) type. In this way, when twisted by about 2.00 degrees, the previous thinking does not hold, and the PCII
The system shows good results and it is clear that the liquid crystal material needs to be developed in a different way than in the case of a cell structure with a 90 degree twist. Furthermore, as is clear from Fig. 8, the T characteristic is improved when the twist is 230 degrees rather than the 180 degree twist, so it is clear that the larger the twist angle is, the better the γ characteristic is. .

〔実施例〕〔Example〕

以下、実施例と参考例によって本発明を更に詳細に説明
する。何れの例でも、カイラル液晶5811(メルク社
製)を、夫々、ツイストの適正値だけ入れたものとする
(180度ツイストの場合、d/p−0,40−0,5
0、但しp:カイラル液晶のピッチ、d:液晶セルのセ
ル厚)。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Reference Examples. In either example, chiral liquid crystal 5811 (manufactured by Merck & Co., Ltd.) is inserted with appropriate twist values (in the case of 180 degree twist, d/p-0, 40-0, 5
0, where p: pitch of chiral liquid crystal, d: cell thickness of liquid crystal cell).

なお、下記の各側を測定するのに用いた素子は、ポリイ
ミドなどの有機配向膜を塗布または印刷した界面をガー
ゼなどで規定の方向にラビングしたものを用いた。素子
界面とそれに接する液晶の分子との角度(チルト角)は
ほぼ3度であった。
The elements used to measure each side below were those coated with or printed with an organic alignment film such as polyimide and rubbed in a specified direction with gauze or the like. The angle (tilt angle) between the element interface and the liquid crystal molecules in contact with it was approximately 3 degrees.

液晶材料を評価するのに用いた界面は全てラビングによ
って液晶材料を一方向に配向させたが、ラビングによる
チルト角は一般的に3度以下であり、大きくても5度以
下と考えられる。なお、チルト角の測定法はに、5uz
uki et al、: Appl、Phys。
All the interfaces used to evaluate the liquid crystal material were rubbed to align the liquid crystal material in one direction, but the tilt angle due to rubbing is generally 3 degrees or less, and is thought to be 5 degrees or less at most. In addition, the method for measuring the tilt angle is 5uz
Uki et al.: Appl, Phys.

Le t t、 、 33 (7) 、 56.1 (
1978)の文献と同じ方法で行った。
Let t, , 33 (7), 56.1 (
The same method as in the literature (1978) was used.

実施例I 次の(1)の液晶材料組成系においてへの材料(エステ
ルシクロヘキサンECH系の液晶で、構造式”l’2に
?+−■coo−◎QC1,,’2mvl  を持つ)
の混合系4種を選択して実験した。この構造の材料をE
CHnomと表し、夫々Aを含んだ(1)の組成におけ
る炭素数n+mの平均値i、屈折率異方性Δn、CP単
位によA                   −・
39 wLxる粘度、ネマチック液晶−液体の転移点T
N−エを付記する。炭素数n+mの平均値が6を越すと
、粘度過大で実施例として採用できなかった。
Example I Material for the following liquid crystal material composition system (1) (ester cyclohexane ECH type liquid crystal with structural formula "l'2?+-■coo-◎QC1,,'2mvl")
Experiments were conducted by selecting four types of mixed systems. The material of this structure is E
CHnom, the average value of carbon number n + m in the composition (1) containing A, the refractive index anisotropy Δn, and A − · in CP unit, respectively.
39 wLx viscosity, nematic liquid crystal - liquid transition point T
Add N-E. When the average value of carbon number n+m exceeded 6, the viscosity was too high and it could not be adopted as an example.

五 Δn  粘度   〜 上記A−1とA−2は炭素数n十mの平均値が6以下で
粘度は実用可能な範囲にあるが、炭素数n+mの平均値
が6を越えると粘度が過大となって表示素子として実用
できなかった。このように炭素数の和が多くて粘度過大
となったECH系液晶材料A−3、八−4を参考例とし
て其の組成を下記する。
5 Δn Viscosity ~ For A-1 and A-2 above, the average value of carbon number n0m is 6 or less and the viscosity is within a practical range, but if the average value of carbon number n + m exceeds 6, the viscosity is excessive. Therefore, it could not be put to practical use as a display element. The compositions of ECH-based liquid crystal materials A-3 and 8-4, which have excessive viscosity due to the large sum of carbon numbers, will be described below as reference examples.

八−1からA−4までの夫々分子量の貰なった材料を夫
々30−1含んだ材料系の”8’D8ニー267、を、
18080度ライス1せた場合と900度ライス・させ
た場合のデータをfFS1図(c)に示した。180度
ツイストの場合と90度ツイストの場合では逆の傾向を
示す。これまでの90度ツイストの素子ではECH系の
n+mの値が大きくなればkお/に、、の弾性係数の比
が小さくなるため4:γ特性が向上しコントラストが上
がると説明されていたが、180度ツイストの領域では
、前記の如く、この考え方が全く当てはまらず異なった
考え方が必要であることを示している。
"8'D8 Knee 267," a material system containing 30-1 of materials with different molecular weights from 8-1 to A-4, respectively,
The fFS1 diagram (c) shows the data for the case of 18080 degree rice and the case of 900 degree rice. The 180 degree twist and the 90 degree twist show opposite trends. It has been explained that in conventional 90 degree twisted elements, as the value of n+m in the ECH system increases, the ratio of the elastic coefficients of k and/or decreases, resulting in improved 4:γ characteristics and higher contrast. , 180 degree twist, as mentioned above, this concept does not apply at all, indicating that a different concept is required.

実施例■ 次の液晶材料混合系においては、高転移点の材料とEC
H系液晶を組合せることにより非常に優れた特性を示す
ものが得られる。ここで用いた高転移点材料の符号、構
造式、転移点を下記する。
Example■ In the following liquid crystal material mixture system, a material with a high transition temperature and an EC
By combining H-based liquid crystals, it is possible to obtain something that exhibits very excellent characteristics. The code, structural formula, and transition point of the high transition point material used here are shown below.

L−1:    CsH’t−◎◎−coo−◎−θC
,n、         332℃L−2:  C3”
?−◎@−Coo−■−OCd、、    320 ℃
L−3:  C,+1.、−◎◎−Coo−@−OC3
H7310”C”’  Ct”tp−@◎−coo−◎
−0C3H7291℃これらのうち、L−1、L−2、
L−3は実施例■にも含まれている。
L-1: CsH't-◎◎-coo-◎-θC
,n, 332℃L-2: C3''
? -◎@-Coo-■-OCd,, 320 ℃
L-3: C, +1. , -◎◎-Coo-@-OC3
H7310"C"'Ct"tp-@◎-coo-◎
-0C3H7291℃ Among these, L-1, L-2,
L-3 is also included in Example ■.

また、トラン系液晶C,IHzy++I◎−c=c−◎
QC,,HzwfrをLVFnomと略記する。
Also, Tolan liquid crystal C, IHz ++ I◎-c=c-◎
QC, Hzwfr is abbreviated as LVFnom.

実施例n−1、ll−2、ll−3の組成、転移点TN
、!、61125℃の粘度、福−w、(180度ツイス
ト)、■単位による<(視角10度で見て実質的に点灯
状態と認められる電圧)を下記する。
Composition and transition point TN of Examples n-1, ll-2, ll-3
,! , viscosity at 61125° C., Fuku-w, (180 degree twist), < (voltage that is considered to be substantially in a lighting state when viewed at a viewing angle of 10 degrees) in units of (2) are shown below.

実施例n−1は上記高転移点材料とECH液晶にNp液
晶(Δε≧9−gz)I’CH3を30%混合した単純
な系である。この糸はECH系の含有量が多いためにγ
特性が最も優れた材料系となっている。
Example n-1 is a simple system in which 30% of Np liquid crystal (Δε≧9−gz) I'CH3 is mixed with the above-mentioned high transition point material and ECH liquid crystal. This yarn has a high content of ECH, so γ
It is a material system with the best properties.

実施例n−2、ll−3は、実施例If−1ニLVF系
液晶を添加することによりΔnを上げた系である。LV
F系の混合割合が増加するにつれてγ特性は落ちて来る
が、実施例11−1の特性が良いためにΔn=0.16
6まで上げた系11−3でもγ特性は1.054と良い
レベルを保持している。
Examples n-2 and 11-3 are systems in which Δn was increased by adding the LVF liquid crystal of Example If-1. LV
As the mixing ratio of F system increases, the γ characteristics decrease, but since the characteristics of Example 11-1 are good, Δn=0.16.
Even in system 11-3, which has been increased to 6, the γ characteristic remains at a good level of 1.054.

実施例■ 高−9r点材料として次の材料を使用することにより、
更にγ特性が改良された。
Example■ By using the following material as a high-9r point material,
Furthermore, the γ characteristics were improved.

L−5:  C,117−9−ecOO−@−0C3H
7318℃L−6:  C,H,−θ−θcoo−◎−
θG、19  325℃実施例■の場合に比べて高−6
X点材料のL−3、L−4をL〜5 、L−6に変更し
たのが本実施例である。シクロヘキサン環を3個有する
L−5、L−6は粘度も、γ特性も実施例■の場合に比
べて改良されており、材料選択が重要なことを示唆して
いる。
L-5: C,117-9-ecOO-@-0C3H
7318℃L-6: C, H, -θ-θcoo-◎-
θG, 19 325℃ Higher -6 compared to Example ■
In this example, the X-point materials L-3 and L-4 were changed to L-5 and L-6. Both L-5 and L-6, which have three cyclohexane rings, have improved viscosity and γ properties compared to Example (2), suggesting that material selection is important.

次に参考例として、実施例■の中のECH系を、PGI
1系に置き換えた時のデータを実験してみると次の様に
なる。
Next, as a reference example, the ECH system in Example
When I experimented with the data when replacing it with the 1st system, I got the following.

但しPCI1302: C3+1.−θ−◎0C2Hr
PCH304: C3H,−[相]−◎0C4H(?P
CH302、I’CI(304はEC)lに比べて低粘
度のために粘度は低くなるが、TN1点は低くなり、特
にγ特性がECUに比べて大きく落ちているのが問題で
ある。低粘度化ということでPC11液晶は重要な材料
であるが、γ特性の改良という点ではECII液晶が特
に優れ、特にこの中のアルキル基の中の炭素数n、mの
和が6以下の材料が優れていることは実施例Iで示した
ことから明らかである。
However, PCI1302: C3+1. -θ-◎0C2Hr
PCH304: C3H,-[phase]-◎0C4H(?P
Compared to CH302 and I'CI (304 is EC), the viscosity is lower due to its lower viscosity, but the TN1 point is lower, and the problem is that the γ characteristics in particular are significantly lower than ECU. PC11 liquid crystal is an important material in terms of reducing viscosity, but ECII liquid crystal is particularly superior in terms of improving gamma characteristics, especially materials in which the sum of carbon numbers n and m in the alkyl group is 6 or less. It is clear from what was shown in Example I that this is superior.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、液晶分子の6M構
造のねじれ角を160〜260度と大きくした液晶表示
素子を、本発明に係る液晶材料(ECH系低分子量液晶
によりγ特性を向上させ、PGE1により全体として正
の誘電異方性を確保し、高転移点液晶材料の添加により
全体としての転移点を高めである)を使用することによ
って、γ特性が良好で、転移点が高く、見易く、使い易
いものにすることが出来る。
As explained above, according to the present invention, a liquid crystal display element in which the twist angle of the 6M structure of liquid crystal molecules is as large as 160 to 260 degrees can be manufactured using a liquid crystal material according to the present invention (ECH-based low molecular weight liquid crystal with improved γ characteristics). , PGE1 ensures positive dielectric anisotropy as a whole, and the addition of a high transition point liquid crystal material increases the overall transition point), the γ characteristics are good, the transition point is high, It can be made easy to see and use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)はツイスト角90度の従来の素子の電圧−
透過率特性の視角依存性を示す図、第1図(b)はツイ
スト角180度の素子の電圧−透過率特性の視角依存性
を示す図、第1図(c)は液晶材料中の炭素数の和(m
+n)とγ特性との関係をツイスト角90度の場合と1
80度の場合を対比して示す図、第2図は従来の90度
ねじれた液晶分子の!J旋構造を持つ液晶表示素子の典
型的な電圧−輝度特性を示す図、第3図は視角角度φの
足表の説明図、第4図は時分割駆動の説明図、第5図は
ツイスト角を太き(し偏光板の組合せを変えたセル構造
の素子の上面図、第6図は同素子の斜視図、第7図はツ
イスト角90度の素子の弾性係数の比とγ特性との関係
を示す図、第8図は本発明に係るツイスト角180度と
ツイスト角230度の素子の弾性係数の比とγ特性の関
係を示す図である。 1一液晶表示素子、 2.6・−上側電極基板のラビン
グ方向、 3.7−下側電極基板のラビング方向、 4
.10−・液晶分子のねじれ方向、 8−上側偏光板の
吸収軸または偏光軸方向、 9・−・下側偏光板の吸収
軸または偏光軸方向、 17−液晶分子。 代理人 弁理士 小川 勝馬−゛h。 第  1   図 (α) (b) グ ヱ・f工S) 第  1  図 (c) σ    2  4    e   り   /σEC
・ゴ九幅のしにの妄(町 第  2  図 第  3  図 7悄 5−観をす佐 第  4  図 、・d 第  5vA 第  6  図 第  7  図 第  8  図
Figure 1(a) shows the voltage of a conventional element with a twist angle of 90 degrees.
A diagram showing the viewing angle dependence of transmittance characteristics. Figure 1(b) is a diagram showing the viewing angle dependence of voltage-transmittance characteristics of an element with a twist angle of 180 degrees. Figure 1(c) is a diagram showing the viewing angle dependence of the voltage-transmittance characteristic of an element with a twist angle of 180 degrees. Sum of numbers (m
+n) and the γ characteristics for a twist angle of 90 degrees and 1
A diagram showing a comparison of the case of 80 degrees, Figure 2 shows the conventional liquid crystal molecules twisted 90 degrees! A diagram showing the typical voltage-luminance characteristics of a liquid crystal display element with a J-circular structure. Figure 3 is an explanatory diagram of the foot chart of viewing angle φ. Figure 4 is an explanatory diagram of time-division driving. Figure 5 is a diagram of twisted display. A top view of an element with a cell structure with thicker corners (and a different combination of polarizing plates), Fig. 6 is a perspective view of the same element, and Fig. 7 shows the ratio of elastic coefficients and γ characteristics of an element with a twist angle of 90 degrees. FIG. 8 is a diagram showing the relationship between the ratio of elastic coefficients and γ characteristics of elements with a twist angle of 180 degrees and a twist angle of 230 degrees according to the present invention.1-Liquid crystal display element, 2.6・-Rubbing direction of upper electrode substrate, 3.7-Rubbing direction of lower electrode substrate, 4
.. 10--twist direction of liquid crystal molecules, 8-direction of absorption axis or polarization axis of upper polarizing plate, 9-direction of absorption axis or polarization axis of lower polarizing plate, 17-liquid crystal molecule. Agent: Patent attorney Katsuma Ogawa-゛h. Fig. 1 (α) (b) Fig. 1 (c) σ 2 4 e /σEC
・Gokubaku no Shini no Delusion (Machi, Figure 2, Figure 3, Figure 7, 5-Kanwosa, Figure 4, d, 5vA, Figure 6, Figure 7, Figure 8)

Claims (1)

【特許請求の範囲】 1、正の誘電異方性を有し、旋光性物質が添加されたネ
マチック液晶が、対向配置された上下一対の電極基板間
に封入され、その厚さ方向に液晶分子が160〜260
度ねじれた螺旋構造を形成し、かつ、この螺旋構造を挟
んで設けられた偏光板の偏光軸または吸収軸が、隣接す
る電極基板の液晶分子配列方向と20〜70度ずれてお
り、更にμm単位で表した液晶層の厚さdと液晶の屈折
率異方性Δnとの積Δn・dが0.7〜1.2μmであ
る液晶表示素子において、炭素数mとnの和が6以下の
エステルシクロヘキサン系液晶材料▲数式、化学式、表
等があります▼5〜60重量%、 nが2〜7のフェニルシクロヘキサン系液晶材料▲数式
、化学式、表等があります▼5〜50重量%、及び、含
有 するベンゼン環▲数式、化学式、表等があります▼とシ
クロヘキサン環▲数式、化学式、表等があります▼の合
計が3〜4個で液晶液体の転移温度が200℃以上の液
晶材料5〜35重量%、を混合した組成の液晶を用いた
ことを特徴とする液晶表示素子。
[Claims] 1. A nematic liquid crystal having positive dielectric anisotropy and added with an optically active substance is sealed between a pair of upper and lower electrode substrates arranged oppositely, and liquid crystal molecules are distributed in the thickness direction of the nematic liquid crystal. is 160-260
The polarization axis or absorption axis of the polarizing plate that forms a twisted helical structure on both sides of this helical structure is shifted by 20 to 70 degrees from the liquid crystal molecule alignment direction of the adjacent electrode substrate. In a liquid crystal display element in which the product Δn·d of the thickness d of the liquid crystal layer expressed in units and the refractive index anisotropy Δn of the liquid crystal is 0.7 to 1.2 μm, the sum of the carbon numbers m and n is 6 or less Ester cyclohexane liquid crystal material ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ 5-60% by weight, phenylcyclohexane-based liquid crystal material with n 2-7 ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ 5-50% by weight, and , a liquid crystal material containing a total of 3 to 4 benzene rings ▲ mathematical formulas, chemical formulas, tables, etc. ▼ and cyclohexane rings ▲ mathematical formulas, chemical formulas, tables, etc. ▼ and a liquid crystal liquid transition temperature of 200°C or higher A liquid crystal display element characterized by using a liquid crystal having a composition of 35% by weight.
JP61103090A 1986-05-07 1986-05-07 Liquid crystal display element Expired - Lifetime JPH0730321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61103090A JPH0730321B2 (en) 1986-05-07 1986-05-07 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61103090A JPH0730321B2 (en) 1986-05-07 1986-05-07 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JPS62260886A true JPS62260886A (en) 1987-11-13
JPH0730321B2 JPH0730321B2 (en) 1995-04-05

Family

ID=14344937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61103090A Expired - Lifetime JPH0730321B2 (en) 1986-05-07 1986-05-07 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH0730321B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6628355B1 (en) 1996-12-17 2003-09-30 Matsushita Electric Industrial Co., Ltd. Liquid crystal display panel including a light shielding film to control incident light

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165328A (en) * 1981-04-02 1982-10-12 Chisso Corp 4-substituted-(trans-4'-(trans-4"-alkylcylohexyl) cyclohexyl)benzene
JPS6050511A (en) * 1983-08-31 1985-03-20 Hitachi Ltd Liquid crystal display element
JPS60107020A (en) * 1983-07-12 1985-06-12 ビ−ビ−シ− アクチエンゲゼルシヤフト ブラウン ボヴエリ ウント コムパニ− Liquid crystal display
JPS60163022A (en) * 1984-02-03 1985-08-24 Hitachi Ltd Liquid crystal display device
JPS62143990A (en) * 1985-12-18 1987-06-27 Hitachi Ltd Liquid crystal display element
JPS62227121A (en) * 1986-03-28 1987-10-06 Seiko Instr & Electronics Ltd Multicolor liquid crystal display element
JPS62231943A (en) * 1986-04-01 1987-10-12 Seiko Instr & Electronics Ltd Liquid crystal display device
JPH0721142A (en) * 1994-06-20 1995-01-24 Seiko Epson Corp One-chip microcomputer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165328A (en) * 1981-04-02 1982-10-12 Chisso Corp 4-substituted-(trans-4'-(trans-4"-alkylcylohexyl) cyclohexyl)benzene
JPS60107020A (en) * 1983-07-12 1985-06-12 ビ−ビ−シ− アクチエンゲゼルシヤフト ブラウン ボヴエリ ウント コムパニ− Liquid crystal display
JPS6050511A (en) * 1983-08-31 1985-03-20 Hitachi Ltd Liquid crystal display element
GB2145837A (en) * 1983-08-31 1985-04-03 Hitachi Ltd Liquid crystal display device
JPS60163022A (en) * 1984-02-03 1985-08-24 Hitachi Ltd Liquid crystal display device
JPS62143990A (en) * 1985-12-18 1987-06-27 Hitachi Ltd Liquid crystal display element
JPS62227121A (en) * 1986-03-28 1987-10-06 Seiko Instr & Electronics Ltd Multicolor liquid crystal display element
JPS62231943A (en) * 1986-04-01 1987-10-12 Seiko Instr & Electronics Ltd Liquid crystal display device
JPH0721142A (en) * 1994-06-20 1995-01-24 Seiko Epson Corp One-chip microcomputer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6628355B1 (en) 1996-12-17 2003-09-30 Matsushita Electric Industrial Co., Ltd. Liquid crystal display panel including a light shielding film to control incident light

Also Published As

Publication number Publication date
JPH0730321B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
US5706109A (en) Liquid crystal display with polymeric support
JP2700006B2 (en) Liquid crystal display device
KR100745115B1 (en) Liquid crystal display devices
JPH02256021A (en) Liquid crystal display device
JPS62143990A (en) Liquid crystal display element
JPS61137127A (en) Liquid crystal display element
KR20150109543A (en) Liquid crystal composition and liquid crystal display device comprising the same
KR102301504B1 (en) Liquid crystal composition and liquid crystal display device comprising the same
US6151093A (en) Liquid crystal display device having mixture to suppress changing switching characteristics with temperature of the liquid crystal display device
KR20140014990A (en) Liquid crystal composition and liquid crystal display
JP2003505739A (en) Liquid crystal switching element and liquid crystal display device
JP2000292815A (en) Perpendicularly aligned ecb mode liquid crystal display device
Yoshida et al. 23.1: Fast‐Switching LCD with Multi‐Domain Vertical Alignment Driven by an Oblique Electric Field
JPH0990434A (en) Perpendicularly oriented twisted nematic liquid crystal display device
WO2009154258A1 (en) Liquid crystal panel and liquid crystal display device
JPS62260886A (en) Liquid crystal display element
EP2312385B1 (en) Liquid crystal panel and liquid crystal display device
KR102199775B1 (en) Liquid crystal composition and liquid crystal display comprising the same
EP0352792B1 (en) Liquid crystal device
JP3858283B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JP3182797B2 (en) Liquid crystal display device using nematic liquid crystal composition
WO2017099124A1 (en) Method for improving optical response and liquid crystal display element using same
JP3070119B2 (en) Nematic liquid crystal composition
JPS6381192A (en) Liquid crystal display element
JPH09292519A (en) Optical compensation plate and liquid crystal display device formed by using the same