JPS62259006A - Interference film thickness measuring instrument - Google Patents

Interference film thickness measuring instrument

Info

Publication number
JPS62259006A
JPS62259006A JP10095686A JP10095686A JPS62259006A JP S62259006 A JPS62259006 A JP S62259006A JP 10095686 A JP10095686 A JP 10095686A JP 10095686 A JP10095686 A JP 10095686A JP S62259006 A JPS62259006 A JP S62259006A
Authority
JP
Japan
Prior art keywords
spectrum
light source
light
interference
normal distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10095686A
Other languages
Japanese (ja)
Inventor
Katsu Inoue
井上 克
Shigeru Matsui
繁 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10095686A priority Critical patent/JPS62259006A/en
Publication of JPS62259006A publication Critical patent/JPS62259006A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To lower the lower limit of film thickness measurement by providing a transmission type optical fiber in an optical system and correcting the light source spectrum of white light into a normal distribution figure about a wave number axis. CONSTITUTION:Light from a normal white light source 1 illuminates a light transmitting film on the surface of a sample 7 and its reflected light is admitted into an interferometer 30 to form interference fringes on a photodiode array 17. The interference fringes are converted into an electrical signal to obtain an interference figure, which is processed by Fourier transformation to obtain a spectrum having a peak on a low frequency side, so the light transmission type optical filter 31 is provided on the side of the light source so as to correct the spectrum of the normal distribution figure. The transmissivity characteristic of the filter 31 has a band-pass type spectrum and is proportional to the spectrum ratio obtained by dividing the normal distribution spectrum by the light source spectrum as to the wave number gradually. Thus, the interference figure of the light source 1 is processed by Fourier transformation to easily obtain the total spectrum in consideration of the spectrum characteristics of the light source 1, the detector sensitivity characteristic of the array 17, the transmission characteristic of an optical parts, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は膜厚計測に係り、特に半導体産゛業、有機高分
子産業などの各種膜厚計測に好適な干渉図形方式の膜厚
測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to film thickness measurement, and in particular to an interferometric film thickness measurement device suitable for various film thickness measurements in the semiconductor industry, organic polymer industry, etc. Regarding.

〔従来の技術〕[Conventional technology]

従来の干渉を用いた膜厚測定装置は、特公昭54−36
515号公報及び特開昭59−105508号公報に記
載されている如く、白色光を用いているが、その白色光
の光源スペクトルの形状に関しては配慮されておらず、
記述もされていなかった。
A conventional film thickness measuring device using interference was developed by
As described in Japanese Patent No. 515 and Japanese Patent Application Laid-Open No. 59-105508, white light is used, but no consideration is given to the shape of the light source spectrum of the white light.
It wasn't even described.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、光源スペクトルの形状を補正する手
段を備えておらず、干渉図形の振動波形が大きな光路差
のところまで継続し、干渉図形中に含まれる副極大の光
路差位置の検出に支障を来たす場合もあった。
The above-mentioned conventional technology does not have a means for correcting the shape of the light source spectrum, and the oscillation waveform of the interferogram continues up to a large optical path difference, which hinders the detection of the sub-maximal optical path difference position included in the interferogram. In some cases, this occurred.

本発明の目的は、干渉図形の振動波形を比較的小光路差
内に減衰させ、特に薄膜の膜厚測定に際し生ずる干渉図
形の主極大による副極大の隠ぺいを除去し、膜厚測定の
下限を引下げることのできる干渉膜厚測定装置を提供す
ることにある。
The purpose of the present invention is to attenuate the oscillation waveform of an interferogram within a relatively small optical path difference, eliminate the concealment of sub-maximum by the main maximum of the interferogram that occurs especially when measuring the thickness of a thin film, and lower the lower limit of film thickness measurement. An object of the present invention is to provide an interference film thickness measuring device that can be pulled down.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、白色光の光源スペクトルを波数軸に関し正
規分布(ガウシアン)図形状に補正する事により達成さ
れる。
The above object is achieved by correcting the light source spectrum of white light into a normal distribution (Gaussian) diagram shape with respect to the wave number axis.

これは、急岐なピークスペクトルを有し又はピークがス
ペクトルの一方の端近くにずれている光の干渉図形の振
動波形の減衰が緩やかであるのに対し、波数スペクトル
のほぼ中央に緩やかなピークを有する正規分布形スペク
トルの光の干渉図形では、その振動波形が比較的速やか
である事に着目したものである。
This is because the vibration waveform of an optical interferogram that has a sharply diverging peak spectrum or whose peak is shifted near one end of the spectrum has a gradual attenuation, but a gradual peak near the center of the wavenumber spectrum. This study focuses on the fact that in the interference pattern of light with a normal distribution spectrum, the oscillation waveform is relatively rapid.

フーリエ理論に於ては、正規分布図形のフーリエ変換は
再び正規分布図形となり、矩形のフーリエ変換は5IN
C関数図形となる事が知られている。
In Fourier theory, the Fourier transform of a normal distribution figure becomes a normal distribution figure again, and the Fourier transform of a rectangle is 5IN
It is known that it becomes a C function figure.

又、基準図形をフーリエ変換の原点から移動させてフー
リエ変換すると、いわゆる遷移則により、基準図形のフ
ーリエ変換を包絡線とし、移動量に比例した周波数を持
った減衰する振動波形となる事も知られている。
It is also known that when a reference figure is moved from the origin of the Fourier transform and Fourier transform is performed, the Fourier transform of the reference figure becomes an envelope and a damping vibration waveform with a frequency proportional to the amount of movement occurs due to the so-called transition law. It is being

光のスペクトル図形と、その光を干渉されて得られる干
渉図形の関係は1両者がフーリエ変換及びフーリエ逆変
換して相互に求められ、上記のフーリエ理論宴適用され
ることになる。
The relationship between the spectral figure of light and the interference figure obtained by interfering the light is mutually determined by Fourier transform and inverse Fourier transform, and the above-mentioned Fourier theory equation is applied.

可視域、又は近赤外域で透明な膜物質を測定するには、
可視域から近赤外域に広がる白色光源が必要となるが、
通常低波移域の光エネルギが微弱で、光源スペクトルは
帯域状となるから振動波形は必然的に存在する。
To measure transparent film materials in the visible or near infrared range,
A white light source that extends from the visible region to the near-infrared region is required,
Normally, the light energy in the low wave transition range is weak and the light source spectrum is band-like, so a vibration waveform inevitably exists.

従って帯域スペクトルの形状を正規分布形にする事によ
り、干渉図形に′おける振動波形の包路線の形状を正規
分布形にする事が可能で、その結果振動波形の振幅も急
速にOに近づけることが出来る。
Therefore, by making the shape of the band spectrum into a normal distribution shape, it is possible to make the shape of the envelope of the vibration waveform in the interferogram into a normal distribution shape, and as a result, the amplitude of the vibration waveform can also rapidly approach O. I can do it.

〔実施例〕〔Example〕

以下1本発明の実施例について説明する。 An embodiment of the present invention will be described below.

第1図には1本発明の一実施例が示されている。FIG. 1 shows an embodiment of the present invention.

図において、白色光源1.コリメータレンズ2゜半透膜
5.対物レンズ6から成る照射光学系により、白色光g
1からの光は、移動台8上の試料7の表面に点状に集光
照射される。試料7の表面に存在する透光膜の表面と裏
面から反射する膜干渉光は、対物レンズ6を経て、半透
膜5に到りそこで反射して干渉計1立に導入される。干
渉計30は偏光子10.ウォラストンプリズム12.検
光子14から構成された波面傾斜型の偏光干渉計である
。偏光子10.検光子14は、ウォラストンプリズム1
2の結晶光軸に対し45°回転させて置かれた直線偏光
板である。ウォラストンプリズム12は水晶の如き複属
析性物質の、互に光軸が直交する2個のプリズムから構
成されており、偏光子10を通過した直線偏光は、ウォ
ラストンプリズム12中で互に直交する2個の直流偏光
に分解し、ウォラストンプリズム12の通過位置に依っ
て異なる位相遅延を与えられ、検光子14で合成されて
、干渉光束となる。この時中心軸に対して波面の進行方
向が傾斜した2個の波面が生ずる事になり、この波面の
分離はウォラストンプリズム12の内部で生ずる。その
結果、いわゆる等5干渉縞がプリズム12の内部に観測
され、結像レンズ15により、光ダイオードアレイ17
上に。
In the figure, white light source 1. Collimator lens 2゜semi-permeable membrane 5. The irradiation optical system consisting of the objective lens 6 produces white light
The light from 1 is focused and irradiated onto the surface of the sample 7 on the moving stage 8 in the form of a point. The film interference light reflected from the front and back surfaces of the transparent film existing on the surface of the sample 7 passes through the objective lens 6, reaches the semi-transparent film 5, is reflected there, and is introduced into an interferometer. The interferometer 30 has a polarizer 10. Wollaston Prism 12. This is a wavefront tilting type polarization interferometer composed of an analyzer 14. Polarizer 10. Analyzer 14 is Wollaston prism 1
This is a linear polarizing plate rotated by 45 degrees with respect to the optical axis of the second crystal. The Wollaston prism 12 is composed of two prisms made of a multimetallic material such as quartz and whose optical axes are perpendicular to each other. The light is separated into two orthogonal DC polarized lights, given different phase delays depending on the passing position of the Wollaston prism 12, and combined by the analyzer 14 to form an interference light beam. At this time, two wavefronts are generated whose traveling directions are inclined with respect to the central axis, and separation of these wavefronts occurs inside the Wollaston prism 12. As a result, so-called equal 5 interference fringes are observed inside the prism 12, and the imaging lens 15 causes the photodiode array 17 to
above.

紙面に垂直の干渉縞を結像する。この干渉縞を電気信号
に変換したものが、干渉図形であって、アレイ17の中
心から両側に遠ざかるに従い、干渉光路差が(正及び負
に)増加する。
Image interference fringes perpendicular to the plane of the paper. The interference pattern converted into an electrical signal is an interference pattern, and the interference optical path difference increases (positively and negatively) as it moves away from the center of the array 17 on both sides.

アレイ17は駆動電源18からのクロックパルス列で走
引され、アレイ17からの電流信号は増幅器19で増幅
され電圧信号となり、A−D変換器20でディジタル化
されて演算処理袋4I!i40に入力する。
The array 17 is driven by a clock pulse train from the drive power supply 18, and the current signal from the array 17 is amplified by the amplifier 19 to become a voltage signal, which is digitized by the A/D converter 20 and sent to the processing bag 4I! Enter into i40.

通常の白熱ランプと、シリコン、光ダイオードアレイを
組み合せた時の干渉図形は第3図(b)の如くであり、
これをフーリエ変換したスペクトルは同図Ca)に示さ
れる。スペクトル図形41は低波数側12,500am
−″1(波長800nm)に、ピーク42を有しており
、干渉図形43は減衰光路差44として約7μmの大き
さを持っている。一方、第4図(a)は正規分布図形の
スペクトル45であって、そのピーク波数46は16,
100ロー1(波是620nm)である、同図(b)は
スペクトル45のフーリエ変換であり、干渉図形47の
減衰波数48は約1.8μmで充分に小さい。
The interference pattern when a normal incandescent lamp is combined with silicon and a photodiode array is as shown in Figure 3(b).
The spectrum resulting from Fourier transformation is shown in Figure Ca). Spectrum figure 41 is on the low wave number side 12,500 am
-"1 (wavelength 800 nm), and the interference pattern 43 has a size of about 7 μm as the attenuation optical path difference 44. On the other hand, FIG. 4(a) shows the spectrum of the normal distribution pattern. 45, and its peak wave number 46 is 16,
100 rho1 (wave length: 620 nm), FIG. 12(b) is a Fourier transform of the spectrum 45, and the attenuation wave number 48 of the interference pattern 47 is approximately 1.8 μm, which is sufficiently small.

本発明の骨子は、第3図(a)の光源スペクトルを第4
図(a)のスペクトルに補正する手段を光学系中に設け
るところにある。そのため、第1図に於ては光gl側に
透過型の光学フィルタ31を設けている。この光学フィ
ルタは、フィルタ32の位置に配置してもよいし、光源
1とアレイ17の間の適当な位置に設けてもよい。
The gist of the present invention is to convert the light source spectrum of FIG. 3(a) into a fourth
A means for correcting the spectrum shown in Figure (a) is provided in the optical system. Therefore, in FIG. 1, a transmission type optical filter 31 is provided on the light GL side. This optical filter may be placed at the position of the filter 32 or at an appropriate position between the light source 1 and the array 17.

この光源スペクトルの形状を補正する光学フィルタの透
過率特性は、例えば第5図の様であれば良い。透過スペ
クトル51は、波数17.700am−’にビーク52
を有する帯域透過型である。
The transmittance characteristics of the optical filter for correcting the shape of the light source spectrum may be as shown in FIG. 5, for example. The transmission spectrum 51 has a peak 52 at a wave number of 17.700 am-'.
It is a band transmission type with

透過スペクトル51は、正規分布図形スペクトル45を
光源スペクトル41で、波数について送次除したスペク
トル比に比例する。従って、光源の干渉図形43をフー
リエ変換する事により、光g1のスペクトル特性、アレ
イ17の検知器感度特性、光学系中の光学部品の透過特
性などを可法した総合スペクトルを容易に得る事ができ
る。
The transmission spectrum 51 is proportional to the spectral ratio obtained by dividing the normal distribution pattern spectrum 45 by the light source spectrum 41 with respect to the wave number. Therefore, by Fourier transforming the interference pattern 43 of the light source, it is possible to easily obtain a comprehensive spectrum that takes into account the spectral characteristics of the light g1, the sensitivity characteristics of the detector of the array 17, the transmission characteristics of the optical components in the optical system, etc. can.

又、光学フィルタ31又は32は、半透膜5にスペクト
ル補正効果を持たせるならば、即ち半透膜5の斜め透過
率と斜め反射率の積が、前記光学フィルタの透過率にス
ペクトル領域全体にわたって比例する様とすれば、不要
となる。
Furthermore, if the optical filter 31 or 32 is to have a spectral correction effect on the semi-transparent film 5, that is, the product of the oblique transmittance and the oblique reflectance of the semi-transparent film 5 will be equal to the transmittance of the optical filter over the entire spectral region. If it were to be proportional across the range, it would be unnecessary.

第2図は別の一実施例であって、第1図と同一部品は同
じ符号を付して説明する。第1図の半透膜5は、光ファ
イバ35に置き換わり、Y字状に分岐した一方より光源
1の光を入射し、共通端で試料7に照光と受光を行わせ
、他端が干婢計旦へのコリメータレンズ36に対向して
いる。
FIG. 2 shows another embodiment, and the same parts as those in FIG. 1 will be described with the same reference numerals. The semi-transparent membrane 5 in FIG. 1 is replaced by an optical fiber 35, which is branched into a Y-shape and receives the light from the light source 1 from one end, illuminates and receives the sample 7 at the common end, and uses the other end to enter the light from the light source 1. It faces the collimator lens 36 to the meter.

本例では第1図実施例に比べて、試料7上の光スポット
の大きさを小さく出来ないが、照射光学系が簡単化され
る。
In this example, the size of the light spot on the sample 7 cannot be made smaller than in the example shown in FIG. 1, but the irradiation optical system is simplified.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明によれば、干渉図形の減衰
特性が大幅に改善され、主極大の両側に派生する振動波
形の数も少く、小さな光路差速しか存在しない、従って
、従来計測不可能であった、薄い膜に対しても充分高い
精度をもって、膜干渉の結果生ずる副極大の光路差位置
を検出する事が出来るから、膜厚測定の下限を低める効
果がある。
As explained above, according to the present invention, the attenuation characteristics of the interferogram are greatly improved, the number of vibration waveforms derived on both sides of the main maximum is small, and only a small optical path difference velocity exists. Since it is possible to detect the sub-maximal optical path difference position resulting from film interference with sufficiently high accuracy even for thin films, this method has the effect of lowering the lower limit of film thickness measurement.

また1本発明によれば、照射光学系即ち光ファイバの出
口と、試料との間の作動距離の変動の影響をあまり受け
ないから、従来必要とした自動点機構など繁雑な手段が
不要となる効果がある。
Furthermore, according to the present invention, since it is not affected much by fluctuations in the working distance between the irradiation optical system, that is, the exit of the optical fiber, and the sample, complicated means such as an automatic point mechanism that were conventionally required are not required. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図は別の一実
施例の構成図、第3図は補正前の光源スペクトルと干渉
図形、第4図は本発明による補正後の光源スペクトルと
干渉図形、第5図は補正中の光学フィルタの透過スペク
トルを示す図、第6図は光学フィルタを用いた結果観測
される薄膜干渉図である。 1・・・白色光源、2,6.15・・・レンズ、5・・
・半透膜、7・・・試料、8・・・移動台、30・・・
偏光干渉計。 31.32・・・光学フィルタ、17・・・光ダイオー
ドプレイ、18・・・駆!M電源、19・・・増幅器、
20・・・AD変換器、40・・・演算処理装置、41
,45゜51・・・スペクトル、43,47.53・・
・干渉図形。
Fig. 1 is a block diagram of one embodiment of the present invention, Fig. 2 is a block diagram of another embodiment, Fig. 3 is a light source spectrum and interference pattern before correction, and Fig. 4 is a diagram after correction according to the present invention. Light source spectrum and interference pattern; FIG. 5 is a diagram showing the transmission spectrum of an optical filter during correction; FIG. 6 is a thin film interference diagram observed as a result of using the optical filter. 1...White light source, 2,6.15...Lens, 5...
・Semipermeable membrane, 7...sample, 8...movement table, 30...
Polarization interferometer. 31.32...Optical filter, 17...Photodiode play, 18...Drive! M power supply, 19... amplifier,
20... AD converter, 40... Arithmetic processing unit, 41
,45°51...spectrum,43,47.53...
・Interference figure.

Claims (1)

【特許請求の範囲】 1、白色光を測定対象膜に当て、膜の表面と裏面からの
反射光によつて生じる膜干渉光を干渉計に導き、該干渉
計で得られる干渉図形から膜厚を測定するものにおいて
、上記干渉計の検知器の感度特性を含めた白色光の分光
スペクトルの形状が、波数軸で表わした有限の正規分布
に近似するように補正する光学フィルタを有する干渉膜
厚測定装置。 2、特許請求の範囲第1項記載のものにおいて、上記光
学フィルタは、白色光源光を干渉計に導いて得られた干
渉図形をフーリエ変換して光源スペクトルを求め、該光
源スペクトル領域の略中央に頂点を有する正規分布スペ
クトルを定め、該正規分布スペクトルを前記光源スペク
トルで除して得られたスペクトル比が、透過フィルタの
透過率スペクトルにほぼ一致するものであることを特徴
とする干渉膜厚測定装置。
[Claims] 1. Apply white light to the film to be measured, guide the film interference light generated by the light reflected from the front and back surfaces of the film to an interferometer, and calculate the film thickness from the interference pattern obtained by the interferometer. An interference film thickness that has an optical filter that corrects the shape of the spectrum of white light, including the sensitivity characteristics of the detector of the interferometer, to approximate a finite normal distribution expressed on the wave number axis. measuring device. 2. In the optical filter according to claim 1, the optical filter obtains a light source spectrum by Fourier transforming an interference pattern obtained by guiding white light source light to an interferometer, and obtains a light source spectrum, and An interference film thickness characterized in that a normal distribution spectrum having an apex is determined, and a spectral ratio obtained by dividing the normal distribution spectrum by the light source spectrum almost matches the transmittance spectrum of the transmission filter. measuring device.
JP10095686A 1986-05-02 1986-05-02 Interference film thickness measuring instrument Pending JPS62259006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10095686A JPS62259006A (en) 1986-05-02 1986-05-02 Interference film thickness measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10095686A JPS62259006A (en) 1986-05-02 1986-05-02 Interference film thickness measuring instrument

Publications (1)

Publication Number Publication Date
JPS62259006A true JPS62259006A (en) 1987-11-11

Family

ID=14287805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10095686A Pending JPS62259006A (en) 1986-05-02 1986-05-02 Interference film thickness measuring instrument

Country Status (1)

Country Link
JP (1) JPS62259006A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008233063A (en) * 2007-02-21 2008-10-02 Canon Inc Surface profile measuring apparatus, exposure device, and computer
US8619263B2 (en) 2010-01-06 2013-12-31 Panasonic Corporation Film thickness measuring apparatus using interference and film thickness measuring method using interference

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008233063A (en) * 2007-02-21 2008-10-02 Canon Inc Surface profile measuring apparatus, exposure device, and computer
US8619263B2 (en) 2010-01-06 2013-12-31 Panasonic Corporation Film thickness measuring apparatus using interference and film thickness measuring method using interference

Similar Documents

Publication Publication Date Title
US4966459A (en) Broadband optical detection of transient motion from a scattering surface
CA2007190C (en) Laser optical ultrasound detection
KR0163627B1 (en) Evaluation of sample by measurement of thermo-optical displacement
JP3582311B2 (en) Medium measuring method and measuring device
KR101798957B1 (en) Apparatus and method for snapshot interferometric spectro-polarimetry
JPH09119815A (en) Method and device for measuring film thickness
US6204926B1 (en) Methods and system for optically correlating ultrashort optical waveforms
JPH06229922A (en) Very accurate air refractometer
WO2016147253A1 (en) Terahertz wave measuring device
JPS62266439A (en) Spectral temporary optical analyzer
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
WO2019150695A1 (en) Optical image measuring apparatus
JPH08271337A (en) Spectroscope
JPS5979104A (en) Optical device
JPS62259006A (en) Interference film thickness measuring instrument
JPH0449642B2 (en)
JPS6134430A (en) Active mirror wave-front sensor
JPH0566155A (en) Polarization interferometer
JPS6024401B2 (en) How to measure the physical constants of a measured object
JP2767000B2 (en) Waveguide dispersion measurement method and apparatus
JP3340792B2 (en) Microstructure measuring device
JP3040140B2 (en) Chromatic aberration measurement method and measurement device
JPS62255810A (en) Method and device for measuring depth of very small groove
JPH01320489A (en) Method and instrument for measuring distance
JPS63218827A (en) Light spectrum detector