JPS62258867A - Rear wheel steering method for all wheel steering vehicle - Google Patents

Rear wheel steering method for all wheel steering vehicle

Info

Publication number
JPS62258867A
JPS62258867A JP10368086A JP10368086A JPS62258867A JP S62258867 A JPS62258867 A JP S62258867A JP 10368086 A JP10368086 A JP 10368086A JP 10368086 A JP10368086 A JP 10368086A JP S62258867 A JPS62258867 A JP S62258867A
Authority
JP
Japan
Prior art keywords
wheels
vehicle
front wheels
steering angle
actual steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10368086A
Other languages
Japanese (ja)
Inventor
Tomohito Morikawa
森川 倫仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP10368086A priority Critical patent/JPS62258867A/en
Publication of JPS62258867A publication Critical patent/JPS62258867A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

PURPOSE:To restrain the exhibition of abnormal behavior of a vehicle to be minimum, by using the actual angular steering speed of front wheels as an important control parameter for two sets of rear wheels, in addition to the actual steering angle of the front wheels, and the vehicle speed, so that the characteristic of frequency response for the steering of the front wheels is improved. CONSTITUTION:In an automobile having two sets of rear wheels, a control device reads a weight exerted to each wheel to calculates the vehicle mass (m), the distances lf, lr1, lr2 between the gravitational center. and the front wheels, rear front wheels and rear rear wheels, and the cornering powers Kf, kr1, kr2. Further, the control device reads a vehicle speed V, and an actual steering angles deltaf, deltar1, deltar2. Further, in accordance with the steering of the front wheels, the actual steering angle deltar1 of the rear front wheels is set to a value which is (k) time as large as deltaf where (k) is a coefficient obtained from the yawdirection rotary inertial weight I, a Laplace operator (s) and the like, and therefor, the two sets of the rear wheels are steered so that the actual steering angle deltar2 of the rear rear wheels comes to be (lr2/lr1). Thus. it is possible to avoid abnormal behavior of the vehicle during steering of the rear wheels.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、少なくとも二組の操舵可能な車輪を具える車
両において、少なくとも一組の車輪を他の組の車輪の操
舵角に対し可変とする複数組の車輪の操舵方法に関する
Detailed Description of the Invention [Field of Industrial Application] The present invention provides a vehicle having at least two sets of steerable wheels, in which at least one set of wheels is variable with respect to the steering angle of the other set of wheels. The present invention relates to a method for steering multiple sets of wheels.

特に、前輪が一組であり後輪が二組である自動車におい
て、前輪の操舵に伴い後輪を操舵する場合の後輪操舵角
の制御方法に関する。
In particular, the present invention relates to a method of controlling a rear wheel steering angle when the rear wheels are steered in conjunction with the steering of the front wheels in an automobile having one set of front wheels and two sets of rear wheels.

ここで、−組の車輪とは、車軸を有する場合は車軸で結
ばれた左右の車輪をいい、車軸がない場合は同様の機能
を有する左右の車輪をいう。
Here, the term "set of wheels" refers to left and right wheels connected by an axle if the vehicle has an axle, and refers to left and right wheels having similar functions if the vehicle does not have an axle.

〔従来の技術〕[Conventional technology]

従来の車両の操舵方法は、前輪あるいは後輪のみを操舵
しているが、例外として特にホイールベースの長い車両
などは、複数組の車輪を操舵可能として小回りができる
ようにしている。この複数組の車輪の操舵方法は、操舵
可能の車輪を相互に機械的に連結させたりあるいは油圧
で結合させて、−組の車輪の実舵角に比例した角度に他
の組の車輪を操舵する方法である。
Conventional vehicle steering methods involve steering only the front wheels or rear wheels, but there are exceptions, particularly vehicles with long wheelbases, in which multiple sets of wheels can be steered to enable tight turns. This method of steering multiple sets of wheels involves mechanically or hydraulically connecting steerable wheels to each other and steering the other sets of wheels at an angle proportional to the actual steering angle of one set of wheels. This is the way to do it.

この操舵方法で車両の前輪および後輪を操舵すると、特
に、横すべり運動は車速に応じて大きく変化し、運転者
が意図した旋回方向に車両の進行方向が向かない、また
運転者が体感する車両の横加速度が回転運動と一致しな
いなどの問題が発生する。
When the front and rear wheels of a vehicle are steered using this steering method, the sideslip motion changes greatly depending on the vehicle speed, and the direction of the vehicle does not turn in the turning direction intended by the driver. Problems arise, such as the lateral acceleration of the motor not matching the rotational motion.

したがって、常時操舵する前輪に対して後輪の操舵を独
立させ、後輪を操舵するときにその制御パラメータとし
て、前輪の実舵角に加えて車速を取り込み、横すべり角
を零にする方向に後輪の操舵角を制御する方法が提案さ
れている(参考文献:特開昭57−11173号公報)
Therefore, the steering of the rear wheels is made independent of the front wheels, which are always steered, and when steering the rear wheels, the vehicle speed is taken in addition to the actual steering angle of the front wheels as a control parameter, and the rear wheels are steered in the direction that makes the sideslip angle zero. A method for controlling the steering angle of wheels has been proposed (Reference: Japanese Patent Application Laid-open No. 11173/1983).
.

以下、この操舵方法について、車両のロールを無視した
モデルを用いて説明する。
This steering method will be explained below using a model that ignores the roll of the vehicle.

車両の質量m、車両のヨー方向回転慣性質量■、車速■
、前輪と車両重心との間の前後方向の距離1r、後輪と
車両重心との間の前後方向の距離lr、前輪タイヤのコ
ーナリングパワー(左右両輪の和)K’、後輪タイヤの
コーナリングパワー(左右両輪の和)K1、前輪の実舵
角δ2、後輪の実舵角δ1、車両重心の横すべり角β、
前輪の横すべり角β1、後輪の横すべり角β1、車両の
ヨーレイト(ヨー方向の角速度)γとすると、運動方程
式ただし、 で表される。なお、車輪と車両重心との前後方向の距離
とは、車軸のある場合は車軸と車両重心との間の前後方
向の距離をいい、また車軸がない場合は左右の車輪を結
んだ仮想線を車軸と仮定して同様の前後方向の距離をい
う。
Vehicle mass m, vehicle yaw direction rotational inertia mass ■, vehicle speed ■
, the longitudinal distance 1r between the front wheels and the vehicle center of gravity, the longitudinal distance lr between the rear wheels and the vehicle center of gravity, the cornering power of the front tires (sum of both left and right wheels) K', the cornering power of the rear tires (Sum of both left and right wheels) K1, actual steering angle δ2 of the front wheels, actual steering angle δ1 of the rear wheels, side slip angle β of the center of gravity of the vehicle,
Letting the sideslip angle β1 of the front wheels, the sideslip angle β1 of the rear wheels, and the vehicle yaw rate (angular velocity in the yaw direction) γ, the equation of motion is expressed as follows. The longitudinal distance between a wheel and the vehicle's center of gravity refers to the longitudinal distance between the axle and the vehicle's center of gravity if there is an axle, or the imaginary line connecting the left and right wheels if there is no axle. It refers to the same distance in the front and rear direction assuming that it is an axle.

ここで、(11式および(2)式に(3)式および(4
)式を代入し、車両が定常的に旋回している(dβ/d
t=0、dγ/dt=o)として、車両重心点における
横すべり角βについて解くと、 β− ・−・−(5) となり、恒等的にβ=0にするには、分子上0、すなわ
ち、 (mV+  <Ktl r  Kir) ) CKt1
rδf−に、A、δ1)■ −CKtδf+Krδf)−(にtlt”+に、1.す
■ =0                  ・−・・−
・(6)を満足させればよい。
Here, (11 and (2)) are replaced by (3) and (4)
) and the vehicle is turning steadily (dβ/d
t=0, dγ/dt=o), and solving for the sideslip angle β at the center of gravity of the vehicle, we get β− ・−・−(5). That is, (mV+ <Ktl r Kir) ) CKt1
rδf−, A, δ1)■ −CKtδf+Krδf)−(nitlt”+, 1.su■ =0 ・−・・−
・It is sufficient to satisfy (6).

(6)式において、前輪の実舵角δfに対する後輪の実
舵角δfの比率k (=δf/δf)は、となる。
In equation (6), the ratio k (=δf/δf) of the actual steering angle δf of the rear wheels to the actual steering angle δf of the front wheels is as follows.

なお、lは車輪間の前後方向の距離C1r”1r)であ
る。
Note that l is the distance C1r''1r) between the wheels in the longitudinal direction.

したがって、(7)式を用いて前輪の実舵角δfに対す
る後輪の実舵角δfの比率kを求め、後輪の     
1制御角にδfに基づいて後輪を操舵することにより、
車両の横すべり角を0とすることができる。
Therefore, using equation (7), find the ratio k of the actual steering angle δf of the rear wheels to the actual steering angle δf of the front wheels, and
By steering the rear wheels based on δf in one control angle,
The sideslip angle of the vehicle can be set to zero.

すなわち、後輪の実舵角δ1は、 δf=にδf           ・−・−・・(8
)となり、仮に車両の質量や車両重心位置をほぼ一定と
して扱えば、車両の質itm、前輪と車両重心との間の
前後方向の距離1f、後輪と車両重心との間の前後方向
の距離1.、、前輪タイヤのコーナリングパワーに、お
よび後輪タイヤのコーナリングパワーに1を定数として
扱うことができ、車速■、前輪の実舵角δfをセンサに
より検出し、それに応じて制御角にδfになるように後
輪を操舵することにより、車両重心点における横すべり
角βをOにすることができるようにしている。
In other words, the actual steering angle δ1 of the rear wheels is δf = δf ・−・−・(8
), and if the mass of the vehicle and the position of the vehicle center of gravity are treated as almost constant, then the quality of the vehicle itm, the distance 1f in the longitudinal direction between the front wheels and the center of gravity of the vehicle, and the distance in the longitudinal direction between the rear wheels and the center of gravity of the vehicle 1. ,, 1 can be treated as a constant for the cornering power of the front tires and the cornering power of the rear tires, the vehicle speed ■ and the actual steering angle δf of the front wheels are detected by a sensor, and the control angle is set δf accordingly. By steering the rear wheels in this manner, the sideslip angle β at the center of gravity of the vehicle can be set to O.

また、前輪および後輪に設けられた荷重センサによりそ
れぞれ車両重量を検出すれば、それに応じて車両の質量
m、前輪と車両重心との間の前後方向の距離l1、後輪
と車両重心との間の前後方向の距d1r、前輪タイヤの
コーナリングパワーKtおよび後輪タイヤのコーナリン
グパワーK。
In addition, if the vehicle weight is detected by the load sensors installed on the front wheels and the rear wheels, the mass m of the vehicle, the distance l1 in the longitudinal direction between the front wheels and the center of gravity of the vehicle, and the distance between the rear wheels and the center of gravity of the vehicle can be determined accordingly. distance d1r in the longitudinal direction between them, cornering power Kt of the front tires, and cornering power K of the rear tires.

を求めることができ、より正確に横すべり角βをOにす
る方向に後輪を操舵することができるというものである
This allows the rear wheels to be more accurately steered in the direction that makes the side slip angle β equal to O.

なお、車両が低速走行しているときには前輪と後輪とが
互いに逆方向にきれ、車両が高速走行しているときには
前輪と後輪とが互いに同方向にきれる。その境界速度は
車両の諸条件により異なる。
Note that when the vehicle is traveling at low speed, the front wheels and rear wheels are sheared in opposite directions, and when the vehicle is traveling at high speed, the front wheels and rear wheels are sheared in the same direction. The boundary speed varies depending on the conditions of the vehicle.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、このような従来の前輪および後輪の同時操舵
方法では、車両重心点における横すべり角βを車両が定
常円旋回をしていると仮定して求めているので、過渡的
にはその時間層で車両重心点における横すべり角βが変
動し、車両の挙動が不安定になることがある。
However, in this conventional method of simultaneously steering the front and rear wheels, the sideslip angle β at the vehicle center of gravity is determined assuming that the vehicle is making a steady circular turn. The sideslip angle β at the center of gravity of the vehicle changes, and the behavior of the vehicle may become unstable.

特に、満載状態の大型トラックなどのように、車両の重
心が後輪の方へ偏っている場合に顕著である。
This is particularly noticeable when the center of gravity of the vehicle is biased toward the rear wheels, such as in a fully loaded large truck.

たとえば、前輪のみが操舵可能な現行車両は、車両方向
が車両の旋回弧に対してほぼ内側になったまま推移する
(β<O)。また、従来例方式の前後輪操舵可能な車両
は、定常円旋回では車両重心点における横すべり角βが
0になるが、前輪の操舵直後では車両方向が車両の旋回
弧に対して、外側になったり(β〉0)あるいは内側に
なったり(β〈O)して不安定になる。
For example, in current vehicles in which only the front wheels can be steered, the vehicle direction remains approximately inside the turning arc of the vehicle (β<O). In addition, in a conventional vehicle that can steer the front and rear wheels, the sideslip angle β at the center of gravity of the vehicle becomes 0 during steady circular turning, but immediately after the front wheels are steered, the vehicle direction is outward with respect to the turning arc of the vehicle. (β〉0) or become inward (β〈O) and become unstable.

さらに、従来例方式の前後輪操舵可能な車両は、ヨーレ
イトの過渡応答の立ち上がりが現行車両より遅く、横加
速度の過渡応答では、現行車両よりむしろぎくしゃくし
た立ち上がりになっていた。
Furthermore, in the conventional vehicle capable of front and rear wheel steering, the transient response of yaw rate rises slower than that of the current vehicle, and the transient response of lateral acceleration has a more jerky rise than the current vehicle.

本発明は、このような従来の問題点を解決するもの、で
、前輪−組、後輪二組の車両において、操舵安定性を向
上させ、しかも過渡的にも安定な前輪および後輪の同時
操舵方法を提供することを目的とする。
The present invention solves these conventional problems, and improves steering stability in a vehicle with two sets of front wheels and two sets of rear wheels. The purpose is to provide a steering method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明第一の発明は、前輪が一組であり、後輪が二組で
ある自動車の前輪の操舵に伴い後輪を操舵する方法にお
いて、後輪二組をそれぞれ異なる制?ffl角で操舵す
るもので、上記後輪の後前輪の実舵角δf1を上記前輪
の実舵角δfのに倍とし、このkを D+EV2+FVs ただし、 A=  Kr (KrlIlx<it+/r+)+ K
rtlr2C(l t + lfz))B = m K
 、 l 。
A first aspect of the present invention is a method of steering the rear wheels in conjunction with the steering of the front wheels of an automobile having one set of front wheels and two sets of rear wheels, in which the two sets of rear wheels are controlled differently. ffl angle, the actual steering angle δf1 of the rear front wheels is twice the actual steering angle δf of the front wheels, and this k is D+EV2+FVs, where A=Kr (KrlIlx<it+/r+)+K
rtlr2C(lt + lfz))B = mK
, l.

C=IK。C=IK.

D = K11l t (Kr+(j! t+1r+−
)とし、上記後輪の後後輪の実舵角δr2をとすること
を特徴とする。
D = K11l t (Kr+(j! t+1r+-
), and the actual steering angle δr2 of the rear wheels is .

本発明第二の発明は、前輪が一組であり、後輪が二組で
ある自動車の前輪の操舵に伴い後輪を操舵する方法にお
いて、後輪二組を等しい制御角で操舵するもので、上記
後輪の後前輪の実舵角δf1および上記後輪の後後輪の
実舵角δr2を等しく上記前輪の実舵角δfのに倍とし
、このkをD+EV”+FVs ただし、 A =  Kt (K−t l□(lf+1□)十Kr
zilrzC1t + 11g))B=mKf1f C=IK。
A second invention of the present invention is a method of steering the rear wheels in conjunction with the steering of the front wheels of an automobile having one set of front wheels and two sets of rear wheels, in which the two sets of rear wheels are steered at equal control angles. , the actual steering angle δf1 of the rear wheels and the actual steering angle δr2 of the rear wheels are equal to the actual steering angle δf of the front wheels, and this k is D+EV"+FVs. However, A = Kt (K-t l□ (lf+1□) 10 Kr
zilrzC1t + 11g)) B=mKf1f C=IK.

D=Kfllf (K□(lr+Il□)+ Krz(
j! r” 1rz)) +Kr+Krz(lrz  
j’rυ2E=m(Kr+1、t +Krzj!r1)
2E=m(Kr1lr1+Kr2lr2)F = I 
(K r+ ” K rz)とすることを特徴とする。
D=Kfllf (K□(lr+Il□)+Krz(
j! r” 1rz)) +Kr+Krz(lrz
j'rυ2E=m(Kr+1, t +Krzj!r1)
2E=m(Kr1lr1+Kr2lr2)F=I
(K r+ ” K rz).

なお、本発明は上記に示す式に限定されるものではなく
、実質的に同じ効果を有する場合も含まれる。
Note that the present invention is not limited to the formula shown above, and also includes cases where substantially the same effect is obtained.

〔作 用〕[For production]

本発明は、後輪操舵の主要な制御パラメータとして、前
輪実舵角δfおよび車速■に加えて前輪実舵角速度を用
いることにより、従来例方式に比べて前輪操舵に対する
周波数応答特性を改善し、フィードバンクなしで常に車
両重心点における横すべり角βを0にすることができる
The present invention improves the frequency response characteristic for front wheel steering compared to the conventional method by using the front wheel actual steering angle speed in addition to the front wheel actual steering angle δf and vehicle speed ■ as the main control parameters for rear wheel steering. Without a feed bank, the sideslip angle β at the vehicle center of gravity can always be zero.

すなわち、ハンドル操舵に対する横加速度およびヨーレ
イトの応答遅れを減少させ、後輪操舵時の車両の不自然
な挙動の発生を最小限に抑えることができる。
That is, it is possible to reduce the response delay of lateral acceleration and yaw rate to steering wheel steering, and to minimize the occurrence of unnatural behavior of the vehicle when steering the rear wheels.

〔実施例〕〔Example〕

以下、本発明の実施例方式を図面に基づいて説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例を説明する構成図である。FIG. 1 is a configuration diagram illustrating an embodiment of the present invention.

第1図において、マイクロコンピュータlの入力には、
荷重センサ3、車速センサ5、前輪操舵角センサ7およ
びストロークセンサ9の各出力が接続され、マイクロコ
ンピュータlの出力には電磁弁11.12が接続される
。電磁弁11.12はエンジンにより駆動される油圧ポ
ンプ13に接続され、マイクロコンピュータ1の出力に
応じてオイルタンク15より圧送される油量を制御する
In Fig. 1, the input of the microcomputer l is
The outputs of the load sensor 3, vehicle speed sensor 5, front wheel steering angle sensor 7, and stroke sensor 9 are connected, and the output of the microcomputer 1 is connected to electromagnetic valves 11 and 12. The electromagnetic valves 11 and 12 are connected to a hydraulic pump 13 driven by the engine, and control the amount of oil pumped from the oil tank 15 in accordance with the output of the microcomputer 1.

後前軸21および後後軸22の両端には、トルクロッド
23.24.25.26を介して油圧シリンダ27.2
9が取りつけられる。油圧シリンダ27.29はそれぞ
れ二連構成(27a、27b、29a、29b)である
。電磁弁11により制御される油圧シリンダ27a、2
9aの変位により後前輪2Iを回転させ、また電磁弁1
2により制御される油圧シリンダ27b、29bの変位
により後後輪22を回転させて、それぞれ相対的に後前
輪31.32あるいは後後輪33.34の実舵角を変え
るように構成されている。なお、油圧シリンダ27a、
 29aおよび27b、29bは互いに逆方向に駆動さ
れ、後前軸21あるいは後後軸22がその中心の回りに
回転して、後前軸31.32あるいは後後輪33.34
の実舵角が調整される。また、参照番号35はプロペラ
シャフトである。
Hydraulic cylinders 27.2 are connected to both ends of the rear-front shaft 21 and the rear-rear shaft 22 via torque rods 23.24.25.26.
9 is attached. The hydraulic cylinders 27, 29 each have a double configuration (27a, 27b, 29a, 29b). Hydraulic cylinders 27a, 2 controlled by electromagnetic valve 11
The displacement of 9a rotates the rear front wheel 2I, and the solenoid valve 1
The rear wheel 22 is rotated by the displacement of the hydraulic cylinders 27b and 29b controlled by the hydraulic cylinders 27b and 29b, and the actual steering angle of the rear front wheel 31.32 or the rear rear wheel 33.34 is relatively changed. . Note that the hydraulic cylinder 27a,
29a, 27b, and 29b are driven in mutually opposite directions, and the rear-front shaft 21 or the rear-rear shaft 22 rotates around its center to rotate the rear-front shaft 31.32 or the rear-rear wheel 33.34.
The actual steering angle is adjusted. Further, reference number 35 is a propeller shaft.

本発明方式の運動方程式は、車両の質Jim、車両のヨ
ー方向回転慣性質量■、車速V、前輪と車両重心との間
の前後方向の距離!2、後前輪と車両重心との間の前後
方向の距#1.い後後輪と車両重心との間の前後方向の
距離1..2、前輪タイヤのコーナリングパワー(左右
両輪の和)Kf、1i!を前輪タイヤのコーナリングパ
ワー(左右両輪の和)K11、後後輪タイヤのコーナリ
ングパワー(左右両輪の和)K、2、前輪の実舵角δ2
、後前輪の実舵角δfい後後輪の実舵角δr2、車両重
心の検すべり角β、前輪の横すべり角β2、後前輪の検
すベリ角βr1、後後輪の横すべり角β1□、車両のヨ
ーレイト (ヨー方向の角速度)γとすると、  ゛た
だし、                      
 iで表される。
The equation of motion of the present invention system is as follows: vehicle quality Jim, vehicle yaw direction rotational inertia mass ■, vehicle speed V, longitudinal distance between the front wheels and the vehicle center of gravity! 2. Distance in the longitudinal direction between the rear front wheels and the vehicle center of gravity #1. Distance in the longitudinal direction between the rear wheels and the center of gravity of the vehicle1. .. 2. Cornering power of front tires (sum of left and right wheels) Kf, 1i! is the cornering power of the front tires (sum of the left and right wheels) K11, the cornering power of the rear tires (sum of the left and right wheels) K, 2, the actual steering angle of the front wheels δ2
, the actual steering angle δf of the rear front wheels, the actual steering angle δr2 of the rear wheels, the detected slip angle β of the center of gravity of the vehicle, the side slip angle β2 of the front wheels, the tested belly angle βr1 of the rear front wheels, the side slip angle β1□ of the rear wheels, If the vehicle's yaw rate (angular velocity in the yaw direction) is γ, then ゛However,
Represented by i.

(9)式および001式に00式ないし0式を代入して
ラプラス変換を行い、前輪の実舵角δfの値によらずに
恒等的に車両重心点における横すべり角βをOにする条
件式を求めると、 ■ CmVKtlt   Kt (Kr+’r+(j!r+
j!r+)■ +Krzj’rz(j!r+1rz))   I Kt
s)δf(S)Kr+Jr+(lr−1□))+ I 
Kr1s)δ1□(s)zO−・・〜・・(2) となる。
Conditions in which the sideslip angle β at the center of gravity of the vehicle is set to O irrespective of the value of the actual steering angle δf of the front wheels by substituting formulas 00 or 0 into formulas (9) and 001 and performing Laplace transform. Finding the formula, ■ CmVKtlt Kt (Kr+'r+(j!r+
j! r+)■ +Krzzj'rz(j!r+1rz)) I Kt
s) δf(S)Kr+Jr+(lr-1□))+I
Kr1s) δ1□(s)zO- (2).

なお、後前輪および後後輪の操舵は本実施例では後前軸
および後後軸操舵によるもの(後輪の実舵角=後軸の実
舵角)であるが、後前輪および後後輪を操舵できるもの
ならば、他の操舵方法によるものでも本発明を実施する
ことができる。
Note that the steering of the rear front wheels and the rear rear wheels is based on the rear front axle and rear rear axle steering in this example (actual steering angle of the rear wheels = actual steering angle of the rear axle). The present invention can also be practiced with other steering methods as long as they can be steered.

ここで、後前輪の゛実舵角δf1と後後輪の実舵角δf
2の関係を二通り示し、それぞれの場合の前輪の実舵角
δfに対する後前輪および後後輪の制御式を求める。
Here, the actual steering angle δf1 of the rear front wheels and the actual steering angle δf of the rear wheels
2 is shown in two ways, and control equations for the rear front wheels and the rear rear wheels with respect to the actual steering angle δf of the front wheels in each case are determined.

その第一の制御式は、車両が極低速走行をしかつ旋回半
径が十分大きく、したがって後前輪の実舵角δ1.およ
び後後輪の実舵角δf2が十分小さいとすると、第2図
に示すように、 の関係が成立する。
The first control equation assumes that the vehicle is running at an extremely low speed and the turning radius is sufficiently large, so that the actual steering angle of the rear and front wheels is δ1. Assuming that the actual steering angle δf2 of the rear wheels is sufficiently small, the following relationship holds true as shown in FIG.

この場合の前輪の実舵角δfに対する後前輪の実舵角δ
f1の比率に1(=δf、(s)/δf (s) )を
求めると、 ただし、 A=  Kt (Krrlrr(lt +i!t+)+
 KrzlrtClt” 7!rz))B = m K
 t l t C冨IKt とすればよい。したがって、このときの前輪の実舵角δ
fに対する後後輪の実舵角δ2□の比率に2(=δ−Z
(S)/δt (s))は、となる。
In this case, the actual steering angle δ of the rear and front wheels is relative to the actual steering angle δf of the front wheels.
If we calculate the ratio of f1 to 1 (= δf, (s)/δf (s)), then A= Kt (Krrlrr(lt +i!t+)+
KrzlrtClt" 7!rz)) B = m K
t l t Ct IKt . Therefore, the actual steering angle δ of the front wheels at this time
The ratio of the actual steering angle δ2□ of the rear wheels to f is 2 (=δ−Z
(S)/δt (s)) becomes.

第二の制御式は、車両が高速走行している場合には、後
前輪の実舵角δr1と後後輪の実舵角δr2を等しく制
御しても十分に(2)式の条件式を満たすことができる
。すなわち、 δr+=δf2              ・・−・
OBの場合には、前輪の実舵角δfに対する後前輪の実
舵角δflの比率に、(=δf、(s)/δt (s)
 )は、ただし、 A=−Kt (Kr+lr+C1t+j!r+)”Kr
zlf□(A’r”j!rg))3 = m K t 
It t C=IK。
The second control equation shows that when the vehicle is running at high speed, even if the actual steering angle δr1 of the rear front wheels and the actual steering angle δr2 of the rear wheels are controlled to be equal, it is sufficient to satisfy the conditional expression (2). can be met. That is, δr+=δf2...
In the case of OB, the ratio of the actual steering angle δfl of the rear front wheels to the actual steering angle δf of the front wheels is (=δf, (s)/δt (s)
), however, A=-Kt (Kr+lr+C1t+j!r+)"Kr
zlf□(A'r"j!rg))3 = m K t
It t C=IK.

D=に11!r (Kr1(1t + j!r+)+K
rz(j2r+j!rg))+Kr+Krg(j!rz
  zr+)2E=m(Krt’r++Krz1rt)
F = I (Kr+ ” Krz) とすればよい。したがって、このときの前輪の実舵角δ
fに対する後後輪の実舵角δ1□の比率に2(=δf−
(s)/δt(s))は、 k2 =に、                   
、−−−−・−(至)である。
D=11! r (Kr1(1t + j!r+)+K
rz(j2r+j!rg))+Kr+Krg(j!rz
zr+)2E=m(Krt'r++Krz1rt)
It is sufficient to set F = I (Kr+''Krz). Therefore, the actual steering angle δ of the front wheels at this time
The ratio of the actual steering angle δ1□ of the rear wheels to f is 2 (= δf−
(s)/δt(s)) is k2 =,
, -----・- (to).

なお、第1図に示す実施例は、第一の制御式を実現する
ための構成であり、第二の制御式を実現するためには、
電磁弁11.12を同様に制御し油圧シリンダ27a、
27bおよび29a、29bを同時に駆動させればよい
が、左右一つの油圧シリンダにより後前軸21および後
後軸22を同時に等しい制御角に制御することもできる
。この場合には、電磁弁も一系統でよい。
Note that the embodiment shown in FIG. 1 is a configuration for realizing the first control equation, and in order to realize the second control equation,
The solenoid valves 11 and 12 are similarly controlled and the hydraulic cylinders 27a,
27b, 29a, and 29b may be driven simultaneously, but it is also possible to simultaneously control the rear-front shaft 21 and the rear-rear shaft 22 to the same control angle using one left and right hydraulic cylinder. In this case, only one system of solenoid valves is sufficient.

この叫、Q9式に示すように、本発明方式は後輪操舵の
主要な制御パラメータとして、前輪実舵角δfおよび車
速■に加えて前輪実舵角速度を用いる。
As shown in equation Q9, the system of the present invention uses the front wheel actual steering angle speed in addition to the front wheel actual steering angle δf and the vehicle speed ■ as the main control parameters for rear wheel steering.

したがって、Qlf(至)式によりに1の値を求め、さ
らに(5)式、(至)式によりに2の値を求め、後前輪
の制御角 (δr+)をkI6tとし、後後輪の制御角
(δr□)をに2δfとして操舵することにより、過渡
的にも常に車両重心点における横すべり角βをOとする
ことができる。
Therefore, the value of 1 is determined by the formula Qlf (to), and the value of 2 is determined by the formula (5) and (to), and the control angle (δr+) of the rear front wheels is set to kI6t, and the control angle of the rear wheels is By steering the vehicle with the angle (δr□) set to 2δf, the sideslip angle β at the center of gravity of the vehicle can always be set to O even in a transient state.

第3図は、本発明方式の第一の制御式による動作を説明
するフローチャートである。
FIG. 3 is a flowchart illustrating the operation according to the first control formula of the system of the present invention.

マイクロコンピュータは、各車輪に設けられた荷重セン
サから各車輪にかかる重量を読み込み、車両質量m、車
両重心点の位1、各車輪と車両重心点との前後方向の距
M1f、lf、いj’rtおよび各車輪のコーナリング
パワーKt、K−いKrZを算出する。さらに、車速セ
ンサから車速Vを読み込み、前輪操舵角センサから前輪
実舵角δfを読み込み、前輪実舵角速度を算出する。さ
らに、ストロークセンサから後前輪実舵角δ1.および
後後輪実舵角δf、2を読み込む。ここで、後前輪の制
御角(ktδt)および後前輪の制御角(kzδF)を
算出する。
The microcomputer reads the weight applied to each wheel from the load sensor provided on each wheel, and calculates the vehicle mass m, the digit 1 of the vehicle center of gravity, and the longitudinal distances M1f, lf, and j between each wheel and the vehicle center of gravity. 'rt, cornering power Kt of each wheel, K-KrZ are calculated. Furthermore, the vehicle speed V is read from the vehicle speed sensor, the front wheel actual steering angle δf is read from the front wheel steering angle sensor, and the front wheel actual steering angular velocity is calculated. Furthermore, the rear front wheel actual steering angle δ1 is determined from the stroke sensor. and the rear wheel actual steering angle δf,2. Here, the control angle of the rear front wheels (ktδt) and the control angle of the rear front wheels (kzδF) are calculated.

つぎに、まず後前輪実舵角δ1.と後前輪の制御角に1
δfとを比較し、後前輪実舵角δ□が制御角に、δfと
等しいときには後前輪操舵を停止し、等しくないときに
は後前輪実舵角δf、1かに、δfになるように後前輪
を操舵する。
Next, first, the rear front wheel actual steering angle δ1. and 1 for the control angle of the rear and front wheels.
δf is compared, and when the rear front wheel actual steering angle δ□ is equal to the control angle and δf, the rear front wheel steering is stopped, and when they are not equal, the rear front wheel actual steering angle δf is adjusted to 1, and the rear front wheel steering is adjusted so that the rear front wheel actual steering angle is 1 or δf. to steer.

つぎに、同様に後後輪実舵角δr2と後後輪の制御角に
、δずとを比較し、後後輪実舵角δrtが制御角に2δ
fと等しいときには後後輪操舵を停止し、等しくないと
きには後後輪実舵角δf2かに2δfになるように後後
輪を操舵する。
Next, in the same way, compare the actual rear wheel steering angle δr2 and the control angle of the rear rear wheels by δ, and find that the actual rear wheel steering angle δrt is equal to the control angle 2δ.
When it is equal to f, the rear rear wheel steering is stopped, and when it is not equal, the rear rear wheels are steered so that the actual rear wheel steering angle δf2 becomes 2δf.

この制御フローを繰り返すことにより、過渡的にも安定
な前輪および後前輪、後後輪の同時操舵を可能とし、操
舵安定性を向上させることができる。
By repeating this control flow, it is possible to perform transiently stable simultaneous steering of the front wheels, rear front wheels, and rear rear wheels, thereby improving steering stability.

第4図は、本発明方式の第二の制御式による動作を説明
するフローチャートである。
FIG. 4 is a flowchart illustrating the operation according to the second control formula of the present invention system.

本制御方式は、後前輪と後後輪とを同時に同じ実舵角に
操舵制御するものである。したがって、後前輪あるいは
後後輪の実舵角をδfとして以下説明する。
This control method controls the steering of the rear front wheels and rear rear wheels to the same actual steering angle at the same time. Therefore, the following description will be made assuming that the actual steering angle of the rear front wheels or the rear rear wheels is δf.

マイクロコンピュータは、各車輪に設けられた荷重セン
サから各車輪にかかる重量を読み込み、車両質1m、車
両重心点の位置、各車輪と車両重心点との前後方向の距
H1t、lrいl1rtおよび各車輪のコーナリングパ
ワーKt 、KrlfK、2を算出する。さらに、車速
センサから車速Vを読み込み、前輪操舵角センサから前
輪実舵角δfを読み込み、前輪実舵角速度を算出する。
The microcomputer reads the weight applied to each wheel from the load sensor installed on each wheel, and calculates the vehicle quality (1 m), the position of the vehicle center of gravity, the distance H1t in the longitudinal direction between each wheel and the vehicle center of gravity, lr-l1rt, and each The cornering power Kt of the wheel, KrlfK,2 is calculated. Furthermore, the vehicle speed V is read from the vehicle speed sensor, the front wheel actual steering angle δf is read from the front wheel steering angle sensor, and the front wheel actual steering angular velocity is calculated.

さらに、ストロークセンサから後輪実舵角δfを読み込
む。
Furthermore, the rear wheel actual steering angle δf is read from the stroke sensor.

ここで、後輪の制御角(kδf)を算出し、後輪実舵角
δ7と後軸の制御角にδfとを比較し、後輪実舵角δf
が制御角にδfと等しいときには後輪操舵を停止し、等
しくないときには後輪実舵角δfかに6.になるように
後輪を操舵する。
Here, the rear wheel control angle (kδf) is calculated, the rear wheel actual steering angle δ7 is compared with the rear axle control angle δf, and the rear wheel actual steering angle δf is calculated.
When the control angle is equal to δf, the rear wheel steering is stopped, and when the control angle is not equal to the rear wheel actual steering angle δf, the rear wheel steering is stopped.6. Steer the rear wheels so that

この制御フローを繰り返すことにより、過渡的にも安定
な前輪および後前輪、後後輪の同時操舵を可能とし、操
舵安定性を向上させることができる。
By repeating this control flow, it is possible to perform transiently stable simultaneous steering of the front wheels, rear front wheels, and rear rear wheels, thereby improving steering stability.

本発明方式の車両の車両重心点における横すべり角βは
、車両が旋回に入ってただちにほぼ0度になるので安定
して旋回に入ることができる。また、車両が旋回に入る
瞬間の車両のヨーレイトTおよび車両の横加速度の立ち
上がりも、現行車両および従来例方式による前後輪操舵
可能な車両に忙 比べて速くなっている。              
   1したがって、本発明の前輪の操舵に伴い後輪を
操舵する方法は、車両重心点における横すべり角β、車
両のヨーレイトγおよび車両の横加速度は、従来の問題
点は十分に解決され、車両が過渡的にも安定な運動をす
ることがわかる。
The sideslip angle β at the vehicle center of gravity of the vehicle according to the present invention becomes approximately 0 degrees immediately after the vehicle enters a turn, so that the vehicle can stably enter a turn. Furthermore, the rise of the vehicle yaw rate T and the vehicle lateral acceleration at the moment the vehicle enters a turn is faster than that of the current vehicle and the conventional vehicle capable of front and rear wheel steering.
1. Therefore, in the method of steering the rear wheels in conjunction with the steering of the front wheels of the present invention, the sideslip angle β at the vehicle center of gravity, the vehicle yaw rate γ, and the vehicle lateral acceleration have been sufficiently solved and It can be seen that the movement is stable even in a transient state.

なお、本実施例では車両が低速走行している場合と、高
速走行している場合とに分けて、それぞれの近イ以的な
制御条件(後前輪の実舵角δ1□と後後輪の実舵角δ1
.との関係)により、前輪の実舵角に対する後輪の実舵
角の比率を求めて、後輪制御を行うことを示した。すな
わち、一台の車両においては、車両が低速走行している
ときには式(至)の条件により行い、また高速走行して
いるときには式08 %式% の条件により使い分けて制御される。
In addition, in this example, the approximate control conditions (actual steering angle δ1□ of the rear front wheels and rear wheel Actual steering angle δ1
.. It was shown that rear wheel control is performed by determining the ratio of the actual steering angle of the rear wheels to the actual steering angle of the front wheels. That is, in one vehicle, when the vehicle is traveling at low speed, the condition of formula (to) is used, and when the vehicle is traveling at high speed, the condition of formula (08%) is used for control.

次に、本発明方式の周波数応答特性を示し、前輪大蛇(
ハンドル操作)に対する車両挙動の位相遅れが、現行車
両および従来例方式による前後輪操舵可能な車両に比べ
て、どの程度改善されているかについて説明する。なお
、以下に示すボード線図は計算に基づいて作成されたも
のである。
Next, the frequency response characteristics of the method of the present invention are shown, and the front wheel serpent (
The following describes how much the phase delay in vehicle behavior with respect to steering wheel operation has been improved compared to current vehicles and conventional vehicles capable of front and rear wheel steering. Note that the Bode diagram shown below was created based on calculations.

計算条件は、一般的なlOトントラック定積とし、車速
を80 km/時、前輪の大蛇周波数を0.0IHz 
〜10112とする。したがって、第二の制御式a槌を
用いる。
The calculation conditions are a general 10 ton truck constant volume, a vehicle speed of 80 km/hour, and a large snake frequency of the front wheels of 0.0 IHz.
~10112. Therefore, a second controlled a mallet is used.

第5図は、前輪実舵角に対する後輪実舵角の周波数特性
図である。
FIG. 5 is a frequency characteristic diagram of the actual steering angle of the rear wheels relative to the actual steering angle of the front wheels.

第6図は、前輪実舵角に対する車両重心点における横す
べり角の周波数特性図である。
FIG. 6 is a frequency characteristic diagram of the sideslip angle at the center of gravity of the vehicle with respect to the actual steering angle of the front wheels.

第7図は、前輪実舵角に対する車両のヨーレイトの周波
数特性図である。
FIG. 7 is a frequency characteristic diagram of the yaw rate of the vehicle with respect to the actual steering angle of the front wheels.

第8図は、前輪実舵角に対する車両の横加速度の周波数
特性図である。
FIG. 8 is a frequency characteristic diagram of the lateral acceleration of the vehicle with respect to the actual steering angle of the front wheels.

なお、第5図ないし第8図において、横軸は前輪実舵角
速度(llz) 、縦軸上段はゲイン、下段は位相であ
る。また、破線は前輪のみが操舵可能な現行車両、一点
鎖線は従来例方式の前後輪操舵可能な車両、実線は本発
明方式による前後輪操舵可能な車両の周波数特性を示す
In FIGS. 5 to 8, the horizontal axis represents the front wheel actual steering angular velocity (llz), the upper row of the vertical axis represents the gain, and the lower row represents the phase. Further, the broken line shows the frequency characteristics of a current vehicle in which only the front wheels can be steered, the dashed line shows the frequency characteristics of a conventional vehicle in which front and rear wheels can be steered, and the solid line shows the frequency characteristics of a vehicle in which front and rear wheels can be steered according to the method of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように、ハンドル操舵に対する
車両の横加速度およびヨーレイトの応答遅れが減少する
ので操舵安定性が向上し、したがって後輪操舵時の車両
の不自然な挙動を回避することができる。また、最小回
転半径の減少を可能とし、さらに車両重心点における横
すべり角をOとすることができるので、・タイヤの摩耗
を最小限に抑えることができる優れた効果がある。
As explained above, the present invention improves steering stability by reducing the delay in response of the vehicle's lateral acceleration and yaw rate to steering wheel steering, thereby making it possible to avoid unnatural behavior of the vehicle when steering the rear wheels. can. In addition, since it is possible to reduce the minimum turning radius and further reduce the sideslip angle at the center of gravity of the vehicle to O, there is an excellent effect of minimizing tire wear.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明する構成図。 第2図は第一の制御式の条件を説明する図。 第3図は本発明方式の第一の制御式による動作を説明す
るフローチャート。 第4図は本発明方式の第二の制御式による動作を説明す
るフローチャート。 第5図は前輪実舵角に対する後輪実舵角の周波!   
    数特性図。 第6図は前輪実舵角に対する車両重心点における横すべ
り角の周波数特性図。 第7図は前輪実舵角に対する車両のヨーレイトの周波数
特性図。 第8図は前輪実舵角に対する車両の横加速度の周波数特
性図。 l・・・マイクロコンピュータ、3・・・荷重センサ、
5・・・車速センサ、7・・・前輪実舵角センサ、9・
・・ストロークセンサ、11.12・・・電磁弁、13
・・・油圧ポンプ、15・・・オイルタンク、21・・
・後前軸、22・・・後後軸、23.24.25.26
・)ルクロソド、27a、27b、29a129b・・
・油圧シリンダ、31.32・・・後前輪、33.34
・・・後後輪、35・・・プロペラシャフト。
FIG. 1 is a configuration diagram illustrating an embodiment of the present invention. FIG. 2 is a diagram explaining the conditions of the first control equation. FIG. 3 is a flowchart illustrating the operation according to the first control formula of the system of the present invention. FIG. 4 is a flowchart illustrating the operation according to the second control formula of the method of the present invention. Figure 5 shows the frequency of the actual steering angle of the rear wheels relative to the actual steering angle of the front wheels!
Number characteristic diagram. FIG. 6 is a frequency characteristic diagram of sideslip angle at the center of gravity of the vehicle with respect to the actual steering angle of the front wheels. FIG. 7 is a frequency characteristic diagram of vehicle yaw rate with respect to front wheel actual steering angle. FIG. 8 is a frequency characteristic diagram of the lateral acceleration of the vehicle with respect to the actual steering angle of the front wheels. l...Microcomputer, 3...Load sensor,
5...Vehicle speed sensor, 7...Front wheel actual steering angle sensor, 9.
... Stroke sensor, 11.12 ... Solenoid valve, 13
...Hydraulic pump, 15...Oil tank, 21...
・Rear-front axis, 22...Rear-rear axis, 23.24.25.26
・) Lucrosodo, 27a, 27b, 29a129b...
・Hydraulic cylinder, 31.32...Rear front wheel, 33.34
... Rear wheel, 35... Propeller shaft.

Claims (2)

【特許請求の範囲】[Claims] (1)前輪が一組であり、後輪が二組である自動車の前
輪の操舵に伴い後輪を同時に操舵する方法において、 上記後輪の後前輪の実舵角δ_r_1を上記前輪の実舵
角δ_fのk倍とし、このkを k=(A+BV^2−CVs)/(D+EV^2+FV
s)ただし、 A=−K_f{K_r_1l_r_1(l_f+l_r
_1)+K_r_2l_r_2(l_f+l_r_2)
}B=mK_fl_f C=IK_f D=(K_fl_f{K_r_1(l_f+l_r_1
)+K_r_2(l_f+l_r_2)l_r_2/l
_r_1}E=m(K_r_1l_r_1+K_r_2
[l_r_(2^2)/l_r_1])F=I(K_r
_1+K_r_2[l_r_2/l_r_1])とし、
上記後輪の後後輪の実舵角δ_r_2をδ_r_2=(
l_r_2/l_r_1)δ_r_1とすることを特徴
とする総輪操舵車の後輪操舵方法。 ただし、mは車両の質量、Iは車両のヨー方向回転慣性
質量、Vは車速、l_fは前輪と車両重心との間の前後
方向の距離、l_r_1は後前輪と車両重心との間の前
後方向の距離、l_r_2は後後輪と車両重心との間の
前後方向の距離、K_fは前輪タイヤのコーナリングパ
ワー(左右両輪の和)、K_r_1は後前輪タイヤのコ
ーナリングパワー(左右両輪の和)、K_r_2は後後
輪タイヤのコーナリングパワー(左右両輪の和)であり
、sはラプラス演算子である。
(1) In a method of simultaneously steering the rear wheels in conjunction with the steering of the front wheels of an automobile having one set of front wheels and two sets of rear wheels, the actual steering angle δ_r_1 of the rear and front wheels of the rear wheels is defined as the actual steering angle δ_r_1 of the rear wheels of the rear wheels. The angle δ_f is multiplied by k, and this k is k=(A+BV^2-CVs)/(D+EV^2+FV
s) However, A=-K_f{K_r_1l_r_1(l_f+l_r
_1)+K_r_2l_r_2(l_f+l_r_2)
}B=mK_fl_f C=IK_f D=(K_fl_f{K_r_1(l_f+l_r_1
)+K_r_2(l_f+l_r_2)l_r_2/l
_r_1}E=m(K_r_1l_r_1+K_r_2
[l_r_(2^2)/l_r_1])F=I(K_r
_1+K_r_2 [l_r_2/l_r_1]),
The actual steering angle δ_r_2 of the above rear wheels is δ_r_2=(
l_r_2/l_r_1) δ_r_1. A rear wheel steering method for an all-wheel steered vehicle. Where, m is the mass of the vehicle, I is the rotational inertial mass of the vehicle in the yaw direction, V is the vehicle speed, l_f is the longitudinal distance between the front wheels and the vehicle center of gravity, and l_r_1 is the longitudinal distance between the rear front wheels and the vehicle center of gravity. distance, l_r_2 is the distance in the longitudinal direction between the rear rear wheels and the center of gravity of the vehicle, K_f is the cornering power of the front tires (sum of both left and right wheels), K_r_1 is the cornering power of the rear front tires (sum of both left and right wheels), K_r_2 is the cornering power of the rear rear tires (sum of both left and right wheels), and s is the Laplace operator.
(2)前輪が一組であり、後輪が二組である自動車の前
輪の操舵に伴い後輪を同時に操舵する方法において、 上記後輪の後前輪の実舵角δ_r_1および上記後輪の
後後輪の実舵角δ_r_2を等しく上記前輪の実舵角δ
_fのk倍とし、このkを k=(A+BV^2−CVs)/(D+EV^2+FV
s)ただし、 A=−K_f{K_r_1l_r_1(l_f+l_r
_1)+K_r_2l_r_2(l_f+l_r_2)
}B=mK_fl_f C=IK_f D=K_fl_f{K_r_1(l_f+l_r_1)
+K_r_2(l_f+l_r_2)}+K_r_1K
_r_2(l_r_2−l_r_1)^2E=m(K_
r_1l_r_1+K_r_2l_r_2)F=I(K
_r_1+K_r_2) とすることを特徴とする総輪操舵車の後輪操舵方法。 ただし、mは車両の質量、Iは車両のヨー方向回転慣性
質量、Vは車速、l_fは前輪と車両重心との間の前後
方向の距離、l_r_1は後前輪と車両重心との間の前
後方向の距離、l_r_2は後後輪と車両重心との間の
前後方向の距離、K_fは前輪タイヤのコーナリングパ
ワー(左右両輪の和)、K_r_1は後前輪タイヤのコ
ーナリングパワー(左右両輪の和)、K_r_2は後後
輪タイヤのコーナリングパワー(左右両輪の和)であり
、sはラプラス演算子である。
(2) In a method of simultaneously steering the rear wheels with the steering of the front wheels of an automobile having one set of front wheels and two sets of rear wheels, the actual steering angle δ_r_1 of the rear front wheels of the rear wheels and the rear wheels of the rear wheels are as follows: The actual steering angle δ_r_2 of the rear wheels is equal to the actual steering angle δ of the front wheels.
__f is k times, and this k is k=(A+BV^2-CVs)/(D+EV^2+FV
s) However, A=-K_f{K_r_1l_r_1(l_f+l_r
_1)+K_r_2l_r_2(l_f+l_r_2)
}B=mK_fl_f C=IK_f D=K_fl_f{K_r_1(l_f+l_r_1)
+K_r_2(l_f+l_r_2)}+K_r_1K
_r_2(l_r_2-l_r_1)^2E=m(K_
r_1l_r_1+K_r_2l_r_2)F=I(K
_r_1+K_r_2) A rear wheel steering method for an all-wheel steering vehicle. Where, m is the mass of the vehicle, I is the rotational inertial mass of the vehicle in the yaw direction, V is the vehicle speed, l_f is the longitudinal distance between the front wheels and the vehicle center of gravity, and l_r_1 is the longitudinal distance between the rear front wheels and the vehicle center of gravity. distance, l_r_2 is the distance in the longitudinal direction between the rear rear wheels and the center of gravity of the vehicle, K_f is the cornering power of the front tires (sum of both left and right wheels), K_r_1 is the cornering power of the rear front tires (sum of both left and right wheels), K_r_2 is the cornering power of the rear rear tires (sum of both left and right wheels), and s is the Laplace operator.
JP10368086A 1986-05-02 1986-05-02 Rear wheel steering method for all wheel steering vehicle Pending JPS62258867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10368086A JPS62258867A (en) 1986-05-02 1986-05-02 Rear wheel steering method for all wheel steering vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10368086A JPS62258867A (en) 1986-05-02 1986-05-02 Rear wheel steering method for all wheel steering vehicle

Publications (1)

Publication Number Publication Date
JPS62258867A true JPS62258867A (en) 1987-11-11

Family

ID=14360500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10368086A Pending JPS62258867A (en) 1986-05-02 1986-05-02 Rear wheel steering method for all wheel steering vehicle

Country Status (1)

Country Link
JP (1) JPS62258867A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202581A (en) * 1987-09-16 1989-08-15 Honda Motor Co Ltd Rear wheel steering angle control method in front-rear-wheel-steering vehicle
EP0363846A2 (en) * 1988-10-08 1990-04-18 Nissan Motor Co., Ltd. Rear wheel-steering angle control-system for vehicle
US4998593A (en) * 1989-03-31 1991-03-12 Aisin Seiki Kabushiki Kaisha Steering and brake controlling system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202581A (en) * 1987-09-16 1989-08-15 Honda Motor Co Ltd Rear wheel steering angle control method in front-rear-wheel-steering vehicle
EP0363846A2 (en) * 1988-10-08 1990-04-18 Nissan Motor Co., Ltd. Rear wheel-steering angle control-system for vehicle
US4998593A (en) * 1989-03-31 1991-03-12 Aisin Seiki Kabushiki Kaisha Steering and brake controlling system

Similar Documents

Publication Publication Date Title
EP1650103B1 (en) Vehicular steering apparatus with capability of providing suitable steering angle correction and power assistance
JP2955015B2 (en) Vehicle steering system
JP5261962B2 (en) Turning behavior control device, automobile, and turning behavior control method
JP2552342B2 (en) Rear wheel steering angle control device for vehicles
JPH01202581A (en) Rear wheel steering angle control method in front-rear-wheel-steering vehicle
JPH0825470B2 (en) Rear wheel rudder angle control method
JPH03580A (en) Wing control device
JPS62258867A (en) Rear wheel steering method for all wheel steering vehicle
JPS62173372A (en) Rear wheel controller for front and rear wheel steering car
JPH07112826B2 (en) Rear-wheel steering control method for four-wheel steering vehicle
JP3328014B2 (en) Vehicle control device
JPH07117510A (en) Yawing movement amount controller of vehicle
JPH07144653A (en) Controller of quantity of yawing momentum of vehicle
JPH072130A (en) Method for controlling rear wheel steering device
JPH0319107B2 (en)
JPH034428B2 (en)
JPH04126675A (en) Rear-wheels steering device for semi-trailer
JP2600946B2 (en) Rear wheel steering angle control device for vehicles
JPS62258866A (en) Rear wheel steering method for all wheel steering vehicle
JPH01311960A (en) Active four-wheel steering gear
JP2502761B2 (en) Four-wheel steering system for vehicles
WO2020026492A1 (en) Steering control device and steering control method
JPH034429B2 (en)
JPH08156816A (en) Yawing momentum control devce for vehicle
JP2523118B2 (en) Vehicle steering angle control device