JPS62259631A - Deciding method for optimum anvil block width ratio in forge drawing - Google Patents

Deciding method for optimum anvil block width ratio in forge drawing

Info

Publication number
JPS62259631A
JPS62259631A JP10155986A JP10155986A JPS62259631A JP S62259631 A JPS62259631 A JP S62259631A JP 10155986 A JP10155986 A JP 10155986A JP 10155986 A JP10155986 A JP 10155986A JP S62259631 A JPS62259631 A JP S62259631A
Authority
JP
Japan
Prior art keywords
width ratio
anvil
anvil width
steel ingot
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10155986A
Other languages
Japanese (ja)
Inventor
Osamu Tsuda
統 津田
Shigeomi Araki
重臣 荒木
Takao Sato
隆夫 佐藤
Toshiyuki Ochi
落 敏行
Tomiharu Matsushita
富春 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10155986A priority Critical patent/JPS62259631A/en
Publication of JPS62259631A publication Critical patent/JPS62259631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To decide the optimum anvil block width ratio enabling to secure the inner part quality by clarifying the closing conditions of the inner part gap with the relation with a forge drawing conditions. CONSTITUTION:The optimum upper anvil width ratio Wu/Ho and lower anvil width ratio ZL/Ho are found as per the following, in case of the forge drawing of the steel ingot of its height Ho between the upper anvil 1 of the upper anvil width Wu and the lower anvil 2 of the lower anvil width WL. Now, in case of Q being taken as a gap closing parameter, Pav the mean hydrostatic stress of the steel ingot center part, sigmaeq the corresponding plastic strain amount to the steel ingot center, N the pass times in forge drawing, gamma the compression factor, C1=1/3, C2=2.37, C3=2/3 and C4=7.86, the values of Wu/Ho and WL/Ho which are within the range satisfying the equation 1 are found under the conditions of conditional 4, 5, and the anvil width ratio enabling to secure the sound quality and close the inner part gap is found.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鍛伸加工により、内部組織の健全な大型鍛鋼
品を成形するに際し、最適な金敷幅比を決定する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for determining an optimal anvil width ratio when forming a large forged steel product with a sound internal structure by forging process.

(従来の技術) 大型鋼塊の内部には空隙が存在するため、鍛伸加工によ
りこの内部空隙を圧着(閉鎖)して健全な組織にしなけ
ればならない。
(Prior Art) Since voids exist inside a large steel ingot, these internal voids must be crimped (closed) by forging processing to create a healthy structure.

この鍛伸加工法として、例えば、■−■金敷鍛練法、温
間鍛造法、FM鍛造法などが知られている。
As this forging process method, for example, the ■-■ anvil forging method, the warm forging method, the FM forging method, etc. are known.

しかし、従来の方法においては、内部品質を左右する内
部空隙の閉鎖条件が必ずしも明らがでなかったために、
据込と鍛伸加工を複数回組合せて大型鍛鋼品を製造して
いた(第1)図参照)。この結果、鍛造工程が冗長とな
るばかりでなく、ヒート数の増加によるエネルギー損失
やスケール損失が大きく、コスト増の要因となっていた
。また製造期間が長くなるために、受注から納入までの
製品納期が極めて長期にわたるものが少なくなかった。
However, in conventional methods, the conditions for closing the internal voids, which affect internal quality, were not always clear.
Large steel forgings were manufactured by combining upsetting and forging multiple times (see Figure 1). As a result, not only the forging process becomes redundant, but also the energy loss and scale loss due to the increase in the number of heats are large, which causes an increase in cost. Furthermore, due to the long manufacturing period, the product delivery period from order receipt to delivery was often extremely long.

(発明が解決しようとする問題点) 上記従来の鍛伸加工法における問題点は、内部空隙の閉
鎖条件が必ずしも明らかでないことに起因している。
(Problems to be Solved by the Invention) The problems in the conventional forging and stretching method described above are due to the fact that the conditions for closing the internal voids are not necessarily clear.

この空隙の圧着(閉鎖)に大きな影響を及ぼす因子とし
て、鍛造材の横断面形状、金敷形状、及び金敷幅比が古
くから知られているが、未だ系統的に調査解析されてい
ない。
The cross-sectional shape of the forged material, the anvil shape, and the anvil width ratio have long been known as factors that have a large effect on the crimping (closing) of the void, but these have not yet been systematically investigated and analyzed.

そこで、本発明は、上記因子の内、金敷幅比に関するも
のであり、内部空隙の閉鎖条件を、鍛伸加工条件との関
係において明示することにより、内部品質を確保するに
必要な最適金敷幅比を求め、もって、最短の鍛伸方法を
見出す手法を提示することを目的とする。
Therefore, the present invention relates to the anvil width ratio among the above factors, and by clarifying the internal gap closing conditions in relation to the forging processing conditions, the optimum anvil width necessary to ensure internal quality can be determined. The purpose is to present a method to find the shortest forging and stretching method by finding the ratio.

(問題点を解決するための手段) 上記目的を達成するために、本発明は次の手段を講じた
。即ち、本発明の特徴とするところは、圧縮率γで、か
つN回のバスで、高さHaO鋼塊を鍛伸加工する場合の
最適な上金敷幅比(W□/!Io)及び上金敷幅比(L
 /1lo)を求める方法であって、eq Δεeq=c+ +  1 n  (C4・Wu/Ho
) ・r−■Q;空隙閉鎖パラメータ PavH鋼塊中心部における平均の静水圧応力 びeq;相当応力 Δεeq;鋼塊中心部における平均の相当塑性ひずみ量 N;鍛伸パス回数 添字i;バスN。
(Means for solving the problems) In order to achieve the above object, the present invention takes the following measures. That is, the feature of the present invention is that the optimum upper anvil width ratio (W□/!Io) and upper anvil width ratio (W□/!Io) and Anvil width ratio (L
/1lo), eq Δεeq=c+ + 1 n (C4・Wu/Ho
) ・r-■Q; Gap closure parameter PavH Average hydrostatic stress eq at the center of the steel ingot; Equivalent stress Δεeq; Average equivalent plastic strain amount N at the center of the steel ingot; Number of forging passes subscript i; Bus N .

γ:圧縮率 Wu;上金敷幅 HL;上金敷幅 ■o;鋼塊の高さ C+ = ’ASCZ=2.37、C:l = 2A−
C4= 7.86Wu/Ho≧0.43  =−−−−
−−−−−−−−−−−−−−−−−−−・−■W L
 /)io=0.8 −−−−−−−−−−−−−−−
−・−−−−−−−−■の条件式を用い、上記■、0式
の条件のもとで向/Ho s  Wc /Hoが、■式
を満足する範囲内にあるよう、Wu/!to及び−、/
HOの値を求める点にある。
γ: compression ratio Wu; upper anvil width HL; upper anvil width ■o; height of steel ingot C+ = 'ASCZ = 2.37, C:l = 2A-
C4 = 7.86Wu/Ho≧0.43 =----
−−−−−−−−−−−−−−−−−−・−■W L
/) io=0.8 −−−−−−−−−−−−−−−
−・−−−−−−−Using the conditional expression ■, set Wu/Ho so that the direction /Ho s Wc /Ho is within the range that satisfies the expression ! to and -, /
The point is to find the value of HO.

(作 用) 本発明は、第2図に示す如く、上金敷1と上金敷2間で
鋼塊3を鍛伸加工するものであり、該鍛伸加工に際して
、最適な上金敷幅比(Wu/1lo)及び上金敷幅比(
WL /+10)を求めるものである。ここで、戦、向
、Iloは、第2図に示す寸法を言う。
(Function) The present invention, as shown in FIG. /1lo) and upper anvil width ratio (
WL /+10). Here, the distance, direction, and Ilo refer to the dimensions shown in FIG.

まず、本発明に用いる条件式につき説明する。First, the conditional expressions used in the present invention will be explained.

(1)内部空隙閉鎖条件式 鋼塊中の空隙が閉鎖するためには、局部的な静水圧応力
と相当ひずみが大きく関与している。そこで、本発明は
、この静水圧応力と相当ひずみの関係を求めることによ
り、最適加工条件を定めようとするものである。
(1) Internal void closing condition In order for the voids in a steel ingot to close, local hydrostatic stress and equivalent strain are largely involved. Therefore, the present invention attempts to determine the optimum processing conditions by determining the relationship between this hydrostatic pressure stress and the equivalent strain.

密度変化する材料、例えば、粉末焼結体の体積ひずみ速
度は次式で表わされる。
The volumetric strain rate of a material whose density changes, for example, a powder sintered body, is expressed by the following equation.

ここで、dεV ;体積ひずみ増分 ρ;相対密度比(鍛造後の密度/真密度)p;静水圧応
力 feqH相当応力 dεeq;相当塑性ひずみ増分 a、 m、 n高材料パラメータ ρi                     0上
式■の左辺は、初期密度比ρ1によって決まる材料条件
に依存する量であり、同右辺は、加工条件によって決ま
る応力負荷経路に依存する量である。
Here, dεV; volumetric strain increment ρ; relative density ratio (density after forging/true density) p; hydrostatic stress feqH equivalent stress dεeq; equivalent plastic strain increment a, m, n high material parameter ρi 0 of the above formula ■ The left side is a quantity that depends on the material conditions determined by the initial density ratio ρ1, and the right side is a quantity that depends on the stress load path determined by the processing conditions.

いま、ρがρ、になった時、実質的に鍛鋼品の内部空隙
が閉鎖されたとすると、0式の左辺からρ r ρ。
Now, when ρ becomes ρ, if the internal void of the forged steel product is substantially closed, then from the left side of equation 0, ρ r ρ.

によって限界値Q、が求められる。The limit value Q can be found by

従って、■弐の右辺を、 とおくことにより、実質的に鍛鋼品の内部空隙が閉鎖さ
れることになる。即ち、加工条件によって決まる応力負
荷経路を、■弐に合致させることにより鍛鋼品の内部空
隙が閉鎖される。換言すれば、0式に合致する加工条件
により内部空隙が閉鎖される。ここで、Qを空隙閉鎖パ
ラメータと名付ける。
Therefore, by setting the right side of ■2 as follows, the internal void of the steel forging is substantially closed. That is, by matching the stress load path determined by the processing conditions to (2), the internal voids of the steel forging are closed. In other words, the internal void is closed by processing conditions that match equation 0. Here, Q is named the void closure parameter.

さて、0式を用いるためには、0式によりQ。Now, in order to use the 0 formula, Q by the 0 formula.

を求めなければならず、Qfを求めるには、材料パラメ
ータa+ IIl+ n+  及び、内部空隙が閉鎖さ
れたとするρ、を求めなければならない。
In order to obtain Qf, it is necessary to obtain the material parameter a+ IIl+ n+ and ρ assuming that the internal void is closed.

そこで、まず第3図に示す各鍛伸方式A、  B。Therefore, first, each forging and stretching method A and B shown in Fig. 3.

Cにつき理論解析により、各圧下率における相当ひずみ
εeqと、静水圧応力Pの関係を求め、0式の右辺によ
り各圧下率ごとに空隙閉鎖パラメータQを計算する。
For C, the relationship between the equivalent strain εeq and the hydrostatic stress P at each rolling reduction rate is determined by theoretical analysis, and the void closing parameter Q is calculated for each rolling reduction rate using the right side of Equation 0.

次に、各鍛伸方式A、B、Cにおいて焼結体の圧下実験
を行ない、各圧下率における密度比ρを求める。
Next, a rolling experiment of the sintered body is performed in each forging method A, B, and C, and the density ratio ρ at each rolling reduction rate is determined.

このようにして理論解析により求めた空隙閉鎖パラメー
タQと、焼結体の実験により求めた密度比ρの関係を示
すと第4図及び第5図になる。
FIGS. 4 and 5 show the relationship between the gap closure parameter Q determined by theoretical analysis in this manner and the density ratio ρ determined by experiment of the sintered body.

第4・5図から明らかなように、種々の鍛伸法及び圧下
率によっても、密度比ρと空隙閉鎖パラメータQの関係
は、はぼ一定に保たれていることがわかる。従って、第
4図及び第5図から、0式の左辺の材料パラメータa、
m、nを求めると、a −2,7m =0.5  n 
=2.0となる。但し、ρ、 =0.85 (鋼塊中心
部の初期密度比)である。
As is clear from FIGS. 4 and 5, it can be seen that the relationship between the density ratio ρ and the gap closure parameter Q is kept almost constant even with various forging methods and rolling reductions. Therefore, from FIGS. 4 and 5, the material parameter a on the left side of equation 0,
Determining m and n, a −2,7m =0.5 n
=2.0. However, ρ = 0.85 (initial density ratio at the center of the steel ingot).

次に、内部空隙が閉鎖されたときの相対密度比ρ、を求
める。
Next, find the relative density ratio ρ when the internal void is closed.

内部空隙が閉鎖されたときとは、鍛鋼製品の内部欠陥を
超音波探傷した場合に、欠陥が検出されない状態をいう
。そこで、焼結体実験において残存する内部空隙の分布
を調査し、第6図の特性を得た。
When the internal void is closed, it means a state in which no defects are detected when internal defects in a forged steel product are detected by ultrasonic waves. Therefore, the distribution of remaining internal voids was investigated in a sintered body experiment, and the characteristics shown in FIG. 6 were obtained.

第6図によれば、粒径が20μm以上の空隙の面積率は
、初期密度比0.85の時で0,09χあるが、加工の
進行につれて減少し、密度比0.97以上では0χとな
って、空隙は消滅する。超音波探傷では、20μm以上
の等傷欠陥が不良として検出されるため、上記実験の粒
径20μmの場合をもって判断すればよい。従って、本
発明においては、内部空隙が閉鎖されたときの相対密度
比ρ、を ρ、 =0.97・・・−・・−−−一−−−−−−−
−−−−〜−−−−−−−−一・・−・−・−・−・・
−・−[相]と定めた。
According to Fig. 6, the area ratio of voids with a grain size of 20 μm or more is 0.09χ when the initial density ratio is 0.85, but decreases as processing progresses, and becomes 0χ when the density ratio is 0.97 or more. As a result, the void disappears. In ultrasonic flaw detection, uniform flaw defects of 20 μm or more are detected as defective, so a judgment can be made based on the case of particle size 20 μm in the above experiment. Therefore, in the present invention, the relative density ratio ρ when the internal void is closed is ρ, =0.97・・・−・−−−−−−−−−−−
−−−−〜−−−−−−−−1・・−・−・−・−・・
−・− [phase].

従って、上記0式及び a =2.7  m =0.5
n=2.0  ρi =0.85  を0式に代入する
ことにより、 Qf  # 0.16−・−・−・−−−−−一−・・
−・−・−・・−一−−−−−・−・・−・・−・−・
−■となるので、■弐より閉鎖条件式 %式% しかし、実際の鍛伸加工に応じて、0式により空隙閉鎖
パラメータQを算出するのは困難であるから、実用的に
次式で置きかえる。
Therefore, the above equation 0 and a = 2.7 m = 0.5
By substituting n=2.0 ρi =0.85 into equation 0, Qf #0.16−・−・−・−−−−−−−・・
−・−・−・・−1−−−−−・−・・−・・−・−・
-■ Therefore, from ■2, the closing condition formula % formula % However, it is difficult to calculate the gap closing parameter Q using formula 0 depending on the actual forging process, so for practical purposes, it can be replaced with the following formula. .

ここで、Nは鍛伸パス回数であり、全工程の中で内部空
隙の圧着を目的とするバスについて加算するものとする
。またPavは、iバスにおける加工ひずみΔεeqが
加えられる間の静水圧応力の平均値であり、それぞれ内
部空隙の最も密集しゃすい鋼塊中心部の値で評価される
Here, N is the number of forging passes, which is added for the bus whose purpose is to press the internal voids in the entire process. Furthermore, Pav is the average value of the hydrostatic stress during the time when the processing strain Δεeq is applied in the i-bath, and each is evaluated by the value at the center of the steel ingot where the internal voids are most densely packed.

以上を要約すれば、N回の鍛伸加工を行う場合、の条件
式を満足するような応力負荷経路をとる加工条件を選定
すれば、内部空隙が閉鎖され、健全な鍛鋼製品を得るこ
とができるのである。
To summarize the above, when performing forging and stretching N times, if processing conditions are selected that take a stress load path that satisfies the conditional expression, the internal voids will be closed and a sound forged steel product can be obtained. It can be done.

(II)閉鎖条件式■と加工条件の関係ところで、0式
は、理論解析または実験により計算できるが、実用上、
金敷寸法などの加工条件で評価できれば便利である。
(II) Relationship between closure condition equation ■ and processing conditions By the way, equation 0 can be calculated by theoretical analysis or experiment, but in practice,
It would be convenient if it could be evaluated based on processing conditions such as anvil dimensions.

そこで、本発明では、金敷幅比(Wu/l(o、  W
t/1lo)とPav/びeq  及びΔεeq  と
の関係を調べた。その結果を第7図及び第8図に示す。
Therefore, in the present invention, the anvil width ratio (Wu/l(o, W
The relationship between Pav/eq and Δεeq was investigated. The results are shown in FIGS. 7 and 8.

即ち、内部空隙の圧着に大きな影響を与える因子として
金敷幅比があることは前述した通りであるが、本発明に
おいては、系統的に、金敷幅比とPaν/(7eq、Δ
εeqの関係を調べ、第7・8図の結果を得たのである
That is, as mentioned above, the anvil width ratio is a factor that has a large effect on the internal gap crimping, but in the present invention, the anvil width ratio and Paν/(7eq, Δ
We investigated the relationship between εeq and obtained the results shown in Figures 7 and 8.

上記第7・8図より、次の関係式を求めた。The following relational expression was determined from the above figures 7 and 8.

Pav ==c、 ’ i n(Cz ’  WL /HO)’
−−−−−’−”−”−’−■feq Δεeq=C3HIln (C4・Wu/Ho) ・r
 −’−−−−■ここで、パラメータC+、Ct、C5
、C6は以下の値をもつ。
Pav ==c, ' in (Cz ' WL /HO)'
−−−−−'−”−”−'−■feq Δεeq=C3HIln (C4・Wu/Ho) ・r
-'---- ■Here, parameters C+, Ct, C5
, C6 have the following values.

C+=Z C2冨2.37 C:l−% C4,=7.86 即ち、第7図より0式が導びがれ、第8図よりWu/J
ioが小さい場合を除いて0式が導びがれる。
C+=Z C2 depth 2.37 C:l-% C4,=7.86 In other words, formula 0 is derived from Fig. 7, and from Fig. 8 Wu/J
Equation 0 is derived except when io is small.

以上のことより、閉鎖条件式■は、0式、0式を代入す
ることにより、金敷幅比(1)L/Ho、 Wu/Ho
)で評価することができる。
From the above, the closing condition formula (■) can be calculated by substituting the 0 and 0 expressions to obtain the anvil width ratio (1) L/Ho, Wu/Ho
) can be evaluated.

即ち、金敷幅比の最適な選定により内部空隙を有効に閉
鎖させることができるのである。
That is, by optimally selecting the anvil width ratio, the internal void can be effectively closed.

(I[I)閉鎖条件式の適用範囲 更に、金敷幅比と鍛練効果とを調べた結果を第9図及び
第10図に示す。
(I [I) Scope of Application of Closure Conditional Formula Furthermore, the results of examining the anvil width ratio and training effect are shown in FIGS. 9 and 10.

即ち、金敷鍛造においては、鋼塊内部のひずみ分布、及
び応力分布は均一でなく、各部において相違する。そこ
で、金敷鍛造の応力、ひずみ分布の特徴を明らかにする
ため、相当ひずみの最大値およびピーク位置について調
べた。
That is, in anvil forging, the strain distribution and stress distribution inside the steel ingot are not uniform and differ in each part. Therefore, in order to clarify the characteristics of stress and strain distribution in anvil forging, we investigated the maximum value and peak position of equivalent strain.

第9図は相当ひずみの最大値と上下金敷幅比の関係を示
している。Wu/loo = 0.3における相当ひず
みの最大値は上金敷幅比−L /Hoが0.8程度まで
急速に大きくなるが、Wt /lioが0.8以上にな
るとほとんど変化しなくなる。上金敷幅比Wu/H。
Figure 9 shows the relationship between the maximum value of equivalent strain and the ratio of upper and lower anvil widths. The maximum value of the equivalent strain at Wu/loo = 0.3 increases rapidly until the upper anvil width ratio -L/Ho reaches about 0.8, but hardly changes when Wt/lio becomes 0.8 or more. Upper anvil width ratio Wu/H.

=0.57の場合も同じ傾向である。The same tendency is observed when =0.57.

従って、第9図より、効率よく相当ひずみが与えられる
条件として、 Wt、 /llo≧0.8 −−−−−−−−−−−−
−−−−−−−−−−−−−−−−−■が得られる。
Therefore, from Fig. 9, the conditions for efficiently applying considerable strain are as follows: Wt, /llo≧0.8 −−−−−−−−−−−−
−−−−−−−−−−−−−−−■■ is obtained.

第10図は、相当ひずみのピーク位置に及ぼす上下金敷
幅比の影響を示す。ピーク位置は、上金敷幅比Wu/I
lo = 0.3の時に、’AHo、 0.57の時に
%ll。
FIG. 10 shows the influence of the upper and lower anvil width ratios on the peak position of equivalent strain. The peak position is the upper anvil width ratio Wu/I
'AHo when lo = 0.3, %ll when 0.57.

と!’G1)oとの間、0.8の時に鋼塊中心部の’y
AHoとなる。即ち、上金敷幅比−u/Haが大きくな
るとピーク位置は内部空隙の密集する鋼塊中心部に移行
し、上金敷幅比にほとんど依存しない。このことから内
部空隙の密集する中心部に圧下効果が作用し始める条件
として、 Wu/llo  ≧0.43 −−−−−−−−−−−
−−−−−−−−−−−−−■が得られる。
and! 'G1) between o and 'y at the center of the steel ingot when 0.8
Becomes AHo. That is, as the upper anvil width ratio -u/Ha increases, the peak position shifts to the center of the steel ingot where internal voids are dense, and it hardly depends on the upper anvil width ratio. From this, the conditions for the rolling effect to start acting on the center where the internal voids are densely packed are as follows: Wu/llo ≧0.43 −−−−−−−−−−−
−−−−−−−−−−−−■ is obtained.

以上の■、■弐を用いることにより、鋼塊中心部におい
て、内部空隙を効率よく閉鎖させることができる。
By using the above (1) and (2), it is possible to efficiently close the internal void in the center of the steel ingot.

以上をまとめると、■、0式の条件のもとで、■、0式
を用いWu/Ho −、Wl /lioが0式を満足す
る範囲内にあるよう Wu/Ho及びWt /Hoの値
を求めることにより、効率よく内部空隙を閉鎖させるこ
とができるのである。
To summarize the above, under the conditions of formula ■, 0, use formula By determining this, it is possible to efficiently close the internal void.

以上の関係をグラフにしたのが第1図である。Figure 1 is a graph of the above relationship.

この第1図は、例えば、バス回数N=4の場合、点々で
示す範囲において、WL/llo SWu/)toの値
を選定すればよいことを示している。第1図における原
点を通る45°の傾きの直線は、同直線の上側では、W
u< Wl、となり、金敷が不安定となるため、この範
囲を除くためのものである。理論的には、同直線の上側
の領域を選定してもよい。
FIG. 1 shows that, for example, when the number of buses N=4, the value of WL/llo SWu/)to can be selected within the range indicated by dots. A straight line with an inclination of 45° that passes through the origin in Figure 1 has W
This is to exclude this range because u<Wl, and the anvil becomes unstable. Theoretically, an area above the same straight line may be selected.

また、第1図より、N>6を採用することは無意味であ
ることが判かる。従って、内部空隙圧着を目的とした鍛
伸加工バスは、最大6回までである。
Moreover, from FIG. 1, it is clear that it is meaningless to adopt N>6. Therefore, the forging process bath for the purpose of internal gap compression bonding is limited to a maximum of six times.

(実施例) 本発明に係る0〜0式を用いて、上下金敷幅比(Wu/
Ho、  WL/)io)を求める。
(Example) Using the 0 to 0 formula according to the present invention, the upper and lower anvil width ratio (Wu/
Find Ho, WL/)io).

実際の鍛伸加工において、鍛造材中心部に鍛練効果を及
ぼすためには、1回の圧下で与える圧縮率Tは、通常1
5%以上必要である。そこで、γ=0.15として、第
1図に示す上下金敷幅比とパス回数の関係よりバス回数
を決めれば、空隙圧着のために適正な上下金敷幅比を選
定できる。このようにして選定した一例を、表1に示す
In actual forging and drawing, in order to exert a forging effect on the center of the forged material, the compression ratio T applied in one rolling is usually 1.
5% or more is required. Therefore, by setting γ=0.15 and determining the number of passes from the relationship between the upper and lower anvil width ratios and the number of passes shown in FIG. 1, an appropriate upper and lower anvil width ratio can be selected for gap crimping. An example selected in this way is shown in Table 1.

表1 金敷幅比の組合せ例(圧縮率15χの場合)第1
)図に、従来例の工程と、本発明を適用した場合の鍛造
プロセスの相違を示す。本発明を適用することにより、
所定バス回数で確実な空隙圧着が得られる為、従来の第
5・6エ程を短縮することができる。これは、約15χ
の省エネルギーになる。
Table 1 Example of combination of anvil width ratio (compression ratio 15χ) 1st
) shows the difference between the conventional process and the forging process to which the present invention is applied. By applying the present invention,
Since reliable gap crimping can be achieved with a predetermined number of baths, the conventional 5th and 6th steps can be shortened. This is approximately 15χ
It saves energy.

(発明の効果) 本発明に基いて、鍛伸パススケジュールの設計を行うこ
とにより、内部品質を十分確保すると同時に、最も効率
的な鍛伸加工条件を選定できるので、省エネルギー、歩
留り向上と共に、据込工程の省略による工程短縮が可能
となり、コストダウン、糖量短縮に大きく貢献する。
(Effects of the Invention) By designing a forging pass schedule based on the present invention, it is possible to sufficiently ensure internal quality and at the same time select the most efficient forging processing conditions. The process can be shortened by omitting the mixing process, which greatly contributes to cost reduction and sugar content reduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の条件式をグラフ化したものであり、上
下金敷幅比とパス回数の関係を示すグラス、第2図は本
発明に係る鍛伸加工を説明するための斜視図、第3図は
各種鍛伸加工方式を示す断面図、第4図及び第5図は各
種鍛伸方式による密度比と空隙閉鎖パラメータとの関係
を示すグラフ、。 第6図は空隙の密度比と面積率の関係を示すグラフ、第
7図は中心部の平均静水圧応力に及ぼす金敷幅比の影響
を示すグラフ、第8図は中心部の相当ひずみに及ぼす金
敷幅比の影響を示すグラフ、第9図は相当ひずみの最大
値に及ぼす金敷幅比の影響を示すグラフ、第10図は相
当ひずみ分布のピーク位置に及ボス金敷幅比の影響を示
すグラフ、第1)図は従来例の鍛造工程と本発明を適用
した場合の鍛造工程の比較図である。 1−・上金敷、2−・−上金敷、3・・−鋼塊(鍛造材
)。 特 許 出 願 人  株式会社 神戸製鋼所第7 図 第9 図 丁卒叡怖cb Wl/H。 第8図 第10図 −F小収’1)%化Wl / H0 手続主甫正書 1発) 昭和61年6月17日
Fig. 1 is a graph showing the conditional expression of the present invention, and is a graph showing the relationship between the upper and lower anvil width ratio and the number of passes; Fig. 2 is a perspective view for explaining the forging process according to the present invention; FIG. 3 is a cross-sectional view showing various forging and drawing methods, and FIGS. 4 and 5 are graphs showing the relationship between density ratio and gap closing parameter according to various forging and drawing methods. Figure 6 is a graph showing the relationship between void density ratio and area ratio, Figure 7 is a graph showing the influence of anvil width ratio on the average hydrostatic stress in the center, and Figure 8 is a graph showing the effect of the anvil width ratio on the equivalent strain in the center. Graph showing the influence of the anvil width ratio. Figure 9 is a graph showing the influence of the anvil width ratio on the maximum value of equivalent strain. Figure 10 is a graph showing the influence of the boss anvil width ratio on the peak position of the equivalent strain distribution. FIG. 1) is a comparison diagram of a conventional forging process and a forging process to which the present invention is applied. 1--upper anvil, 2--upper anvil, 3--steel ingot (forged material). Join Kobe Steel Co., Ltd. No. 7 Fig. 9 Graduation CB WL / H. Figure 8 Figure 10 - F Small Income '1) % Wl / H0 Procedures Master Book 1 Issue) June 17, 1985

Claims (1)

【特許請求の範囲】[Claims] (1)圧縮率γで、かつN回のパスで、高さHoの鋼塊
を鍛伸加工する場合の最適な上金敷幅比(W_U/H_
O)及び下金敷幅比(W_L/H_O)を求める方法で
あって、 Q=Σ^N_i_=_1(Pavi)/(σeqi)Δ
εeqi≧0.16・・・・・・・[1]但し、(Pa
v)/(σeq)=C_1・ln(C_2・W_L/H
o)・・・・・・・[2]Δεeq=C_3・ln(C
_4・W_U/H_O)・γ・・・・・・・[3]Q;
空隙閉鎖パラメータ Pav;鋼塊中心部における平均の静水圧応力 σeq;相当応力 Δεeq;鋼塊中心部における平均の相当塑性ひずみ量 N;鍛伸パス回数 添字i;パスNo γ;圧縮率 W_U;上金敷幅 W_L;下金敷幅 H_O;鋼塊の高さ C_1=1/3、C_2=2.37、C_3=2/3、
C_4=7.86W_U/H_O≧0.43・・・・・
・・・・・・・・・・・・・・・[4]W_L/H_O
=0.8・・・・・・・・・・・・・・・・・・・・[
5]の条件式を用い、上記[4]、[5]式の条件のも
とでW_U/H_O、W_L/H_Oが、[1]式を満
足する範囲内にあるよう、W_U/H_O及びW_L/
H_Oの値を求めることを特徴とする鍛伸加工における
最適な金敷幅比の決定方法。
(1) Optimal upper anvil width ratio (W_U/H_
O) and the lower anvil width ratio (W_L/H_O), Q=Σ^N_i_=_1(Pavi)/(σeqi)Δ
εeqi≧0.16・・・・・・・・・[1] However, (Pa
v)/(σeq)=C_1・ln(C_2・W_L/H
o)・・・・・・・・・[2]Δεeq=C_3・ln(C
_4・W_U/H_O)・γ・・・・・・・[3]Q;
Void closure parameter Pav; average hydrostatic stress σeq at the center of the steel ingot; equivalent stress Δεeq; average equivalent plastic strain amount N at the center of the steel ingot; number of forging passes subscript i; pass No γ; compression ratio W_U; upper Anvil width W_L; Lower anvil width H_O; Steel ingot height C_1=1/3, C_2=2.37, C_3=2/3,
C_4=7.86W_U/H_O≧0.43・・・・・・
・・・・・・・・・・・・・・・[4]W_L/H_O
=0.8・・・・・・・・・・・・・・・・・・[
Using the conditional expressions in [5], W_U/H_O and W_L are adjusted so that W_U/H_O and W_L/H_O are within the range that satisfies the expressions [1] under the conditions of expressions [4] and [5] above. /
A method for determining an optimal anvil width ratio in forging and stretching processing, characterized by determining the value of H_O.
JP10155986A 1986-04-30 1986-04-30 Deciding method for optimum anvil block width ratio in forge drawing Pending JPS62259631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10155986A JPS62259631A (en) 1986-04-30 1986-04-30 Deciding method for optimum anvil block width ratio in forge drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10155986A JPS62259631A (en) 1986-04-30 1986-04-30 Deciding method for optimum anvil block width ratio in forge drawing

Publications (1)

Publication Number Publication Date
JPS62259631A true JPS62259631A (en) 1987-11-12

Family

ID=14303775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10155986A Pending JPS62259631A (en) 1986-04-30 1986-04-30 Deciding method for optimum anvil block width ratio in forge drawing

Country Status (1)

Country Link
JP (1) JPS62259631A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102294425A (en) * 2011-08-22 2011-12-28 中原特钢股份有限公司 Forging device and forging method for upper wide anvil and lower narrow anvil
JP2016074034A (en) * 2014-10-02 2016-05-12 Jfeスチール株式会社 Steel material forging method and steel material produced thereby
JP2016078098A (en) * 2014-10-21 2016-05-16 Jfeスチール株式会社 Steel material forging method and steel material produced thereby
JP2019214065A (en) * 2018-06-13 2019-12-19 日本製鉄株式会社 Rolling equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102294425A (en) * 2011-08-22 2011-12-28 中原特钢股份有限公司 Forging device and forging method for upper wide anvil and lower narrow anvil
JP2016074034A (en) * 2014-10-02 2016-05-12 Jfeスチール株式会社 Steel material forging method and steel material produced thereby
JP2016078098A (en) * 2014-10-21 2016-05-16 Jfeスチール株式会社 Steel material forging method and steel material produced thereby
JP2019214065A (en) * 2018-06-13 2019-12-19 日本製鉄株式会社 Rolling equipment

Similar Documents

Publication Publication Date Title
DE2104328C2 (en) Process for the production of metallic fibers
DE10324094B3 (en) Ultrasonic welding system for joining electrical conductors together has converter and sonotrode and has control circuit comparing actual curve of pressure plotted against time with ideal curve
JPS62259631A (en) Deciding method for optimum anvil block width ratio in forge drawing
EP3281021B1 (en) Method for analysing a signal and device for carrying out the method
JP2984367B2 (en) Metal extrusion
JP4871228B2 (en) Forging process design method
JPS6027440A (en) Method for forging crank shaft and die for rough forging
JPH09182932A (en) Production of connecting rod
JPH0810804A (en) Method for rolling plate
JPH11347680A (en) Method for roll-forging shaft with step
JPS5819373B2 (en) Forging method for metal materials
Kisel et al. Optimal structure of wear-resistant compositional materials
JPS61103637A (en) Forging method of metallic material
JPS6224832A (en) Hot free forging method for large-sized steel material
JPH07180714A (en) Manufacture of bolt excellent in fatigue strength
JP2562942B2 (en) Hot forging method for large steel
SU1003983A1 (en) Blank forging method
EP0631829B1 (en) Separating agent for the hot forming of incased metal parts and method of producing the separating agent
JPS61129250A (en) Production of disc
US3157474A (en) Preparation of expandable laminate stock and billet therefor
Burdukovsky et al. Prediction of resources of materials of machine and construction elements in the process of manufacture and exploitation
SU1087218A1 (en) Method of rolling asymmetric sections
RU2698241C1 (en) Rolling method in rolls with wavy barrel profile
JPS58122147A (en) Forming method of rack
KR100327266B1 (en) Manufacturing method of extra thick steel sheet