JPS62258147A - Fuel control device for electronic fuel injection engine - Google Patents

Fuel control device for electronic fuel injection engine

Info

Publication number
JPS62258147A
JPS62258147A JP10129486A JP10129486A JPS62258147A JP S62258147 A JPS62258147 A JP S62258147A JP 10129486 A JP10129486 A JP 10129486A JP 10129486 A JP10129486 A JP 10129486A JP S62258147 A JPS62258147 A JP S62258147A
Authority
JP
Japan
Prior art keywords
fuel injection
flow rate
engine
air flow
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10129486A
Other languages
Japanese (ja)
Inventor
Yoshinori Okino
沖野 芳則
Itsuki Shimoda
下田 一城
Hidetaka Chikasue
近末 日出登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP10129486A priority Critical patent/JPS62258147A/en
Publication of JPS62258147A publication Critical patent/JPS62258147A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/227Limping Home, i.e. taking specific engine control measures at abnormal conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent damage of an engine and the like due to erroneous control of fuel, by a method wherein, when a load detecting means is mechanically failed in a high intake air flow rate area, a fuel injection amount is decided based on an intake air flow rate and the number of revolutions of an engine as in a low intake air flow rate to perform control of fuel injection. CONSTITUTION:In a fuel control device 30, a pulse computing circuit 32 for an L-J system outputs a given fuel injection injector drive pulse based on an intake air flow rate and the number of revolutions of an engine. A pulse difference learning circuit 33 outputs a difference between the two pulses. In this casea D-J system trouble deciding circuit 34 outputs a D-J system failure in operation deciding signal based on a pulse difference and boost. When a failure in operation is decided, a selection release signal is outputted to a pulse selecting circuit 36, and a drive pulse signal by the L-J system is substantially outputted to a fuel injection injector 12.

Description

【発明の詳細な説明】 (産業上の利用分野) 本父明は、電子燃料噴射エンジンの燃料制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fuel control device for an electronic fuel injection engine.

(従来技術) 従来、電子燃料噴射エンジンの燃料制御装置として、エ
ンジンの吸入空気流量検出器、エンジンの負荷検出手段
としての吸気管内圧力検出器およびエンジン回転数検出
器を燃料制御手段に接続し、吸入空気流量若jI(器が
所定の吸気量以下を検知した場合には吸入空気流量検出
器およびエンジン回転数検出+!jlの両用力信号に基
いて!?!5料噴射弁を作動する吸入空気流量センシン
グ方式(いわゆる−般に計測対象流量範囲は狭いが計測
精度に優れたL−ジェトロニック方式、以下、L−J方
式と略称する)によって、また吸入空気流量検出器が所
定の吸気量以上を検知した場合には吸気管内圧力検出器
およびエンジン回転数検出器の百出力信号に基いて燃料
噴射弁を作りするスピードデンシティ方式(いわゆる一
般に計測対象流量@囲は広いが針側精度が若干劣るD−
ジェトロニック方式、以下、D −J方式と略称する)
によって、各々燃料噴射制御を行うものが知られている
(例えば特公昭59−7017号公報参照)。
(Prior Art) Conventionally, as a fuel control device for an electronic fuel injection engine, an engine intake air flow rate detector, an intake pipe internal pressure detector as an engine load detection means, and an engine rotation speed detector are connected to a fuel control means, When the intake air flow rate is detected to be less than a predetermined intake air amount, the intake air flow rate detector and engine rotation speed detection +! The air flow rate sensing method (the so-called L-Jetronic method, which generally has a narrow measurement target flow rate range but has excellent measurement accuracy, hereinafter abbreviated as L-J method), also allows the intake air flow rate detector to detect a predetermined intake air amount. If the above is detected, the speed density method (generally known as the flow rate to be measured, which has a wide range but has some accuracy on the needle side) creates a fuel injector based on the output signal of the intake pipe pressure detector and engine speed detector. Inferior D-
Jetronic method (hereinafter abbreviated as D-J method)
There are known fuel injection systems that perform fuel injection control using various methods (see, for example, Japanese Patent Publication No. 7017/1983).

ところが、この種の従来の燃料制御装置は、吸気管内圧
力検出器の故障時には燃料誤制御によって過大なノック
を発生させまた失火を起し、エンジンや排気浄化用触媒
コンバータにダメージを与える惧れがあり、またその種
の故障に対し特に予防手段をとっていなかった。
However, with this type of conventional fuel control device, when the intake pipe pressure detector fails, the fuel is erroneously controlled, resulting in excessive knocking and misfire, which can damage the engine and the exhaust purification catalytic converter. However, no special measures were taken to prevent such failures.

(発明の目的) 本発明は、前記従来の間居点に鑑みなされたもので、吸
入空気流量若しくは負荷が所定値以上の高吸気流量域に
おいて使用するスロットル弁下流の吸気負圧を検出する
吸気管内圧力検出器等の負荷検出手段が故障した場合、
低吸気流量域と同様に吸入空気流量及びエンジン回転数
に基づき3PY料噴射量を決定して燃料噴射制御を行わ
せることによりエンジンや触媒コンバータが強大ノック
や失火によってダメージを受けるのを防止しすることを
目的とする。
(Object of the Invention) The present invention has been made in view of the above-mentioned problems in the conventional art, and is an intake air intake system that detects intake negative pressure downstream of a throttle valve used in a high intake flow rate region where the intake air flow rate or load is equal to or higher than a predetermined value. If the load detection means such as the pipe pressure detector breaks down,
As in the low intake flow area, the 3PY fuel injection amount is determined based on the intake air flow rate and engine speed, and fuel injection control is performed to prevent the engine and catalytic converter from being damaged by strong knocks or misfires. The purpose is to

(発明の構成) 前記目的を達成するための本発明の構成を、実施例に対
応する第1図および第2図を用いて説明すると、吸気通
路に介設されエンジンに供給される吸気空気流量検出手
段(エアフローメーク13)と、スロットル弁14下流
の吸気負圧若しくはスロットル弁開度に関する信号を検
出する負荷検出手段(ブースト計測センサ18)と、エ
ンジン回転数を検出するエンジン回転数検出手段(エン
ジン回転数検出器23)と、上記吸入空気流量検出手段
およびエンジン回転数検出手段の出力に基づいて燃料噴
射量を決定する第1燃料噴射量演算手段(L−J方式用
パルス演算回路31)と、上記負荷検出手段およびエン
ジン回転数検出手段ノ出力に基づいて燃料噴射量を決定
する第2燃料噴射量演算手段(D−J方式用パルス演算
回路32)と、吸入空気流量若しくは負荷が所定値未満
の低吸気流量域では上記第1燃料噴射量演算手段の出力
に基づいて、上記所定値以上の高吸気流量域では上記第
2燃料噴射量演算手段の出力に基づいて燃料噴射弁を作
動させる切換制御手段(パルス選択回路36)を有する
電燃料噴射エンジンの燃料制御装置を前提とし、上記負
荷検出手段の故障を判定する故障判定手段(D−J方式
故障判定手段34)と、該故障判定手段の出力を受け上
記切換制御手段の切換を解除し、吸入空気流量にかかわ
らず上記第1燃料噴射量演算手段を選択させる切換解除
手段(選択解除回路37)とを有することを特徴とする
(Structure of the Invention) The structure of the present invention for achieving the above object will be explained using FIG. 1 and FIG. 2 corresponding to the embodiment. A detection means (air flow make 13), a load detection means (boost measurement sensor 18) that detects a signal related to the intake negative pressure downstream of the throttle valve 14 or the throttle valve opening, and an engine rotation speed detection means (boost measurement sensor 18) that detects the engine rotation speed. engine rotation speed detector 23), and first fuel injection amount calculation means (L-J system pulse calculation circuit 31) that determines the fuel injection amount based on the outputs of the intake air flow rate detection means and engine rotation speed detection means. and a second fuel injection amount calculation means (D-J method pulse calculation circuit 32) that determines the fuel injection amount based on the outputs of the load detection means and the engine rotation speed detection means, and The fuel injection valve is actuated based on the output of the first fuel injection amount calculation means in a low intake flow rate region below the predetermined value, and based on the output of the second fuel injection amount calculation means in a high intake flow rate region equal to or higher than the predetermined value. A fuel control device for an electric fuel injection engine is provided, which has a switching control means (pulse selection circuit 36) for determining the load detection means, and a failure determination means (DJ system failure determination means 34) for determining a failure of the load detection means, and the failure determination means 34 for determining a failure of the load detection means. The present invention is characterized by comprising a switching canceling unit (selection canceling circuit 37) which receives the output of the determining unit and cancels the switching of the switching control unit to select the first fuel injection amount calculation unit regardless of the intake air flow rate. .

すなわち1本発明は、高吸気流量域において使用する負
荷検出手段の故障の判断に基づいて、低吸気流量域にお
いて使用する第1燃料噴射量演算手段を高吸気流量域に
おいても使用して燃料噴射制御を行うものである。
That is, 1 the present invention uses the first fuel injection amount calculation means used in the low intake flow rate region also in the high intake flow rate region to perform fuel injection based on the determination of failure of the load detection means used in the high intake flow rate region. It is for controlling.

(実施例) 以下、本発明の実施例を図面に沿って詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図に示すように、吸入空気をエンジン本体1oに供
給するインテークマニホールド11に装置された燃料噴
射インジェクタ12は、インテークマニホールド11内
の圧力に対して一定圧に調圧された燃料が供給され、燃
料制御装置30によって制御された時間だけソレノイド
コイル部に電流が流れノズル部から燃料を噴射する。吸
入空気流量に応答して温度抵抗を変える白金を使用した
ホットワイヤ型のエアフローメーク13は、スロットル
1pr4の上流側の吸気管15に設けられており、全負
荷領域の吸入空気量の計測が可能であるが主に中、低負
荷運転の低吸気流量域における吸入空気b1を計測する
。一方、インテークマニホールド11のスロットルが1
4の下流Δ11には、主に高吸気流量域において吸気負
圧、すなわちブ−スi・を計測するブースト計測センサ
18が設けられている。20は排気管で、空燃比検出用
の酸素濃度検出器21と、排気ガス浄化用の触媒コンバ
ータ22を備えている。また、ディストリビュータ(図
示は省略)にはエンジン回転数検出器23が、クランク
軸端にはクランク軸の所定角度位置でパルスを5こ生す
るパルス信号発生器としてのクランクアングル検出器2
4が各々設けられている。
As shown in FIG. 1, a fuel injector 12 installed in an intake manifold 11 that supplies intake air to the engine body 1o is supplied with fuel whose pressure is regulated to a constant level relative to the pressure inside the intake manifold 11. , current flows through the solenoid coil section for a period of time controlled by the fuel control device 30, and fuel is injected from the nozzle section. A hot wire type air flow make 13 using platinum that changes temperature resistance in response to the intake air flow rate is installed in the intake pipe 15 upstream of the throttle 1pr4, and is capable of measuring the intake air amount in the entire load range. However, the intake air b1 is mainly measured in the low intake flow rate region during medium and low load operation. On the other hand, the throttle of intake manifold 11 is 1
A boost measurement sensor 18 is provided downstream Δ11 of No. 4 to measure the intake negative pressure, that is, the booth i· mainly in the high intake flow rate region. Reference numeral 20 denotes an exhaust pipe, which includes an oxygen concentration detector 21 for detecting an air-fuel ratio and a catalytic converter 22 for purifying exhaust gas. Further, an engine rotation speed detector 23 is mounted on the distributor (not shown), and a crank angle detector 2 as a pulse signal generator that generates five pulses at a predetermined angle position of the crankshaft is mounted on the end of the crankshaft.
4 are provided respectively.

第2図のブロックダイヤグラムに示すように、本実施例
の燃料制御装置30において、L−J方式用パルス演算
回路31は、エアフローメータ13から吸入空気量信号
の入力を、またエンジン回転数検出器23からエンジン
回転数信号の入力を受けてL −J方式における最適の
燃料噴射インジェクタ駆動パルス(τL)信号を出力す
る。一方、D−、J方式用パルス演算回路32は、ブー
スト計測センサ18からブースI・信号の入力を、また
エンジン回転数検出器23からエンジン回転数信号の入
力を受けてD−J方式における燃料噴射インジェクタ駆
動パルス(τD、)信号を出力する。
As shown in the block diagram of FIG. 2, in the fuel control device 30 of this embodiment, the L-J method pulse calculation circuit 31 receives the input of the intake air amount signal from the air flow meter 13 and the engine rotation speed detector. 23 receives an engine rotation speed signal and outputs an optimal fuel injection injector drive pulse (τL) signal in the L-J method. On the other hand, the pulse calculation circuit 32 for the D- and J methods receives the input of the booth I signal from the boost measurement sensor 18 and the input of the engine revolution speed signal from the engine revolution speed detector 23, and receives the input of the booth I signal from the boost measurement sensor 18 and the input of the engine revolution speed signal from the engine revolution speed detector 23. Outputs an injector drive pulse (τD, ) signal.

パルス差学習回路33は、前記L −J方式およびD−
11方弐における各々の燃料噴射インジェクタ駆動パル
ス(τL、τD、)信号の入力を受けて両人力パルスの
差(ΔτD)信号を出力する。I〕−J方式故障f+1
定回路34は、前記パルス差(ΔτD )信けとブース
ト信号とを入力して各負荷段階における実験的に求めら
れた故障′i!1定用所定値所定値較しD−、J方式故
障判定信号を出力する。また、D−J方式用パルス補正
回路35は、前記り−J方式における燃料噴射インジェ
クタ駆動パルス(τ0.)信号とパルス差(ΔでD)信
号とを入力してパルス差ΔτDに対応して補正された最
適のインジェクタ駆動パルス(τD)信号を出力する6
パルス選択回路36は、前記補正されたつ−J方式にお
ける燃料噴射インジェクタ駆動パルス(τ0)信号とL
 −J方式における燃料噴射−インジェクタ駆動パルス
(τL)信号とD −J方式故障判定信号のうちの正常
信号とブースト信号とを入力して、ブーストに対応した
各負荷の最適の補正されたD−J方式の又はL−J方式
の燃料噴射インジェクタ駆動パルス信号を適宜増幅器で
増幅して燃料噴射インジェクタ12に出力する1選択解
除回路37は、故障判定信号を受け、故障時にパルス選
択回路36に選択解除信号を出力する。
The pulse difference learning circuit 33 uses the L-J method and the D-
11 In response to the input of the respective fuel injection injector driving pulse (τL, τD,) signals on the two sides, a difference (ΔτD) signal between the two human power pulses is output. I]-J method failure f+1
The constant circuit 34 inputs the pulse difference (ΔτD) signal and the boost signal to determine the experimentally determined failure 'i!' at each load stage. 1 Compares the predetermined value with the predetermined value and outputs a D-, J method failure determination signal. Further, the pulse correction circuit 35 for the DJ method inputs the fuel injection injector drive pulse (τ0.) signal and the pulse difference (D at Δ) signal in the above-mentioned J method, and adjusts the pulse correction circuit 35 to correspond to the pulse difference ΔτD. Outputting the corrected optimal injector drive pulse (τD) signal 6
The pulse selection circuit 36 selects the corrected fuel injection injector drive pulse (τ0) signal in the -J method and the L
- Fuel injection in the J method - Injector drive pulse (τL) signal, D A 1 selection cancellation circuit 37 that amplifies a J-type or L-J type fuel injection injector drive pulse signal with an amplifier as appropriate and outputs it to the fuel injection injector 12 receives a failure determination signal and selects it to the pulse selection circuit 36 in the event of a failure. Outputs a release signal.

しかして、選択解除信号がパルス選択回路36に入力さ
れると高吸気流量域においても故障と判定されたブース
ト計測センサ18に代えてエアフローメータ13からの
吸入空気量信号を入力して応急的な燃料噴射インジェク
タ駆動パルス信号。
However, when the selection cancellation signal is input to the pulse selection circuit 36, the intake air amount signal from the air flow meter 13 is input in place of the boost measurement sensor 18 that has been determined to be malfunctioning even in the high intake flow rate range, and an emergency Fuel injection injector drive pulse signal.

実質的にL−J方式による駆動パルス(τL)信号をイ
ンジェクタ12に出力する。前記L−J方式用およびD
−J方式用パルス演算回路31゜32の各々は、そのリ
ードオンリーメモリ部に吸入空気量又はブーストおよび
エンジン回転数に対応して燃料噴射量の決定を行うため
のプログラムを予め記憶しており、また前記D−J方式
ルバルス補正回路35は、各負荷において入力したパル
ス差ΔτDに対応してD−J方式における燃料噴射イン
ジェクタ駆動パルスτD、を補正するためのプログラム
を予め記憶している。
A driving pulse (τL) signal substantially based on the L-J method is output to the injector 12. For the L-J method and D
- Each of the J method pulse calculation circuits 31 and 32 stores in advance a program for determining the fuel injection amount in accordance with the intake air amount or boost and the engine rotation speed in its read-only memory section, Further, the DJ system Levals correction circuit 35 stores in advance a program for correcting the fuel injection injector drive pulse τD in the DJ system in accordance with the pulse difference ΔτD input at each load.

吸入空気流量計としてのエアフローメータ13には、他
に全負荷領域に渡って吸入空気流の動圧に応答して旋動
する測定プレートを使用し旋動角度に対応した出力電圧
を発生するメジャリングプレート型のエアフローメータ
、又は吸気流量増加に対応して針側可能なカルマン渦流
の数が増大する原理を利用したカルマン渦流型フローメ
ータを使用することもできる。
The air flow meter 13 as an intake air flow meter also includes a measuring plate that uses a measuring plate that rotates in response to the dynamic pressure of the intake air flow over the entire load range and generates an output voltage that corresponds to the rotation angle. It is also possible to use a ring plate type air flow meter or a Karman vortex flow meter that utilizes the principle that the number of Karman vortices available on the needle side increases in response to an increase in the intake flow rate.

次に本実施例の作動について、第3図のフローチャート
に基いて説明する。先ず、クランクアングル検出器24
などによって演算開始の指令信号が発せられ、始動モー
タのソレノイド端子電圧によってエンジン始動が確認さ
れると従来と同様に始動時のJ、1.本燃料噴射量の設
定が行われ、次いで[、−j方式用およびD−J方式用
パルス演算回路31.32において吸入空気量信号、エ
ンジン回転数信号、ブースト信号の読み込みが行われ(
ステップ■)、)、前者においてL−J方式用燃料噴射
インジェクタ駆動パルスτLを、また後者においてD−
J方式における燃料噴射インジェクタ駆動パルスτD、
を各々計算する(ステップP、、  P、)。これら駆
動パルスτL、τD、は、パルス差学習回路33に入力
されて、そこでそれらのパルス差ΔでDが計算される(
ステップP4)。それから。
Next, the operation of this embodiment will be explained based on the flowchart shown in FIG. First, the crank angle detector 24
A command signal to start the calculation is issued by the above command, and when engine starting is confirmed by the solenoid terminal voltage of the starting motor, J, 1. The main fuel injection amount is set, and then the intake air amount signal, engine speed signal, and boost signal are read in the pulse calculation circuits 31 and 32 for [, -j method and DJ method.
Steps ■), ), the L-J method fuel injection injector drive pulse τL is set in the former, and the D-
Fuel injection injector drive pulse τD in J method,
are calculated respectively (steps P,, P,). These driving pulses τL, τD are input to the pulse difference learning circuit 33, where D is calculated using the pulse difference Δ.
Step P4). after that.

ブースト計測センサ18によって計測されたブーストが
所定圧B1  と比較され(ステップP、)、大きい場
合は低負荷域であるので、ステップP、1へ移る一方、
小さい場合は高負荷域で判定ゾーンであるので、パルス
差ΔτDの絶対値1ΔτD1が。
The boost measured by the boost measurement sensor 18 is compared with the predetermined pressure B1 (step P,), and if it is larger, it is in the low load range, so the process moves to step P,1.
If it is small, it is a high load area and a judgment zone, so the absolute value of the pulse difference ΔτD is 1ΔτD1.

D−J方式故障判定回路34において実験的に故障を判
断するために求められた所定値A以上か否かが判定され
(ステップP、)、所定値へ以上の場合にはフェイルフ
ラグにバイナリ信号の1が付与され(ステップP、)、
また所定値AJu下の場合には0が付与される(ステッ
プP、)。本実施例では、故障判定精度を上げるために
前記駆動パルスτL。
In the DJ system failure determination circuit 34, it is determined whether or not the value is greater than or equal to a predetermined value A determined experimentally to determine a failure (step P), and if the value is greater than or equal to the predetermined value, a binary signal is sent to the fail flag. 1 is given (step P,),
Further, if it is below the predetermined value AJu, 0 is assigned (step P,). In this embodiment, the drive pulse τL is used to increase failure determination accuracy.

τDoは低吸気流量域において算定されたものを使用し
ている。それから、フェイルフラグに1がたっているか
否かを判定しくステップP、)、フェイルフラグに1が
たっている場合、すなわちD−、J方式において採用さ
れている吸入空気量針at1手段としてのブースト計測
センサ18が故障している場合、訂吸気流量域において
もそのまま低吸気流量域におけるL−J方式による燃料
噴射インジェクグ駆動パルスでして燃料噴射制御を行う
(ステップP 、 、 ’)。また、フェイルフラグに
0がたっている場合、すなわちブースト計測センサ18
が故障していないとき、該センサ18によって計測され
たブーストは実験的に求められた高吸気流量域、低吸気
流量域の判定基準となる所定の吸気圧値B、と比較され
る(ステップP1.)。所定の吸気圧値B2より小さい
場合、すなわちエンジンが中、低負荷の低吸気流量域運
転を行っている場合、L−J方式による駆動パルスで1
6でインジェクタ12は燃料噴射制御が行われる(ステ
ップP1.)。また、ブーストが所定の吸気圧値B2以
上の場合、すなわちエンジンが高負荷の高吸気流量域運
転な行っている場合、D−J方式による駆動パルスτD
、を前記パルス差ΔτD で補正した駆動パルスτDに
よってよりエンジンの運転状態に適合した効率の良い燃
料噴射制御が行われる(ステップP1.)。燃料噴射制
御が適確に行われているかどうかは、排気管20の酸素
濃度検出器21によって常時チェックされている。
τDo is calculated in a low intake flow rate region. Then, it is determined whether or not the fail flag is set to 1 (step P). If the fail flag is set to 1, that is, the boost measurement sensor as the intake air amount needle at1 means adopted in the D- and J methods. 18 is out of order, fuel injection control is performed using the fuel injection injector drive pulse according to the L-J method in the low intake flow rate range even in the corrected intake flow rate range (steps P, , and '). In addition, if the fail flag is set to 0, that is, the boost measurement sensor 18
When there is no failure, the boost measured by the sensor 18 is compared with a predetermined intake pressure value B, which is determined experimentally as a criterion for determining a high intake flow rate region or a low intake flow rate region (step P1). ). When the intake pressure value is lower than the predetermined intake pressure value B2, that is, when the engine is operating in a low intake flow rate region with medium or low load, the drive pulse using the L-J method
In step 6, fuel injection control is performed on the injector 12 (step P1.). In addition, when the boost is higher than the predetermined intake pressure value B2, that is, when the engine is operating in a high load high intake flow rate region, the drive pulse τD by the D-J method is
, is corrected by the pulse difference ΔτD to perform efficient fuel injection control that is more suited to the operating state of the engine (step P1.). An oxygen concentration detector 21 in the exhaust pipe 20 constantly checks whether fuel injection control is being performed appropriately.

上述した実施例においては、D−J方式にブースト計測
センサを使用したものについて述べたが、スロットル開
度検出用センサにて高吸気流量域での吸入空気量を算定
することも可能であり、本発明の故障判断ルーチンを適
用できることは云うまでもない。また、L−J方式のエ
アフローメータとして、吸気負圧で作動するベーンタイ
プのものを用いても良い。
In the above embodiment, a boost measurement sensor is used in the D-J method, but it is also possible to calculate the intake air amount in a high intake flow rate region using a throttle opening detection sensor. It goes without saying that the failure determination routine of the present invention can be applied. Further, as the L-J type air flow meter, a vane type one that operates with intake negative pressure may be used.

(発明の効果) 以上述べた如く、本発明の電子燃料噴射エンジンの燃料
制御装置によれば、負荷検出手段が故障と判定された場
合に、第1および第2燃料噴射量演算手段の切換を解除
して吸気流量域においても低吸気流量域と同様に吸入空
気流量およびエンジン回転数に基づき燃料噴射量を決定
する第1燃料噴射量演算手段の出力に基づいて燃料噴射
制御を行うことによって、高吸気流量域での負荷検出手
段の故障による燃料誤制御でのエンジン、触媒コンバー
タのダメージを効果的に防止することがで
(Effects of the Invention) As described above, according to the fuel control device for an electronic fuel injection engine of the present invention, when it is determined that the load detection means has failed, switching between the first and second fuel injection amount calculation means is performed. By controlling the fuel injection based on the output of the first fuel injection amount calculating means which determines the fuel injection amount based on the intake air flow rate and engine speed in the low intake flow rate region as well as in the low intake flow rate region. Effectively prevents damage to the engine and catalytic converter due to incorrect fuel control due to failure of the load detection means in the high intake flow rate range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電子燃料噴射エンジンの燃料制御
装置の一実施例の概略説明図、第2図は同実施例の燃料
制御装置のブロックダイヤグラム。 第3図は同実施例における燃料噴射制御プログラムを示
すフローチャートである。 10・・・・・エンジン本体、13・・・・・・エアフ
ローメータ、14・・・・・・スロットル弁、18・・
・・・ブースト計測センサ、23・・・・・・エンジン
回転数検出器、30・・・・・・燃料制御装置、31・
・・・・・L−J方式用パルス演算回路、32・・・・
・・D−J方式用パルス演算回路、34・・・・・D−
J方式故障判定回路、36・・・・・パルス選択回路、
37・・・・・・選択解除回路。
FIG. 1 is a schematic explanatory diagram of an embodiment of a fuel control device for an electronic fuel injection engine according to the present invention, and FIG. 2 is a block diagram of the fuel control device of the same embodiment. FIG. 3 is a flowchart showing a fuel injection control program in the same embodiment. 10... Engine body, 13... Air flow meter, 14... Throttle valve, 18...
... Boost measurement sensor, 23 ... Engine speed detector, 30 ... Fuel control device, 31.
...Pulse calculation circuit for L-J method, 32...
・・Pulse calculation circuit for D-J method, 34・・・・D−
J method failure determination circuit, 36...pulse selection circuit,
37...Selection cancellation circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)吸気通路に介設されエンジンに供給される吸入空
気流量を検出する吸入空気流量検出手段と、スロットル
弁下流の吸気負圧若しくはスロットル弁開度に関する信
号を検出する負荷検出手段と、エンジン回転数を検出す
るエンジン回転数検出手段と、上記吸入空気流量検出手
段およびエンジン回転数検出手段の出力に基づいて燃料
噴射量を決定する第1燃料噴射量演算手段と、上記負荷
検出手段およびエンジン回転数検出手段の出力に基づい
て燃料噴射量を決定する第2燃料噴射量演算手段と、吸
入空気流量若しくは負荷が所定値未満の低吸気流量域で
は上記第1燃料噴射量演算手段の出力に基づいて、上記
所定値以上の高吸気流量域では上記第2燃料噴射量演算
手段の出力に基づいて燃料噴射弁を作動させる切換制御
手段を有する電子燃料噴射エンジンの燃料制御装置にお
いて、上記負荷検出手段の故障を判定する故障判定手段
と、該故障判定手段の出力を受け上記切換制御手段の切
換を解除し、吸入空気流量にかかわらず上記第1燃料噴
射量演算手段を選択させる切換解除手段とを有すること
を特徴とする電子燃料噴射エンジンの燃料制御装置。
(1) An intake air flow rate detection means that is interposed in the intake passage and detects the intake air flow rate supplied to the engine; a load detection means that detects a signal related to the intake negative pressure downstream of the throttle valve or the throttle valve opening; an engine rotation speed detection means for detecting the rotation speed; a first fuel injection amount calculation means for determining a fuel injection amount based on the outputs of the intake air flow rate detection means and the engine rotation speed detection means; the load detection means and the engine; a second fuel injection amount calculation means that determines the fuel injection amount based on the output of the rotation speed detection means; and a second fuel injection amount calculation means that determines the fuel injection amount based on the output of the rotation speed detection means; Based on the above, in the fuel control device for an electronic fuel injection engine having a switching control means for operating the fuel injection valve based on the output of the second fuel injection amount calculation means in a high intake flow rate region equal to or higher than the predetermined value, the load detection is performed. a failure determining means for determining a failure of the means; and a switching canceling means for receiving an output of the failure determining means and canceling the switching of the switching control means to select the first fuel injection amount calculating means regardless of the intake air flow rate. A fuel control device for an electronic fuel injection engine, comprising:
JP10129486A 1986-04-30 1986-04-30 Fuel control device for electronic fuel injection engine Pending JPS62258147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10129486A JPS62258147A (en) 1986-04-30 1986-04-30 Fuel control device for electronic fuel injection engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10129486A JPS62258147A (en) 1986-04-30 1986-04-30 Fuel control device for electronic fuel injection engine

Publications (1)

Publication Number Publication Date
JPS62258147A true JPS62258147A (en) 1987-11-10

Family

ID=14296818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10129486A Pending JPS62258147A (en) 1986-04-30 1986-04-30 Fuel control device for electronic fuel injection engine

Country Status (1)

Country Link
JP (1) JPS62258147A (en)

Similar Documents

Publication Publication Date Title
US7574905B2 (en) Apparatus for diagnosing malfunctioning of oxygen sensor
US6298718B1 (en) Turbocharger compressor diagnostic system
US5384707A (en) Diagnostic airflow measurement
JP3498817B2 (en) Exhaust system failure diagnosis device for internal combustion engine
JPH06294320A (en) Diagnostic device for exhaust purifying device
JP2564718B2 (en) Exhaust gas recirculation control device failure diagnosis device
JPS62258137A (en) Fuel control device for electronic fuel injection engine
JPS60104220A (en) Method of inspecting performance of sensor
JP4094538B2 (en) Air-fuel ratio sensor failure diagnosis device
JPH04301155A (en) Exhaust purifying device for engine
GB2297847A (en) Catalyst deterioration detecting apparatus and exhaust emission control device failure detecting apparatus
JP2586205B2 (en) Failure diagnosis device for exhaust gas recirculation control device
JPH10110646A (en) Deterioration diagnostic device for oxygen sensor in internal combustion engine
JPH09137718A (en) Abnormality detecting device for air pump of internal combustion engine
JPH04362260A (en) Trouble detecting device for exhaust gas recirculation device
JP2858406B2 (en) Oxygen sensor deterioration detection device
JPS62258147A (en) Fuel control device for electronic fuel injection engine
JPH07310585A (en) Diagnostic device for cylinder internal pressure sensor
JPH0634590Y2 (en) Fuel control device for electronic fuel injection engine
JP3264234B2 (en) Catalyst deterioration detection device for internal combustion engine
JPH0933478A (en) Apparatus for diagnosing response of oxygen sensor in internal combustion engine
JPH0634591Y2 (en) Fuel control device for electronic fuel injection engine
JPS62165538A (en) Fuel supply control device for internal combustion engine
JP3324308B2 (en) Exhaust calorie calculation device
JPH06341340A (en) Diagnosing device for air-fuel ratio control device of internal combustion engine