JPS62257054A - Apparatus for measuring moisture of particulate material - Google Patents

Apparatus for measuring moisture of particulate material

Info

Publication number
JPS62257054A
JPS62257054A JP10039686A JP10039686A JPS62257054A JP S62257054 A JPS62257054 A JP S62257054A JP 10039686 A JP10039686 A JP 10039686A JP 10039686 A JP10039686 A JP 10039686A JP S62257054 A JPS62257054 A JP S62257054A
Authority
JP
Japan
Prior art keywords
different
electrodes
capacitor
sample
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10039686A
Other languages
Japanese (ja)
Inventor
Tetsuo Yamauchi
山内 哲夫
Kura Tomita
富田 蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanzaki Paper Manufacturing Co Ltd
Original Assignee
Kanzaki Paper Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanzaki Paper Manufacturing Co Ltd filed Critical Kanzaki Paper Manufacturing Co Ltd
Priority to JP10039686A priority Critical patent/JPS62257054A/en
Publication of JPS62257054A publication Critical patent/JPS62257054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To detect water content by erasing the flow amount of a specimen, by connecting two resonance circuits having resonance frequencies different from applied frequency and different from each other to the same oscillation circuit in different degrees of coupling. CONSTITUTION:Electrodes P1, P2 are opposed to constitute a measuring condenser Cd1 and electrodes P3, P4 are opposed to constitute a measuring condenser Cd2 and the electrodes P1-P4 are alternately arranged along the circumference of a circle to constitute a cylindrical body and a particulate material is allowed to fall in said cylindrical body to flow therethrough. The output of an oscillator OSC is connected to two resonance circuits L1, L3 through a change-over switch SW in different degrees of coupling so as to be change over. One of both resonance circuits contains the condenser Cd1 and the other one contains the condenser Cd2 to make the resonance frequencies of both resonance circuits different. By this constitution, the changes in the capacities of two sets of the condensers Cd1, Cd2 at the time when the cylindrical body is empty and at the time when a specimen passes therethrough are detected.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は高周波を利用した粉粒体の含水量の連続的な測
定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an apparatus for continuously measuring the water content of powder or granular materials using high frequency waves.

口、従来の技術 粉粒体の含水量の測定は、一定重量の試料をVtZ、=
″eMI 酢場茄錫の舌賂の破to本側中十六方法が基
本的であるが、この方法は連続測定ができない上、時間
がかかるので、生産ラインにおける材料とか製品の連続
的な監視には適用できない。
The conventional technique for measuring the water content of powder and granular materials is to measure a sample of a constant weight by
``eMI The basic method is to use the ``eMI'' method to break tongues and bribes, but this method does not allow continuous measurement and is time-consuming, so continuous monitoring of materials and products on the production line is not recommended. cannot be applied to

水は通常の絶縁性物質に比し極だって誘電率が大きく、
相当の導電性を有するから、電気的な含水量測定の方法
が種々提案されている。このような方法の原理の一つは
、コンデンサの電極間に試料を置いたときのコンデンサ
の容量の変化と含水量との間に一定の関係が存在するこ
とを利用するもので、コンデンサの容量変化を測定する
手段としては、共振回路を作って共振周波数の変化を測
定するとか、交流ブリッジを構成して直接容量変化を測
定する等の手段が用いられる。
Compared to ordinary insulating substances, water has a large dielectric constant even at the poles.
Since it has considerable electrical conductivity, various methods for electrically measuring water content have been proposed. One of the principles of this method is to utilize the fact that there is a certain relationship between the change in the capacitance of a capacitor and the water content when a sample is placed between the electrodes of the capacitor. As means for measuring the change, methods such as creating a resonant circuit and measuring the change in the resonant frequency, configuring an AC bridge and directly measuring the change in capacitance, etc. are used.

上述した電気的方°法を用いた粉粒体の連続的な水分測
定装置として従来第4図に示すような構成の装置が知ら
れている。この図でPL、P2は対向電極でコンデンサ
を構成しており、容量測定手段Iくに接続されており、
電極P1.P2間に粉粒体試料Sが連続的に俳紛六れτ
七1]−雷堪P1−22間を落下した試料は粉粒体流量
計Vを経て他工程へと流れて行く。PL、P2によって
構成されるコンデンサの容量の変化は両電極間に存在す
る試料の量と含水率とで定まり、電極間に存在する試料
の量は試料の流MFに比例している。従って容量変化を
ΔC1含水率をWとするとき、一般に     kΔC
=Ff(W)  ・・・(1)の関係が成立する。こ\
でkは電極Pi、P2により構成されるコンデンサの電
極形状により定まる定数であり、f (W)の関数形は
粉粒体の性質及びコンデンサの容量測定に用いる周波数
によって異るが、試料及び周波数が定まっておれば一定
の関数である。所でこの方法は含水率Wを求めるに当っ
て流量Fを知る必要があり、そのため粉粒体流量計Vが
用いられている。そこで粉粒体流量計を必要としない方
法として第5図に示すような方法が知られている。この
方法は第4図のコンデンサを上下に2つ並べたもので、
pl、P2が一つのコンデンサCdlを構成し、PL’
、P2’がもう一つのコンデサ゛/Cd2を構成し、夫
々の容量変化を測定するために印加される高周波周波数
が異っている。コンデンサcd1.cd2の容量変化を
ΔC1,ΔC2とすると、 kl・ΔC1=Ff (W、fl) k2・ΔC2= F t (W、f 2 )となる。こ
\でfl、f2はコンデンサCdl。
As an apparatus for continuously measuring the moisture content of powder or granular materials using the above-mentioned electrical method, an apparatus having a configuration as shown in FIG. 4 is conventionally known. In this figure, PL and P2 constitute a capacitor with opposing electrodes, and are connected to the capacitance measuring means I.
Electrode P1. During P2, the powder sample S is continuously mixed τ
71] - The sample falling between P1 and P22 passes through the powder flow meter V and flows to other processes. Changes in the capacitance of the capacitor constituted by PL and P2 are determined by the amount of sample present between the two electrodes and the water content, and the amount of sample present between the electrodes is proportional to the flow MF of the sample. Therefore, when the capacitance change is ΔC1 and the water content is W, generally kΔC
=Ff(W)...The relationship (1) holds true. child\
k is a constant determined by the electrode shape of the capacitor composed of electrodes Pi and P2, and the functional form of f (W) varies depending on the properties of the powder and the frequency used to measure the capacitance of the capacitor, but depending on the sample and frequency. If is fixed, it is a constant function. However, in this method, it is necessary to know the flow rate F in order to determine the water content W, and therefore a powder flow meter V is used. Therefore, a method as shown in FIG. 5 is known as a method that does not require a powder flow meter. This method uses two capacitors shown in Figure 4 arranged one above the other.
pl and P2 constitute one capacitor Cdl, and PL'
, P2' constitute another capacitor/Cd2, and the high frequency frequencies applied to each capacitance change are different. Capacitor cd1. If the capacitance changes of cd2 are ΔC1 and ΔC2, then kl·ΔC1=Ff (W, fl) k2·ΔC2=F t (W, f 2 ). Here fl and f2 are capacitor Cdl.

Cd2に印加されている高周波の周波数である。This is the frequency of the high frequency applied to Cd2.

上記2式から粉粒体流量Fを消去すると、Pl。When the powder flow rate F is eliminated from the above two equations, Pl.

P2の組及びPl゛、P2゛の組の電極形状を同から含
水量Wを求めることができる。所でこの方法:よ粉粒体
流量計Vが不要となる反面、二つの周波数fl、f2夫
々の発振器が必要であり、かつ測定用電極であるコンデ
ンサが上下に二つ並ぶので、装置が背の高いものとなる
The water content W can be determined from the electrode shapes of the pair P2 and the pair P1 and P2. However, this method does not require the granular material flowmeter V, but requires two oscillators for each of the frequencies fl and f2, and since two capacitors, which are measurement electrodes, are arranged one above the other, the device does not need to be placed on the back. The value will be high.

ハ0発明が解決しようとする問題点 本発明は第5図の方法が周波数の異る二つの発振器が必
要である点と、装置の高さが高くなると云う問題を解消
しようとするものである。
Problems to be Solved by the Invention The present invention attempts to solve the problems that the method shown in FIG. 5 requires two oscillators with different frequencies and that the height of the device increases. .

ニ0問題点解決のための手段 筒状体をその軸方向の切れ目によって4分割し、4分割
された各片を測定用電極とし、各片のうち対向する一対
ずつで二個のコンデンサを構成し、試料の粉粒体は上記
筒状体の中を軸方向に落すようにする。他方一つの発振
器の出力を切換スイッチを介して二つの共振回路に異る
結合度で切換え接続するようにする。これら二つの共振
回路の一方は上記二組のコンデンサの一方を含み、他方
は上記二組のコンデンサの他方を含んで、両共撮回路の
共振周波数を異らせてお(。このような構成によって上
記筒状体の中が空のときと試料が通っているときの上記
二組のコンデンサの容量変化を検出する。こ\で容量変
化の検出手段は任意で、容量変化による共振周波数の変
化を検出する方法でも、コンデンサが空の時の共振周波
数に固定しておいて、検波出力の変化を検出する方法で
もよい。
D0 Means for solving the problem Divide the cylindrical body into four parts along the axial cut, use each of the four parts as a measuring electrode, and configure two capacitors with each pair of opposing parts. The sample powder is allowed to fall in the axial direction inside the cylindrical body. On the other hand, the output of one oscillator is selectively connected to two resonant circuits with different degrees of coupling via a changeover switch. One of these two resonance circuits includes one of the two sets of capacitors, and the other includes the other of the two sets of capacitors, so that the resonance frequencies of the two resonance circuits are different (such a configuration The change in capacitance of the two sets of capacitors is detected when the inside of the cylindrical body is empty and when a sample is passing through it.The means for detecting the change in capacitance is arbitrary, and the change in the resonant frequency due to the change in capacitance is Alternatively, the resonant frequency may be fixed at the resonant frequency when the capacitor is empty, and a change in the detection output may be detected.

ホ0作用 二つの共振回路を同じ発振回路に異る結合度で接続し、
かつ夫々の共振周波数を印加される周波数と異らせ、相
互にも異せであると、共振回路に接続された被測定容量
の変化に対する両共撮回路の応答特性が異り、適宜の応
答出力例えば被測定容量の両端電圧等の比を取ることに
よって、試料の流量を消去して含水量を検出することが
でき、コンデンサは上下に配置するのでな(,2組の電
極によって筒状体を構成するようにしたから、装置の高
さを低くすることができる。
Ho0 effect Two resonant circuits are connected to the same oscillation circuit with different degrees of coupling,
In addition, if the respective resonant frequencies are different from the applied frequencies, and if they are also different from each other, the response characteristics of the two common imaging circuits to changes in the capacitance to be measured connected to the resonant circuit will be different, resulting in an appropriate response. For example, by taking the ratio of the voltage across the capacitance to be measured, the flow rate of the sample can be eliminated and the water content can be detected. , the height of the device can be reduced.

へ、実施例 第1図は本発明の一実施例における二個のコンデンサの
電極配置を示し、PI、P2が相対向して一つの測定用
コンデンサCdlを構成し、P3、P4がPi、P2と
は直角をなす向きで互いに対向して他の測定用コンデン
サCd2を構成し、電t4P1〜P4は円周に沿って交
互に配置され、筒状体を構成しており、試料の粉粒体は
この筒状体の中を上から下へと落下流通せしめられる。
Embodiment FIG. 1 shows the electrode arrangement of two capacitors in an embodiment of the present invention, in which PI and P2 face each other to constitute one measuring capacitor Cdl, and P3 and P4 constitute one measuring capacitor Cdl. The capacitors t4 and t4 are arranged opposite to each other at right angles to form another measurement capacitor Cd2, and the capacitors t4P1 to P4 are arranged alternately along the circumference to form a cylindrical body, and the capacitors t4 and t4 are arranged alternately along the circumference to form a cylindrical body. is caused to fall and flow through this cylindrical body from top to bottom.

第2図は本発明の一実施例の回路を示す。O3Cは発振
器で一定周波数の高周波を出力している。その周波数を
fOとする。Ll、L3は第1の共振回路で何れも発振
器の○SCの発振周波数fOに同調させてあり、切換ス
イッチSwで交互にO20の出力が印加されるようにな
っている。
FIG. 2 shows a circuit of one embodiment of the present invention. O3C is an oscillator that outputs a high frequency wave with a constant frequency. Let the frequency be fO. Ll and L3 are first resonant circuits, both of which are tuned to the oscillation frequency fO of the oscillator ○SC, and the output of O20 is applied alternately by a changeover switch Sw.

L2.L4は第2の共振回路で、L2は結合コンデンサ
C1を介してLlに並列に接続され、L4は同様に結合
コンデンサC2を介してL3に並列に接続されており、
これらの共振回路の共振周波数はfoと異り、かつ相互
にも異らせである。また結合コンデンサCI、C2の容
量も互いに異り、例えばCI=10pF、C2=100
pFに選択されている。測定用のコンデンサCdlは共
振回路L2に並列に、またCd2は共振回路L4に並列
に接続される。DETl、DET2は共に検波回路で、
共振回路L2.L4に接続され、夫々の出力がデータ処
理回路DIGに入力される。
L2. L4 is a second resonant circuit, L2 is connected in parallel to Ll via a coupling capacitor C1, L4 is also connected in parallel to L3 via a coupling capacitor C2,
The resonant frequencies of these resonant circuits are different from fo and also different from each other. Also, the capacitances of the coupling capacitors CI and C2 are different from each other, for example, CI=10pF, C2=100
pF is selected. The measurement capacitor Cdl is connected in parallel to the resonant circuit L2, and Cd2 is connected in parallel to the resonant circuit L4. DETl and DET2 are both detection circuits,
Resonant circuit L2. L4, and their respective outputs are input to the data processing circuit DIG.

データ処理回路DIGの構成動作を説明する前に、上述
した回路の動作を第3図によって説明する。第3図は電
極P1〜P4で構成された筒の中を含水率を色々変えた
試料を一定流速で通したときの検波回路DET1.DE
T2の出力電圧の変化を発振器oscの出力周波数をパ
ラメータにとって表したものである。即ち試料がないと
きの各検波回路の出力電圧をVd1.Vd2.試料が通
っているときの出力電圧をVl、V2とするとき、第3
図Aは検波回路DETIの出力を示し縦軸ハ(V (1
1−’v’ 1 ) / V d 1また同B ハD 
E T2の出力を示して縦軸は(Vd2−V2)/Vd
2である。共振回路L2の共振周波数はfo−A−fl
H,、1,4の共振周波数はf o −1’r2 Hz
でf’oは37.2KHzから8.10MHzの範囲で
変えである。図から明らかなようにr)’ E−、T 
1の出力の含水率による変化は2.76MF(z付近で
広範囲で直線的であり、foが高すぎても低過ぎても変
化率が減少し値線性も悪(なる。結合コンデンサC1の
容量が小さいDETIの方の出力は何れの周波数でも含
水率による変化が少い。この理由は次のようなものと考
えられる。電極P1〜P4で構成されるコンデンサCd
l、Cd2の容量は空のとき約2pF、試料があると2
〜200pFと変化する。共振回路L2.L4にはこの
ようなコンデンサCd1.Cd2が並列に接続されてい
るので、その共振周波数はCd1.Cd2がないときよ
り更に低周波側にずれており、共振回路L2、L4は入
力周波数foに対して容量性のりアクタンスとして作用
している。そしてC2,L4、DET2の系統ではC2
のリアクタンスと上述した共振回路L4のリアクタンス
とが同程度なので、Cd2の変化の影響が大きく表れる
。これに対してC1,L2.DETIの系統ではC1の
容量が小さいから、DETlには共振回路L1の両端電
圧に近い電圧が表れていて、Cd1の変化に対して鈍感
になっているのである。試料の含水率をW1試料の流量
をFとするとき、単位流量における第3図のカーブの式
を とすると任を流量Fのとき V t−1=  F−)J  (W )、−(*)V 
C2= F  −K  (W)−(4)で表される。こ
れは粉粒体試料において、粉粒体そのらのよりN有水分
の量の方が影響が遥かに大きいからである。上記(3)
 <4’)式から、Ve 1/Ve2=H(W)/K 
(W)−(5)によって流iFが消去できてWを求める
ことができる。関数形H,には具体的に求める必要はな
く 、4!y準試料を作ってVel/Ve2とWとの相
関曲線を測定しておけばよいのである。
Before explaining the configuration and operation of the data processing circuit DIG, the operation of the above-mentioned circuit will be explained with reference to FIG. FIG. 3 shows the detection circuit DET1. D.E.
The change in the output voltage of T2 is expressed using the output frequency of the oscillator osc as a parameter. That is, the output voltage of each detection circuit when there is no sample is Vd1. Vd2. When the output voltages when the sample is passing through are Vl and V2, the third
Figure A shows the output of the detection circuit DETI, and the vertical axis C (V (1
1-'v' 1) / V d 1 and the same B HaD
E The vertical axis shows the output of T2 (Vd2-V2)/Vd
It is 2. The resonant frequency of the resonant circuit L2 is fo-A-fl
The resonant frequency of H,,1,4 is f o -1'r2 Hz
and f'o is varied in the range from 37.2 KHz to 8.10 MHz. As is clear from the figure, r)' E-, T
The change in the output of No. 1 due to the water content is 2.76 MF (it is linear in a wide range near z, and if fo is too high or too low, the rate of change decreases and the value linearity becomes poor (the capacitance of the coupling capacitor C1 The output of DETI with a smaller value changes less depending on the water content at any frequency.The reason for this is thought to be as follows.The capacitor Cd composed of electrodes P1 to P4
The capacitance of Cd2 is about 2 pF when empty, and 2 pF when there is a sample.
~200 pF. Resonant circuit L2. L4 has such a capacitor Cd1. Since Cd2 are connected in parallel, their resonant frequency is Cd1. The frequency is further shifted to the lower frequency side than when Cd2 is not present, and the resonant circuits L2 and L4 act as capacitive actances with respect to the input frequency fo. And in the C2, L4, and DET2 systems, C2
Since the reactance of the resonant circuit L4 and the reactance of the resonant circuit L4 described above are approximately the same, the influence of the change in Cd2 appears greatly. On the other hand, C1, L2. In the DETI system, since the capacitance of C1 is small, a voltage close to the voltage across the resonant circuit L1 appears in DETl, making it insensitive to changes in Cd1. When the moisture content of the sample is W1 and the flow rate of the sample is F, the equation of the curve in Figure 3 at unit flow rate is given. )V
It is expressed as C2=F-K(W)-(4). This is because in a powder sample, the amount of N water has a much greater influence than the powder itself. Above (3)
<4') From the formula, Ve 1/Ve2=H(W)/K
By (W)-(5), the flow iF can be eliminated and W can be found. There is no need to specifically find the functional form H, 4! What is necessary is to prepare a y quasi-sample and measure the correlation curve between Vel/Ve2 and W.

上述した所によって、この実施例ではfoとして2.7
6MHzを用いている。第2図に戻ってデータ処理回路
DIGの構成、動作を説明する。
According to the above, in this example, fo is 2.7
6MHz is used. Returning to FIG. 2, the configuration and operation of the data processing circuit DIG will be explained.

5UT11.5UB2は引算回路である。スイッチSl
、S2は連動しており、電極P1〜P4内に試料を通し
ていない状態でSL、S2を5UB1.5UB2の÷端
子bl、b2に接続し、そのと二きの検波回路DET1
.DET2の出力V dl、、Vd2を記憶用コンデン
サCmに保持させる。次にSl、S2を5UB1.5U
B2の一端子a1.a2側に切換えて、電極P1〜P4
7内に試料を通す。そうすると5UBI、5UB2の出
力側には Vd1−VL、Vd2−V2 が現れるから、これを割算回路RAに入力し、割算結果
を表示装置DsPに含水率として表示させる。この動作
では前記(5)式に含まれるVd2/Vd1が入って来
ないが、これは装置の定数になるから、較正によって含
水率を決める場合、計算に入れる必要はない。
5UT11.5UB2 is a subtraction circuit. Switch Sl
, S2 are interlocked, and when the sample is not passed through the electrodes P1 to P4, SL and S2 are connected to the terminals bl and b2 of 5UB1.5UB2, and the second detection circuit DET1 is connected.
.. The outputs Vdl, Vd2 of DET2 are held in the storage capacitor Cm. Next, 5UB1.5U of Sl and S2
One terminal a1 of B2. Switch to the a2 side and connect the electrodes P1 to P4.
Pass the sample through the tube. Then, since Vd1-VL and Vd2-V2 appear on the output sides of 5UBI and 5UB2, these are input to the division circuit RA, and the division result is displayed as the water content on the display device DsP. In this operation, Vd2/Vd1 included in the equation (5) is not included, but since this becomes a constant of the device, it is not necessary to take it into account when determining the moisture content through calibration.

ト、効果 本発明は上述したような較正で、2組の測定電極を同一
高さで筒状に配置して二個のコンデンサとしたとから装
置の高さが低くでき、携帯可能な装置とすることも可能
となり、製造ラインの狭い所でも設置可能で、また発振
器は一つでよいしから安価であり、2つの発振器を用い
る場合に表われる2周波数の誤差の影響に比し、周波数
誤差の影響が少くなる。
Effects of the present invention In the above-mentioned calibration, the two sets of measuring electrodes are arranged in a cylindrical shape at the same height to form two capacitors, so the height of the device can be reduced and the device can be made portable. It can be installed in a narrow place on a production line, and since only one oscillator is required, it is inexpensive, and the frequency error is much smaller than the influence of two frequency errors that occur when two oscillators are used. The impact of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における測定電極の配置を示す斜視図、
第2図:よ本発明の一実施例の回路図、第3図は同実施
例装置の作用を説明するグラフで、同図AはC1,T、
2.DETI系統の作用グラフ、同BはC2,L4.D
ET2系統の作用グラフ、第4図は従来例の一つの側面
図、第5図は他の従来例の側面図である。
FIG. 1 is a perspective view showing the arrangement of measurement electrodes in the present invention;
Fig. 2: A circuit diagram of an embodiment of the present invention; Fig. 3 is a graph explaining the operation of the device of the embodiment;
2. Action graph of the DETI strain, B is C2, L4. D
FIG. 4 is a side view of one conventional example, and FIG. 5 is a side view of another conventional example.

Claims (1)

【特許請求の範囲】[Claims] 共振周波数の異る二つの共振回路を一つの発振回路に異
る結合度で結合し、4個の測定用電極を筒状に配置し、
その中を試料が通るように構成し、上記4個の測定用電
極中の互いに対向する一対ずつで夫々コンデンサを構成
して、その一方を上記二つの共振回路の一方に、もう一
つを他方の共振回路に接続し、これら二つのコンデンサ
の両端電圧の検波出力の比率から水分量を求めるように
した粉粒体水分測定装置。
Two resonant circuits with different resonance frequencies are coupled to one oscillation circuit with different degrees of coupling, and four measurement electrodes are arranged in a cylindrical shape.
The sample is configured to pass through it, and each pair of the four measuring electrodes facing each other constitutes a capacitor, one of which is connected to one of the two resonant circuits, and the other is connected to the other. A powder moisture measuring device that is connected to a resonant circuit and calculates the moisture content from the ratio of the detected output of the voltage across these two capacitors.
JP10039686A 1986-04-30 1986-04-30 Apparatus for measuring moisture of particulate material Pending JPS62257054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10039686A JPS62257054A (en) 1986-04-30 1986-04-30 Apparatus for measuring moisture of particulate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10039686A JPS62257054A (en) 1986-04-30 1986-04-30 Apparatus for measuring moisture of particulate material

Publications (1)

Publication Number Publication Date
JPS62257054A true JPS62257054A (en) 1987-11-09

Family

ID=14272823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10039686A Pending JPS62257054A (en) 1986-04-30 1986-04-30 Apparatus for measuring moisture of particulate material

Country Status (1)

Country Link
JP (1) JPS62257054A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046356A (en) * 1988-09-28 1991-09-10 Kanzaki Paper Manufacturing Co., Ltd. Apparatus for determining water content of powder/granule
JP2017167143A (en) * 2016-03-12 2017-09-21 株式会社エスオラボ Electrostatic capacitance detection device and electrostatic capacitive sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046356A (en) * 1988-09-28 1991-09-10 Kanzaki Paper Manufacturing Co., Ltd. Apparatus for determining water content of powder/granule
JP2017167143A (en) * 2016-03-12 2017-09-21 株式会社エスオラボ Electrostatic capacitance detection device and electrostatic capacitive sensor

Similar Documents

Publication Publication Date Title
US6033852A (en) Monolithic piezoelectric sensor (MPS) for sensing chemical, biochemical and physical measurands
RU2115935C1 (en) Method of contact-free measurement of dielectric constant of dielectric matter
US4468611A (en) Capacitive system for monitoring the dielectric properties of flowing fluid streams
US4641434A (en) Inclination measuring device
US4628612A (en) Tilt angle detection device
US4590424A (en) Detection of ion concentration in a liquid
JPH0337501A (en) Electrostatic capacitance type detecting apparatus
US4733560A (en) Liquid sensing system
WO2004083808A2 (en) Method and apparatus for measuring chemical concentration in a fluid
JPH08278336A (en) Electrostatic sensor device
CN102508034B (en) Method and device for measuring parameters of micro solid gyroscope equivalent circuit
US3255412A (en) System for measuring a property of a dielectric material by periodically applying signals at different frequencies to a capacitance probe
JPH03209157A (en) Instrument for measuring solution by utilizing surface acoustic wave and method for measuring specific material in solution
JPS62257054A (en) Apparatus for measuring moisture of particulate material
US20100001803A1 (en) Electronic circuit for obtaining a variable capacitative impedence
JP2705257B2 (en) Liquid level detector
JPS60143722A (en) Capacitance type three-way displacement detector
SU1061030A1 (en) Device for measuring concentration of various subtances
SU949471A1 (en) Device for measuring humidity
US2903884A (en) Densitometer
SU1154538A1 (en) Measuring channel of digital level indicator
RU1822968C (en) Capacitance-type sensor
RU2279669C1 (en) High frequency dielcometric measurer of nonelectric values
SU851285A1 (en) Device for measuring material dielectric parameters
SU1550405A1 (en) Capacitive pickup