JPS62260800A - Magnetic electrically-conductive substance - Google Patents

Magnetic electrically-conductive substance

Info

Publication number
JPS62260800A
JPS62260800A JP10343486A JP10343486A JPS62260800A JP S62260800 A JPS62260800 A JP S62260800A JP 10343486 A JP10343486 A JP 10343486A JP 10343486 A JP10343486 A JP 10343486A JP S62260800 A JPS62260800 A JP S62260800A
Authority
JP
Japan
Prior art keywords
conductive
magnetic
iron
electrically
fibrous substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10343486A
Other languages
Japanese (ja)
Other versions
JP2589473B2 (en
Inventor
Takuro Morimoto
琢郎 森本
Kihachiro Nishiuchi
西内 紀八郎
Masayoshi Suzue
鈴江 正義
Kenichi Wada
和田 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP61103434A priority Critical patent/JP2589473B2/en
Publication of JPS62260800A publication Critical patent/JPS62260800A/en
Application granted granted Critical
Publication of JP2589473B2 publication Critical patent/JP2589473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce magnetic electrically-conductive substance showing electrical conductivity, magnetic properties and improved reinforcing properties, by adding an aqueous solution of iron salt to water dispersion of electrically- conductive fibrous substance and carrying out hydrolysis to deposit an iron oxide magnetic component on the electrically conductive fibrous substance. CONSTITUTION:An electrically conductive fibrous substance (electrically conductive alkali titanate) is dispersed into water in concentration of about 70-0.1vol% and an aqueous solution of an iron salt (iron chloride, iron sulfate, etc.) is added to the water dispersion. Then, a magnetic component of iron oxide type (ferrite compound, etc.) is deposited on the electrically conductive fibrous substance by hydrolysis or oxidation under heating. Consequently, magnetic electrically- conductive composite compound is simply produced.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は導電性繊維物質の表面が磁性物質で被?Iされ
た磁性導電性物質及びその製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic conductive material in which the surface of a conductive fiber material is coated with a magnetic material, and a method for producing the same.

本発明の磁性導電性物質は微細な繊維形状を示し、且つ
導電性と同時に磁性を有するもので、電磁波シールド複
合材料用素材、機能性複合材料用素材等として有用であ
る。
The magnetic conductive substance of the present invention has a fine fiber shape and is both conductive and magnetic, and is useful as a material for electromagnetic shielding composite materials, a material for functional composite materials, and the like.

(従来の技術) 化学技術の発達とニーズの多様化に件ない、高性能、高
機能性素材の開発が活発に行われ、プラスチックス業界
にあっても導電性高分子材料についての研究が種々試み
られており、例えばカーボン粒子、カーボン繊維、銅、
銀、会等の金属粉等が提案されている。池方、磁性材料
としては、鉄、ニッケル、クロム、コバルト等の金属及
びこれらの合金等の磁性金属粉、フェライトで代表され
る高透磁性粉末、バリウムフェライト等で代表される高
保磁力性の粉末等が知られてはいるが、これらはいずれ
も導電性か磁性のいずれか一方の性質を示′tものであ
り、且つ腹合材料として利用する際、補強効果を発現さ
せ得るものが少ない。然るに近年、電子部材の高精度、
高品位化に伴ない、外部の電磁波等により誤動作を生じ
る、いわゆる電磁波障害が発生し、これを防除する電磁
波シールド材料の開発が望まれており、これらに適用す
る材料として、電磁波吸収材料が利用されており、一般
に導電性の優れた金属材料が用いられている。
(Conventional technology) In response to the development of chemical technology and the diversification of needs, the development of high-performance and highly functional materials is actively being carried out, and even in the plastics industry, various research is being conducted on conductive polymer materials. For example, carbon particles, carbon fiber, copper,
Metal powders such as silver and aluminum have been proposed. Ikegata: Magnetic materials include magnetic metal powders such as metals such as iron, nickel, chromium, and cobalt, and their alloys, high magnetic permeability powders such as ferrite, and high coercive force powders such as barium ferrite. However, all of these exhibit either conductive or magnetic properties, and few of them can exhibit a reinforcing effect when used as a mating material. However, in recent years, high precision electronic components,
As quality increases, so-called electromagnetic interference occurs, which causes malfunctions due to external electromagnetic waves, etc., and the development of electromagnetic shielding materials to prevent this is desired, and electromagnetic wave absorbing materials are used as materials that can be applied to these. Generally, metal materials with excellent conductivity are used.

但しこれらの金属材料は、ハウノングとして用いた時の
成型加工性、美装性、f!量化等の点で種々問題があり
、成型加工性の優れたプラスチックス等に混入出来、且
つ電磁波シールド効果を示す素材の開発が望まれていた
。斯る素材として前述した各種導電性粉末が用いられて
いたが、これらはいずれら非補強性素材であった。尚、
本発明者は導電性補強性素材として各種の繊維質の導電
性チタン酸塩を開発したが、近年の電子部材の高精度化
、高集約化に伴い、単に高導電性であるのみでは電磁波
の有する磁性特性の吸収が不充分であり、高導電性で且
つ磁性を有する補強素材の開発が望まれていた。
However, these metal materials have poor moldability, aesthetic properties, and f! There are various problems in terms of quantification, etc., and it has been desired to develop a material that can be mixed into plastics etc. with excellent moldability and that also exhibits an electromagnetic shielding effect. The various conductive powders mentioned above have been used as such materials, but all of these are non-reinforcing materials. still,
The present inventor has developed various fibrous conductive titanates as conductive reinforcing materials, but with the recent trend towards higher precision and higher integration of electronic components, simply having high conductivity is not enough to reduce electromagnetic waves. However, the absorption of the magnetic properties of the reinforcing material is insufficient, and it has been desired to develop a reinforcing material that is both highly conductive and magnetic.

(発明が解決しようとする問題点) 本発明の目的は導電性と磁性の両性を示す補強性の優れ
た繊維質である磁性導電性物質及びその製造法を提供す
ることにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a magnetic conductive material which is a fibrous material exhibiting both conductivity and magnetism and excellent reinforcing properties, and a method for producing the same.

また本発明の目的は成型加工性、成型品の表面平滑性、
研摩性に優れた成型品を与えることのできる磁性導電性
物質を提供することにある。
Further, the purpose of the present invention is to improve molding processability, surface smoothness of molded products,
The object of the present invention is to provide a magnetic conductive material that can give molded products with excellent abrasive properties.

(問題点を解決するための手段) 本発明は導電性繊維物質の表面が磁性物質で被覆された
磁性導電性物質及びその製造法に係る。
(Means for Solving the Problems) The present invention relates to a magnetic conductive material in which the surface of a conductive fiber material is coated with a magnetic material, and a method for producing the same.

本発明において基材となる導電性繊維物質とは、まず導
電性については100kg/cm2の加圧下で測定した
体積固有抵抗率(以下ρVで示す)力弓Q+2Ωelf
i以下が好ましく、下限は特に定めないが、現状では1
0−5Ωcf11程度が好ましい。また繊維質とは7ス
ベクト比(長さ/直径比)力弓O以上のものであり、繊
維質と定義することで明らかな通り、上限は特に定めな
い。但しこれら#a、維物質の利用目的により厳に定め
られるものであり、狭義の繊維強化複合材料として、又
は布帛として用いる時は長繊維のものが望まれるが、通
常の充填剤に代えて補強性充填剤として用いる時は、成
型加工性等の観、αから7スベクト比は10〜1000
、好ましくは10〜300程度のものが良く、一般に微
細繊m質又はウィスカーと呼ばれるものが好ましい。本
発明において導電性繊維物質としては、公知のものがい
ずれも使用出来、斯る物質として、導電性炭素質繊維、
導電性高分子繊維、導電性金属繊維、導電性セラミック
ス繊維、その他各種無磯質導電性繊維等が例示され、こ
れらの代表例としては、炭素繊維、ポリアセチレン繊維
、アルミニウム繊Mt、ニッケル繊ML、炭化物繊維、
窒化物NiL維、ホウ化物NI1.m、導電性の酸化亜
鉛系IyL4(i 、導電化処理された酸化アルミニウ
ム系繊維、導電化処y1された石膏質yL紺、導電性チ
タン酸アルカリ繊維等であり、特に本発明者が概に07
1発、提案した導電性チタン酸アルカ1Jiiは安定な
導電性、耐熱性、補強性、成型加工性、表面平滑性等の
観、くから適したものである。
The electrically conductive fiber material that serves as the base material in the present invention has a volume specific resistivity (hereinafter referred to as ρV) measured under a pressure of 100 kg/cm2 and a force bow Q + 2Ωelf.
i or less is preferable, and the lower limit is not particularly defined, but currently 1
Approximately 0-5Ωcf11 is preferable. Furthermore, fibrous material is defined as a material having a spectral ratio (length/diameter ratio) of 7 or more, and as is clear from the definition of fibrous material, there is no particular upper limit. However, #a is strictly determined depending on the purpose of use of the fiber material, and when used as a fiber-reinforced composite material in the narrow sense or as a fabric, long fibers are desired, but reinforcement may be used instead of ordinary fillers. When used as a filler, the α to 7 spectral ratio is 10 to 1000 in terms of moldability etc.
, preferably about 10 to 300, and those generally called fine fibers or whiskers are preferred. In the present invention, any known conductive fiber material can be used, such as conductive carbon fiber,
Examples include conductive polymer fibers, conductive metal fibers, conductive ceramic fibers, and various other non-porous conductive fibers. Representative examples of these include carbon fibers, polyacetylene fibers, aluminum fibers Mt, nickel fibers ML, carbide fiber,
Nitride NiL fiber, boride NI1. m, conductive zinc oxide type IyL4 (i, conductive treated aluminum oxide fiber, conductive treated gypsum YL navy blue, conductive alkali titanate fiber, etc. 07
The proposed conductive alkali titanate 1Jii is suitable because of its stable conductivity, heat resistance, reinforcing properties, moldability, surface smoothness, etc.

本発明の磁性物質とは、常磁性体及び強磁性体等であり
、これらは利用目的により選択され、任意のものが選択
されるが、シールド材として利用される時には磁化記憶
素子等、磁性特性を利用した電子部材に対しては本発明
の磁性導電性物質の磁性及び外部磁場で励起される磁力
の影響を受けない・範囲の磁力に抑制する必要があり、
逆に本発明の磁性導電性物質からなる複合材料を記憶素
子、電磁回路等磁性特性を利用する場合には、所望する
磁性が必要である。
The magnetic substance of the present invention is a paramagnetic substance, a ferromagnetic substance, etc., and these are selected depending on the purpose of use, and any substance can be selected. However, when used as a shielding material, magnetic properties such as magnetic memory elements, For electronic components that utilize the magnetic conductive material of the present invention, it is necessary to suppress the magnetic force to a range that is not affected by the magnetic force of the magnetic conductive material of the present invention and the magnetic force excited by an external magnetic field.
On the other hand, when the composite material made of the magnetically conductive material of the present invention is used for storage elements, electromagnetic circuits, etc., the desired magnetism is required.

本発明の磁性物質の代表例を例示すると、γ−Fe、O
,,MnFe2O,,NiFe2O,、CoFe:O,
Typical examples of the magnetic materials of the present invention include γ-Fe, O
,,MnFe2O,,NiFe2O,,CoFe:O,
.

Ba0・6 F e203等のフェライト系化合物及び
マグネタイト等の酸化鉄系化合物、Fe、 Ni+ C
r。
Ferrite compounds such as Ba0.6 Fe203 and iron oxide compounds such as magnetite, Fe, Ni+ C
r.

Co等の金属及びこれらの合金であり、これらの1種又
は2種以上の混合物でも良い。磁性物質の1種としてス
ピネル型フェライト系に定義されるマグネタイト(Fe
30−)は磁性と同時に導電性を示す物質であり、この
ような磁性と導電性の両性を示す物質を被覆層とする時
は、磁性波Ffi層に若干不連続層が形成されても、磁
性及び導電性には余り影響を与えないという特長を有す
る。
These include metals such as Co and alloys thereof, and may be one kind or a mixture of two or more kinds thereof. Magnetite (Fe
30-) is a substance that exhibits both magnetism and conductivity, and when a coating layer is made of a substance that exhibits both magnetism and conductivity, even if a slightly discontinuous layer is formed in the magnetic wave Ffi layer, It has the advantage of not having much effect on magnetism and conductivity.

尚、導電性繊維物質の表面にこれら磁性物質を被覆する
方法としては、湿式化学反応、気相化学反応(CVD)
、気相沈積法(P V D )及びスパッタリング等の
任意の方法で行うことが出来るが作業工程及び工程管理
が容易な点から湿式化学反応で行うのが好ましい。
In addition, methods for coating the surface of conductive fiber materials with these magnetic substances include wet chemical reaction and vapor phase chemical reaction (CVD).
Although the reaction can be carried out by any method such as PVD, sputtering, etc., it is preferable to carry out by wet chemical reaction from the viewpoint of easy work process and process control.

本発明の導電性磁性物質は、例えば導電性繊維物質の水
分散液に鉄塩水溶液を添加し、該鉄塩を例えば加水分解
もしくは加熱酸化することにより、酸化鉄系磁性成分を
導電性繊維物質の表面に沈積させることにより製造する
ことが出来る。本発明において鉄塩とは、中性又は酸性
水溶液及1水可溶性溶媒中で可溶又は安定なコロイド分
散系を保持する鉄系化合物であ・って、塩化鉄、硫酸鉄
、硝酸鉄、水酸化鉄、炭酸鉄、有機質鉄塩等の各種の鉄
塩が例示される。
The conductive magnetic material of the present invention can be produced by adding an aqueous iron salt solution to an aqueous dispersion of a conductive fiber material, and then hydrolyzing or heating the iron salt to oxidize the iron oxide magnetic component to the conductive fiber material. It can be produced by depositing it on the surface of. In the present invention, iron salts are iron-based compounds that are soluble or maintain a stable colloidal dispersion system in neutral or acidic aqueous solutions and water-soluble solvents, including iron chloride, iron sulfate, iron nitrate, and water. Examples include various iron salts such as iron oxide, iron carbonate, and organic iron salts.

本発明は、上述の鉄塩を導電性i維物質の表面に酸化鉄
扇磁性成分として沈積する方法で製造することが出来、
具体的な沈積する方法としては、導電性#a維物質の水
分散液に鉄塩溶液を添加し加水分解するが、導電性繊維
物質の水分散液に加水分解剤を溶解又は分散後鉄塩溶液
を添加する方法が簡便であり、更に又、導電性繊維物質
の分散液中に加水分解剤の溶液と鉄塩の溶液を同時又は
交互に添加しても良く、更には加水分解時、加温又はエ
アレーション等の加水分解を促進させる雰囲気に保持し
て、酸化鉄系磁性物質を直接導電性繊維物質の表面に沈
積させることが最も有効であるが、導電性繊維物質の表
面に鉄系化合物の沈積を行い、以後加熱等で酸化し磁性
を示す鉄系化合物に変化させても良い。
The present invention can be produced by a method in which the above-mentioned iron salt is deposited as an iron oxide fan magnetic component on the surface of a conductive i-fiber material,
A specific method for depositing is to add an iron salt solution to an aqueous dispersion of conductive fiber material and hydrolyze it. After dissolving or dispersing a hydrolyzing agent in an aqueous dispersion of conductive fiber material, iron salt The method of adding a solution is simple, and the solution of the hydrolyzing agent and the solution of the iron salt may be added simultaneously or alternately to the dispersion of the conductive fiber material. The most effective method is to deposit the iron oxide-based magnetic material directly onto the surface of the conductive fiber material by keeping it in an atmosphere that promotes hydrolysis, such as by heating or aeration. may be deposited and then oxidized by heating or the like to change into an iron-based compound exhibiting magnetism.

上述の反応はいずれも公知の反応で進行するが、導電性
繊維物質の水分散系では導電性繊維物質の濃度は通常混
合機で撹拌又は混練可能な領域に制限されるべきであり
、通常70vo1%以下が好ましく、下限としては経済
性及び沈積物が有効に導電性m維物質の表面に沈積する
範囲、即ち0.1ν01%以上が好ましく、これらの範
囲をはずれると経済性が消失するか、複合材料として用
いても有意差が認められないことが多い。
All of the above-mentioned reactions proceed by known reactions, but in an aqueous dispersion system of conductive fibers, the concentration of the conductive fibers should be limited to an area that can be stirred or kneaded with a mixer, and is usually 70 vol. % or less, and the lower limit is preferably a range in which economic efficiency and deposits are effectively deposited on the surface of the conductive m-fiber material, that is, 0.1 ν01% or more; if outside these ranges, the economic efficiency disappears or Even when used as a composite material, no significant difference is often observed.

尚、本発明では導電性11椎物質の水分散液に鉄塩の溶
液を加え加水分解を行うが、加水分解剤の存在下に鉄塩
溶液を添加する方法が最も有効であり、加水分解剤とし
ては、リチウム、カリウム、ナトリウム、カルシウム、
マグネシウム、バリウム、ストロンチウム等のアルカリ
又はアルカリ土類金属の塩が有効である。
In the present invention, an iron salt solution is added to an aqueous dispersion of conductive 11 vertebrae material for hydrolysis, but the most effective method is to add an iron salt solution in the presence of a hydrolyzing agent. Examples include lithium, potassium, sodium, calcium,
Salts of alkali or alkaline earth metals such as magnesium, barium, strontium, etc. are effective.

本発明では、利用目的及び使用する鉄塩、導電性繊維物
質の種類等により、各工程の条件を選択すれば良く、例
えば鉄塩溶液と中和剤のモル比が大略、中和剤/鉄塩;
 0.05以上が必要であり、0.05未満では50’
C以上に加温又はエアレーションを充分行う必要があり
、逆に10を越えると鉄塩の沈積が困難になりやすいの
で、通常0.1〜8、好適には0.7〜6の範囲であり
、反応系を50’C以上に保持するのが好ましい。
In the present invention, the conditions for each step may be selected depending on the purpose of use, the iron salt used, the type of conductive fiber material, etc. For example, the molar ratio of the iron salt solution and the neutralizing agent is approximately the same, the neutralizing agent/iron salt;
0.05 or more is required, less than 0.05 is 50'
It is necessary to perform sufficient heating or aeration to a temperature higher than C, and conversely, if the temperature exceeds 10, it tends to be difficult to deposit iron salts, so it is usually in the range of 0.1 to 8, preferably 0.7 to 6. It is preferable to maintain the reaction system at a temperature of 50'C or higher.

尚、本発明では通常利用される分散安定剤、界面活性剤
、沈降調警剤、磁性向上剤等の添加、併用を制限するも
のではない。
Note that the present invention does not limit the addition or combined use of commonly used dispersion stabilizers, surfactants, sedimentation control agents, magnetic improvers, and the like.

(実 施 例) 以下に実施例を挙げて詳しく説明する。(Example) A detailed explanation will be given below with reference to examples.

実施例1 導電性t!J、維状チタン酸カリウム(大塚化′:r−
袈、クイスタットBK  iloo)5を水40m l
に分散し、撹拌機にて5分間攪拌した。次にこの分散液
の撹拌を続けながら、80℃に昇温し、加熱下で1モル
/lの塩化第1鉄水溶液33.5+nl、1モル/lの
塩化第2鉄水溶液67+ol及び3.7規定の水酸化す
) 17ウムの水溶液63+nlを各溶液それそ゛れが
30分間で滴下終了するよう等速で添加後、更に80°
Cで2時間熟成し、沈殿物をシ戸別、水洗、乾燥するこ
とにより、暗褐色で強磁性を示す微auWL維状の磁性
導電性物質12.5gを得た。尚、この磁性導電性物質
の体積抵抗率は4.lXIO3Ωel11であり、原料
として泪いたクイスタットB K−100の体積抵抗率
(4,3X 105ΩCm月こ変化が認められなかった
Example 1 Conductivity t! J, fibrous potassium titanate (Otsuka': r-
40 ml of water
and stirred for 5 minutes using a stirrer. Next, while continuing to stir this dispersion, the temperature was raised to 80°C, and under heating, 33.5+ nl of a 1 mol/l ferrous chloride aqueous solution, 67+ ol of a 1 mol/l ferric chloride aqueous solution, and 3.7 ml of a 1 mol/l ferric chloride aqueous solution were added. After adding 63+nl of an aqueous solution of 17 um (specified hydroxide) at a uniform rate so that each solution was added dropwise in 30 minutes, the mixture was further heated at 80°
The precipitate was aged for 2 hours at C, and the precipitate was separated, washed with water, and dried to obtain 12.5 g of a dark brown, ferromagnetic, slightly auWL fibrous magnetic conductive material. The volume resistivity of this magnetic conductive material is 4. 1XIO3Ωel11, and the volume resistivity of Quistat B K-100 used as a raw material (4.3X 105ΩCm) No change was observed.

実施例2 導電性繊維状チタン酸カリウム(大塚化学製、ライスタ
ラ)BK−200)5gを用いた以外、実施例1と同法
で行うことにより、I]11褐色で強磁性を示す微細I
a、維状の磁性導電性物質12.3gを得こ。
Example 2 By carrying out the same method as in Example 1 except that 5 g of conductive fibrous potassium titanate (Otsuka Chemical Co., Ltd., Rice Tara BK-200) was used, fine I
a. Obtain 12.3 g of fibrous magnetic conductive material.

尚、この磁性導電性物質の体積抵抗率はS、3×10−
1Ωcanであり、原料として用いたクイスタットBK
−200の体積抵抗IF(1,03Xlo°Ωcoo)
より向上していた。
The volume resistivity of this magnetic conductive material is S, 3×10−
1Ωcan, and Quistat BK was used as a raw material.
-200 volume resistance IF (1,03Xlo°Ωcoo)
It was even better.

実施例3 導電性繊維状チタン酸カリウム(クイスタットB K−
200)5 gを水200+111中に分散後1モル/
1の硫酸第1鉄水溶fL65 +n lを添加後、撹拌
下に3.7規定の水酸化す) l)ラム水溶液25!f
llを約15分を要して添加、次いで液温を80°Cに
昇温後、エアーポンプに連結したノズルを反応系に導入
し、31/分の流量で洗浄空気を1時間導入し、気泡撹
拌と同時に反応物を酸化させた後、ジ戸別、水洗及び乾
燥させることにより、暗褐色で強磁性を示す微細繊維状
の磁性導電性物質L7,5gを得た。尚、得られた磁性
導電性物質の体積固有抵抗率は6.2X10−’ΩCI
aであった。
Example 3 Conductive fibrous potassium titanate (Quistat B K-
200) 1 mol/after dispersing 5 g in water 200+111
After adding ferrous sulfate aqueous solution fL65 +n l of 1, hydroxide to 3.7N with stirring) l) Rum aqueous solution 25! f
After approximately 15 minutes of addition, the liquid temperature was raised to 80°C, a nozzle connected to an air pump was introduced into the reaction system, and cleaning air was introduced at a flow rate of 31/min for 1 hour. After oxidizing the reactant while stirring with bubbles, the mixture was separated, washed with water, and dried to obtain 7.5 g of a dark brown, ferromagnetic fine fiber magnetic conductive material L. The volume resistivity of the obtained magnetic conductive material is 6.2X10-'ΩCI
It was a.

実施例4 実施例3において3.7規定の水酸化ナトリウムの水溶
液25+nlを20m1に、反応時の温度を[30’(
:1.l[えた以外は同法で行い、暗褐色で強磁性を示
す微細繊維状の磁性導電性物質19gを得た。尚、得ら
れた磁性導電性物質の体積固有抵抗率は1,7X 10
−’ΩCτ0であった。
Example 4 In Example 3, 25+nl of a 3.7N aqueous solution of sodium hydroxide was added to 20ml, and the reaction temperature was set to [30'(
:1. The same method was followed except that 19 g of a dark brown, ferromagnetic fine fiber magnetic conductive material was obtained. The volume resistivity of the obtained magnetic conductive material is 1.7X 10
-'ΩCτ0.

実施例5 実施例4において導電性チタン酸カリウムをカーボン繊
維微粉末(am艮3r旧o)5gに変更した以外は同法
で行い、暗褐色で強磁性を示す微細yL雑状の磁性導電
性物質18gを得た。尚、得られた磁性導電性物質の体
積固有抵抗率は原料に用いたカーボン繊維微粉末同様、
タケグ埋研(株)製のデノタルエレクトロ〆一ターTR
6841の測定限界(10−’Ωcan)以下の良導性
物質であった。
Example 5 The same method as in Example 4 was used except that the conductive potassium titanate was changed to 5 g of carbon fiber fine powder (am 3r old o), and a fine YL miscellaneous magnetic conductive material having dark brown color and ferromagnetic properties was obtained. 18 g of material was obtained. The specific volume resistivity of the obtained magnetic conductive material is similar to that of the carbon fiber fine powder used as the raw material.
Denotal Electro Switcher TR manufactured by Takegu Uken Co., Ltd.
It was a material with good conductivity below the measurement limit of 6841 (10-'Ωcan).

(発明の効果) 本発明の磁性導電性物質は、基材となる導電性繊維物質
の複合材料用素材特性、即ち補強性、耐熱性、表面平滑
性、成型加工性等を何ら低減することなく、導電性及び
磁性を付与出来る機能性複合材料ル素材であり、磁性導
電性複合材料を提供するのに極めて適したものであり且
つ、その製法ら極めて簡便であり、産業利用性の高いも
のである。
(Effects of the Invention) The magnetic conductive substance of the present invention does not reduce the properties of the conductive fiber material used as the base material for composite materials, such as reinforcing properties, heat resistance, surface smoothness, moldability, etc. It is a functional composite material material that can impart conductivity and magnetism, and is extremely suitable for providing magnetic conductive composite materials, and its manufacturing method is extremely simple and has high industrial applicability. be.

(以 上)(that's all)

Claims (4)

【特許請求の範囲】[Claims] (1)導電性繊維物質の表面が磁性物質で被覆された磁
性導電性物質。
(1) A magnetic conductive material in which the surface of a conductive fiber material is coated with a magnetic material.
(2)導電性繊維物質が導電性チタン酸アルカリである
特許請求の範囲第1項記載の磁性導電性物質。
(2) The magnetic conductive material according to claim 1, wherein the conductive fiber material is a conductive alkali titanate.
(3)導電性繊維物質の水分散液に鉄塩水溶液を添加し
、加水分解もしくは加熱酸化して酸化鉄系磁性成分を導
電性繊維物質に沈積させることを特徴とする磁性導電性
物質の製造法。
(3) Production of a magnetic conductive material characterized by adding an aqueous iron salt solution to an aqueous dispersion of a conductive fiber material and subjecting it to hydrolysis or thermal oxidation to deposit an iron oxide-based magnetic component onto the conductive fiber material. Law.
(4)導電性繊維物質が導電性チタン酸アルカリであり
、酸化鉄系磁性成分がフェライト系化合物である特許請
求の範囲第3項記載の磁性導電性物質の製造法。
(4) The method for producing a magnetic conductive material according to claim 3, wherein the conductive fiber material is a conductive alkali titanate and the iron oxide magnetic component is a ferrite compound.
JP61103434A 1986-05-06 1986-05-06 Magnetic conductive material Expired - Fee Related JP2589473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61103434A JP2589473B2 (en) 1986-05-06 1986-05-06 Magnetic conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61103434A JP2589473B2 (en) 1986-05-06 1986-05-06 Magnetic conductive material

Publications (2)

Publication Number Publication Date
JPS62260800A true JPS62260800A (en) 1987-11-13
JP2589473B2 JP2589473B2 (en) 1997-03-12

Family

ID=14353930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61103434A Expired - Fee Related JP2589473B2 (en) 1986-05-06 1986-05-06 Magnetic conductive material

Country Status (1)

Country Link
JP (1) JP2589473B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103204A (en) * 1980-12-18 1982-06-26 Otsuka Kagaku Yakuhin Conductive composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103204A (en) * 1980-12-18 1982-06-26 Otsuka Kagaku Yakuhin Conductive composition

Also Published As

Publication number Publication date
JP2589473B2 (en) 1997-03-12

Similar Documents

Publication Publication Date Title
US6540811B2 (en) Method of producing alloy powders, alloy powders obtained by said method, and products applying said powders
JPS6186424A (en) Manufacture of particulate isotropic ferrite powder having spinel structure
JPH0725531B2 (en) Magnetic ultrafine particles composed of ε'iron carbide and method for producing the same
KR20220012350A (en) Method for producing cobalt ferrite particles and cobalt ferrite particles prepared accordingly
JP2589472B2 (en) Magnetic substance
JPS62260800A (en) Magnetic electrically-conductive substance
JP2531588B2 (en) Method for producing metal-supported particles having ferromagnetism
JPS59107924A (en) Manufacture of magnetic iron oxide powder containing cobalt
JPH05137995A (en) Method for coating particles with ferrite
WO2020217982A1 (en) Method for producing cobalt ferrite particles and cobalt ferrite particles produced by same
CN101183590A (en) Malic acid coating water-based magnetic fluid material and production thereof
CN106634828A (en) Preparation method of graphene/Y3Fe5O12/CoFe2O4 wave-absorbing material
KR101445120B1 (en) Magnetic substance coating method of ceramic particle
JP2000313823A (en) White powder and its preparation
CN115109564A (en) Surface modified carbonyl iron powder and preparation method and application thereof
JP2583082B2 (en) Conductive iron oxide particle powder and method for producing the same
JPS5877505A (en) Production of metallic magnetic powder
JPH09169525A (en) Magnetite particulates and production thereof
JP3186929B2 (en) Method for producing spherical hematite particles with uniform particle size
KR0128127B1 (en) Producing method of fe3o4 powder
JPH0578926B2 (en)
JP3328017B2 (en) Method for producing acicular hexagonal ferrite magnetic powder having perpendicular magnetic anisotropy
JPS595603A (en) Manufacture of magnetic metal powder
KR940005273B1 (en) Method of manufacturing magnetic iron oxide powder
JPS5877504A (en) Production of metallic magnetic powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees