JPS60143722A - Capacitance type three-way displacement detector - Google Patents

Capacitance type three-way displacement detector

Info

Publication number
JPS60143722A
JPS60143722A JP58249163A JP24916383A JPS60143722A JP S60143722 A JPS60143722 A JP S60143722A JP 58249163 A JP58249163 A JP 58249163A JP 24916383 A JP24916383 A JP 24916383A JP S60143722 A JPS60143722 A JP S60143722A
Authority
JP
Japan
Prior art keywords
signal
phase
signals
electrodes
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58249163A
Other languages
Japanese (ja)
Inventor
Shigeki Iwamoto
茂樹 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP58249163A priority Critical patent/JPS60143722A/en
Publication of JPS60143722A publication Critical patent/JPS60143722A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors

Abstract

PURPOSE:To make it possible to detect displacements by one probe, by partially dipping a probe, wherein specified three pairs of facing electrodes are arranged on the same circumference, into a fluid, and detecting the three-way displacements based on the signals at the other common connecting point obtained by imparting a specified signal to one pair of electrode plates. CONSTITUTION:Three pairs of outer and inner electrodes 3a, 3b, 4a, 4b and 5a, 5b are arranged so that the inner and outer electrodes face to each other. The outer and inner electrodes have the same areas, respectively. Thus partially cylindrical facing electrodes 3, 4 and 5 are formed. The electrodes are arranged on the same circumference at the bottom of a container at an equal interval, and a probe is constituted. Two- phase signals V4 and V5 are obtained from multiple-phase signals by a transformer 6. The signal V4 is imparted to a transmitting circuit 7. Three-phase AC signals V1, V2 and V3 are imparted to the electrodes 3, 4 and 5. The signal at a common connecting point P, which is formed by said signals and the signal V5 through a reference capacitor 8, is amplified by an amplifier 9 and separated by a decoding circuit 10. A liquid level signal V7 is obtained from the two-phase signal component. A slant direction signal V8 and a slant angle signal V9 are obtained from the multiple-phase signal components.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、静電容量の変化を利用して、流体の傾斜方向
、傾斜角、液面レベルの変化等3方向の変位を検出する
@置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention utilizes changes in capacitance to detect displacement in three directions, such as changes in fluid inclination direction, inclination angle, and liquid level. Regarding the location.

〈従来技術〉 航空機の燃料タンク中の燃料の液mを測定する場合、前
記燃料タンク内にプローブを直立させ、これよって、タ
ンク内の燃料レベルを検出し、この検出結果に基づき燃
料の液量を算出していた。
<Prior art> When measuring the fuel liquid m in an aircraft fuel tank, a probe is placed upright in the fuel tank, thereby detecting the fuel level in the tank, and based on this detection result, the fuel liquid level is determined. was calculated.

前記燃料タンクは翼等限られたスペース中に設番プられ
る為、形状がいびつで、単一のプ〔1−プを用いて検出
したのでは、航空機が旋回しているような場合、燃料の
液面の傾斜方向により、前記プロー1で検出される出力
が変ってしまい、正しい測定が出来ない。
Since the fuel tank is installed in a limited space such as a wing, its shape is irregular, and if the fuel tank is detected using a single tank, when the aircraft is turning, the fuel The output detected by the plow 1 changes depending on the direction of inclination of the liquid level, making it impossible to perform accurate measurements.

この為に、従来装置では、前記燃料タンク内に少なくと
も3本以上のプローブを直立させ、これらブD −1に
よって検出され1.′:出力に基づき、傾斜方向、傾斜
角、並びに燃料の液面レベルにI3I]!I−る情報を
導き、これに前記燃料タンクの形状に応じた補jJ i
iQ ’71を施し、正しい燃料の液早をめていた。
For this purpose, in the conventional device, at least three or more probes are placed upright in the fuel tank, and these probes D-1 detect 1. ': Based on the output, the tilt direction, tilt angle, and fuel level I3I]! I-J i
iQ '71 was applied to ensure correct fuel flow.

しかしながら、このような従来装置では、燃料の液mを
測定するのIC3本以上のプローブを段りなければなら
ず、コストが嵩む欠点があり、また、これらプローブが
離れCいtこり、配置の仕方によっては、3方向の変位
信号をl!jるのに、その都度複雑な51暉をしなけれ
ばならなかった。
However, with such conventional devices, three or more IC probes must be installed in order to measure the fuel liquid m, which increases the cost. Depending on the method, displacement signals in three directions can be expressed as l! I had to do a complicated 51 steps each time I wanted to go to school.

〈目的〉 本発明の目的は、31J向の変(Gzを1木のプローブ
で検出出来るようにし、検出部分を簡単な構成にして、
且つ安価に構成出来るようにづると共に、複数のプ1」
−ブを用いた場合に必要であった複雑な計算を不要とし
た容量式3方向変位検出装置を実現することにある。
<Purpose> The purpose of the present invention is to enable the detection of a change in the direction of 31J (Gz) with a single probe, to simplify the configuration of the detection part, and to
In addition to being able to be configured at low cost, it is also possible to configure multiple
- The object of the present invention is to realize a capacitive three-direction displacement detecting device that does not require complicated calculations that are required when using a tube.

〈発明の構成〉 本発明の構成は、同一面積、同一ギャップを右する三つ
以上の対向電極を同一円周上に等間隔に配置したプロー
ブを誘電性流体に部分的に浸inし、前記対向電極の一
方の極板に、夫々2相信号のうちの1相で変調され、こ
の信号とは周波数が異なる3組以上の多相信号の各1相
を与え、或は、2相位号のうちの1相と多相信号とを交
Uに与えて、前記対向電極の他方の極板の共通接続点に
発生した信号電圧のうち、前記2相位号成分を、前記2
相位号の他の1相を基準容■に与えて1!7られた電圧
と比較し、前記対向電極の静電容量の総和の変化に対応
した電圧を得て、これより前記流体の液面レベルに関連
した信号を得ると共に、前記共通接続点に発生した信号
電圧のうち、前記多相信号成分につき、その大きさ、並
びにこの成分の基準信号からの位相差を検出して前記流
体の液面の傾斜方向、並びに傾斜角に関連した信号を得
るようにし7j0 〈実施例〉 第7図は、本発明実施例装置におt)る検出部分の平面
図、第2図は、第1図で示すA−A面で前記検出部分を
切断した断面図Cある。こられの図におい−(,1は内
部に誘電性流体2が入れられた、燃料タンク等の容器(
第2図では、その底部だけが示されている。)、3.4
.5は、この容器の底部においてCを中心とする同一円
周上に等間隔に垂直トー配置された部分円筒状の対向電
極で、同一面積を有する外側の電極3a、4a、5aと
、同じく同−面積を有する内側の電極3’b、4b。
<Configuration of the Invention> The configuration of the present invention is such that a probe having three or more opposing electrodes having the same area and the same gap arranged at equal intervals on the same circumference is partially immersed in a dielectric fluid. One phase of three or more sets of multiphase signals each modulated by one phase of two-phase signals and having a different frequency from this signal is applied to one plate of the counter electrode, or one phase of two-phase signals is applied to one plate of the opposing electrode. One phase and a multiphase signal are applied to the alternating current U, and among the signal voltages generated at the common connection point of the other plate of the opposing electrode, the two phase components are
The other phase of the phase code is applied to the reference volume ■ and compared with the voltage obtained by 1!7, a voltage corresponding to the change in the total capacitance of the counter electrode is obtained, and from this, the liquid level of the fluid is determined. A signal related to the level is obtained, and the magnitude of the multiphase signal component of the signal voltage generated at the common connection point as well as the phase difference of this component from the reference signal are detected to detect the level of the signal voltage generated at the common connection point. Signals related to the direction of inclination and the angle of inclination of the surface are obtained. There is a cross-sectional view C of the detection portion taken along the plane A-A shown in FIG. In these figures, 1 is a container such as a fuel tank (1 is a container such as a fuel tank) in which a dielectric fluid 2 is placed.
In FIG. 2 only its bottom part is shown. ), 3.4
.. 5 is a partially cylindrical counter electrode arranged vertically at equal intervals on the same circumference centering on C at the bottom of this container, and is also the same as the outer electrodes 3a, 4a, 5a having the same area. - inner electrodes 3'b, 4b with area;

5bとが同−二1”ヤップを保って対向している。これ
らにJ、ってプ[l−ブが構成される。
5b and 5b face each other with the same distance of 1". These constitute J and P[l-B.

容器1が傾き、流体2の液面がIになった場合、流体2
に浸漬された各電極の状態は第3図のようになる。第3
図番よ電極部分を展開して示したもので、説明を簡略に
する為、対向rri極3.4.5は夫々一つの極板で代
表的に示されている。S31゜S41.S51は流体2
に浸漬された電極3.4゜5部分の面積を表わし、83
2,842,852は大気中に出ている部分の面積を表
わす。
If container 1 is tilted and the liquid level of fluid 2 becomes I, fluid 2
The state of each electrode immersed in the water is as shown in Figure 3. Third
The electrode portions are shown expanded according to the figure number, and to simplify the explanation, each of the opposing rri poles 3, 4, and 5 is representatively shown as one plate. S31°S41. S51 is fluid 2
represents the area of 3.4°5 part of the electrode immersed in
2,842,852 represents the area of the part exposed to the atmosphere.

αは傾斜方向、θは電ti3.4.5の幅に相当する角
IQ(但し、Oくθ<(2/3)・π)、Lは傾斜の人
ささを表わし、傾斜角は、中心Cがら?Utfi3.4
..5までの距離Xを1とした場合、arctanlで
表わされる。
α is the direction of inclination, θ is the angle IQ corresponding to the width of electric ti3.4.5 (however, θ<(2/3)・π), L is the height of the inclination, and the angle of inclination is the center C empty? Utfi3.4
.. .. When the distance X to 5 is 1, it is expressed as arctanl.

このような関係において、対向電極3,4.5の面積を
S1水1L時、流体2によって、これら電極が浸漬され
る部分の面積をSoとした場合、各対向電極の流体2に
浸漬された部分の面積s31゜(α−(π/2))]d
θ =So 十L [Cos ((π/2) −α)−Oo
S(θ+(π/2)−α)] (α−(π/2))ldθ =SO+L LGO5((7/6)、−π−α)−co
s(θ十(7/6)・π−α)]fα−(π/2))]
 dθ −8o +1.− [Qos ((11/6) ・π−
α] −Cos (θ+ <11/6) ・ π−α 
フ コ ・・・ (3) 同様(5−1人気中に出−Cいる部分の而fas32゜
842、S 52は以下のように表わされる。
In this relationship, if the area of the counter electrodes 3 and 4.5 is S1 when water is 1 L, and the area of the part where these electrodes are immersed in fluid 2 is So, then the area of each counter electrode immersed in fluid 2 is Area of part s31゜(α-(π/2))]d
θ = So 1L [Cos ((π/2) −α) −Oo
S(θ+(π/2)−α)] (α−(π/2))ldθ=SO+L LGO5((7/6),−π−α)−co
s(θ0(7/6)・π−α)]fα−(π/2))]
dθ −8o +1. − [Qos ((11/6) ・π−
α] −Cos (θ+ <11/6) ・π−α
Fuco... (3) Similarly (5-1, in the popular part, fas32゜842, S52 is expressed as follows.

S 3 2 = (S S o ) L [Co s 
((π/22 )−α)−QO5(θ−1(π/2)−
α)]・・・(4) 842= (S−8o ) −L [Cos ((7/
6)・π−α)−CO8(θ+(7/6)・π−α)1
 ・・・(5) S52= (S−8o )−L [CO8((11/6
)・π−α)−CO5(θ+(”II/6)・π−α)
1 ・・・(6) 流体2の誘電率及び極板間のギャップに関連した定数を
に1とし、人気の誘電率及び前記ギャップに関連した定
数をに2とした場合、対向電極3゜4 、5 (1) 
n m 容量 C3、C4、05+4 JJ、 下(D
 J: ’)に表わづことが出来る。
S 3 2 = (S S o ) L [Co s
((π/22)-α)-QO5(θ-1(π/2)-
α)]...(4) 842= (S-8o) -L [Cos ((7/
6)・π−α)−CO8(θ+(7/6)・π−α)1
...(5) S52= (S-8o)-L [CO8((11/6
)・π−α)−CO5(θ+(”II/6)・π−α)
1...(6) If the constant related to the dielectric constant of the fluid 2 and the gap between the electrode plates is set to 1, and the constant related to the popular permittivity and the gap is set to 2, then the counter electrode 3°4 , 5 (1)
nm Capacity C3, C4, 05+4 JJ, Lower (D
J: It can be expressed as ').

C3=に1・3314〜に2・832・・・(7)/ C4=に1 ・ 841 → +2 ・ 842・・・
 (8)C5= k i ・S51+に2 ・852・
・・ (9)これら静電容量の総和は、 C3+ C4→−C5=に1・(S31+841十85
1 ) + k 2・(S32+842+852)・・
・(10) で表わされ、(831」−8411−651)、(S3
2+S42+552)は(1)乃至(6)式より、夫々
3So 、 3 (S So )であるから、(10)
式は以下のようにmき表わずことが出来る。
C3 = 1.3314 ~ 2.832...(7) / C4= 1 ・841 → +2 ・842...
(8) C5= k i ・2 to S51+ ・852・
... (9) The sum of these capacitances is C3+C4→-C5=1・(S31+841+85
1) + k 2・(S32+842+852)・・
・(10) is expressed as (831''-8411-651), (S3
2+S42+552) are 3So and 3 (SSo), respectively, from equations (1) to (6), so (10)
The formula can be expressed as follows.

C3+C4→−05=3kl・So+ 3に2 ・<5−8o ) =3 (kl−に2) ・S。C3+C4→-05=3kl・So+ 3 to 2・<5-8o) =3 (2 to kl-)・S.

千3に2・S ・・・(11) この式より、静電容量の総和は、流体2のレベルに関連
したSoに依存していることが判る。
1,3 to 2·S (11) From this equation, it can be seen that the total capacitance depends on So, which is related to the level of the fluid 2.

一方、対向電極3,4.5を第4図に示す如く、一方の
極板に、 Vl =S i nωt −(12) V2=Sin r ω し + <2/3) ・ 7r
l・・・ (13) V3=S i n [ωt+ (4/3)−yrl・・
・ (14) で表わされる3)相交流信号Vl、V2.V3をりえ、
他方の極板を共通接続した場合、J(通接続点に発生8
する合成信号vOは以上のJ、うに表ね1ことが出来る
On the other hand, as shown in FIG. 4, the counter electrodes 3 and 4.5 are placed on one plate as follows:
l... (13) V3=S i n [ωt+ (4/3)-yrl...
(14) 3) Phase alternating current signals Vl, V2. Rie V3,
When the other plate is connected in common, J (occurs at the connection point 8
The composite signal vO can be expressed as J above.

VO= (C3−V1+C4−V2 ト 05−V3)
/(C;3 + 04 +Cb ) ・・・(15)こ
のj(は、(1)乃至(14)式より、Vo=1−− 
[1/((So+(+2・s)/(kl−に2>)] 
・Sin (θ/2)・S i n [ωt+α−(θ
/2)]・・・(16) と書き変えることが出来る。この式において、kl、に
2.S、0は定数でであるから、VOtよしに比例し、
Soに反比例し、月つ3inωtの基準発:L信号に対
し、位相が(α−(θ/2))ずれていることが判る。
VO= (C3-V1+C4-V2 05-V3)
/(C;3 + 04 +Cb) ... (15) This j( is, from formulas (1) to (14), Vo=1--
[1/((So+(+2・s)/(kl−2>)]
・Sin (θ/2)・S i n [ωt+α−(θ
/2)]...(16) It can be rewritten as In this equation, kl is 2. Since S, 0 is a constant, it is proportional to VOt,
It can be seen that the phase is inversely proportional to So and is out of phase by (α-(θ/2)) with respect to the reference signal L signal of 3 inωt per month.

そこで、本発明では、対向電極3,4.5に前記2相信
弓、にうちの1相を共通に与え、前記共通接続点におい
て、静電容量の総和に関連した信号を検出すると共に、
前記多相信号の各1相を対向電極3.4.5に各別に与
え、前記接続点で検出された信号の多相信@成分から、
流体2の液面の傾斜方向α、及び傾斜の大きさをめ、3
方向の変位を検出するものである。
Therefore, in the present invention, one phase of the two-phase cable is commonly applied to the opposing electrodes 3 and 4.5, and a signal related to the sum of capacitance is detected at the common connection point, and a signal related to the sum of capacitance is detected.
One phase of the multiphase signal is applied to each counter electrode 3.4.5 separately, and from the multiphase signal component of the signal detected at the connection point,
Considering the direction of inclination α of the liquid surface of fluid 2 and the magnitude of the inclination, 3
It detects directional displacement.

対向電極3.4.5への前記2相信号及び多相(jS号
の与え1jは、前記多相信号を2相信号で変調した合成
信号の形で与えるようにしても、或は前記2相信りど多
相信号とを交Uに時分割的に与えるようにしても良い。
The application 1j of the two-phase signal and the multi-phase signal (jS) to the counter electrode 3.4.5 may be provided in the form of a composite signal obtained by modulating the multi-phase signal with a two-phase signal, or It is also possible to time-divisionally apply the mutually transmitted multiphase signals to the intersection U.

第5図は、本発明実施例装費において、流体2の液面の
高さ、傾斜方向、並びに傾斜角をめる為の回路構成を示
すブロック線図で、本実施例では、対向電極3,4.5
に前記多相信号を2相信号で変調した合成信号が与えら
れている。図中、第1図、第2図、及び第4図にお番)
る要素と同じ要素には同−符りが付されている。6は2
相信号発生用σJ l−ランスで、2次側コイルの中間
タップはアースされ、この中間タップとコイルの両端間
に2相イpr@v4.vsを発生ずる。
FIG. 5 is a block diagram showing a circuit configuration for determining the height, direction of inclination, and angle of inclination of the fluid 2 in the embodiment of the present invention. ,4.5
A composite signal obtained by modulating the multiphase signal with a two-phase signal is given to the multiphase signal. In the figure, the numbers in Figures 1, 2, and 4)
Elements that are the same as those in the above are marked with the same - sign. 6 is 2
In the phase signal generation σJ lance, the middle tap of the secondary coil is grounded, and two-phase IPr@v4. Generate vs.

7はトランス6から電気エネルギーの供給を受り、1%
ij’電(<Xに前記2相位号の一方の交流信号v4が
!jえられた発振回路で、出力に、前記2相位号に31
:っで変調された、この2相位号とは周波数が異なる3
相交流信号Vl、V2.V3と、これら瀉流信号と周波
数が同じ基準信号v6を発生する。この基準信りは3相
交流信号V1.V2゜V3の一つと同じであってもがま
りない。
7 receives electrical energy supply from transformer 6, and 1%
ij' electric (<
3 whose frequency is different from this two-phase phase modulated by :
Phase AC signals Vl, V2. V3 and a reference signal v6 having the same frequency as these flow signals are generated. This reference reliability is based on the three-phase AC signal V1. It doesn't matter if it is the same as one of V2°V3.

8株ミ一方の捗仮に、前記2相位号の他の1相v5がり
えうt’L タ% 準容(?i F 、対向型1!i3
,4゜5の靜、tF容量の総和イ)変化を検出ゾる為に
設(ブられている。この容n1の他方の極板は、対向型
1M 3 。
If 8 stocks are progressing on one side, the other 1 phase v5 of the above 2 phase phases will be t'L ta% quasi-volume (?i F, opposite type 1!i3
, 4°5, the total tF capacitance a) is set up to detect changes. The other plate of this capacitance n1 is of the opposing type 1M 3 .

4.5どP点において共通接続され、前記2相信口に前
記多相信号成分がili畳された形の合成(ft 、9
Jがこの11.【に得られる。この信号は増幅器9に与
えられて(へる。
4.5 Synthesis (ft, 9
J is this 11. [obtained in This signal is given to an amplifier 9.

10 GJ増幅器9からの出力が与えられた41g1J
回路で、この回路において、前記多相信号と前記2相位
号とが分離される。2相信号成分は、(11)式で示す
、対向電極3.4.5の静電容量の総和にta連した偏
り成分と、基準容量8を介し与えられた基準信号成分と
の差であって、前記静電容ffiの総和の基準値からの
変化に対応している。復調回路10では、これを1〜ラ
ンス6から与えられる2相信号v4によりサンプリング
し、波形整形、電圧測定し、液面のレベル信号v7を得
て、これを液面レベル表示部11に出力する。
10 GJ 41g1J given the output from amplifier 9
A circuit in which the multiphase signal and the two-phase signals are separated. The two-phase signal component is the difference between the bias component connected to the sum of the capacitances of the counter electrodes 3.4.5 and the reference signal component given via the reference capacitor 8, as shown in equation (11). This corresponds to a change in the total sum of the capacitance ffi from the reference value. The demodulation circuit 10 samples this using the two-phase signal v4 given from the lances 1 to 6, shapes the waveform, measures the voltage, obtains a liquid level signal v7, and outputs this to the liquid level display section 11. .

前記多相信号成分は、ll[S11回路1oにおいて、
フィルタリング、位相反転、加算等を行なうことによっ
て、(16)式で示す信号成分を得て、接設の位相差測
定回路12.及び電圧測定回路13に与えられる。位相
差測定回路12には、発振回1187 /JS t3基
準信号v6が7オトカブラ14を介し、アース電位をコ
モンとする信号として与えられる。
The polyphase signal component is ll[In the S11 circuit 1o,
By performing filtering, phase inversion, addition, etc., the signal component shown by equation (16) is obtained, and the signal component shown in equation (16) is obtained, and the signal component shown in equation (16) is obtained, and the signal component shown in the attached phase difference measurement circuit 12. and the voltage measurement circuit 13. The oscillation circuit 1187/JS t3 reference signal v6 is applied to the phase difference measuring circuit 12 via the 7-way automatic coupler 14 as a signal with the ground potential as a common signal.

この基準信号と前記多相信号成分との位相差がこの回路
で検出され、傾斜方向(8丹■8として、後段の傾斜方
向表示部15へ出力される。
The phase difference between this reference signal and the multiphase signal component is detected by this circuit, and is outputted as the tilt direction (8tan 8) to the tilt direction display section 15 at the subsequent stage.

電圧測定回路13は、前記多相信号成分の大きさを測定
りるもので・、この出力は、傾斜角補正演昨回路1Gに
りえられる。四斜角補正演算回路1Gで番、1復調回路
10からの液面のレベル信号V7に、]、つC1人力信
号に補正演算11゜尚、この補正病fIvは、傾斜角実
測電圧が液面レベルの関数で(()ること(起因するに
;差を補正する為に行なわれ?)。傾斜角補正器弁回路
16からの傾斜角信号V≦)番よ傾斜角表示部17に出
力される。
The voltage measuring circuit 13 measures the magnitude of the multiphase signal component, and its output is sent to the tilt angle correction circuit 1G. In the quadrilateral angle correction calculation circuit 1G, the liquid level level signal V7 from the demodulation circuit 10 is applied to the liquid level signal V7, and the correction calculation is made to the human power signal C1. It is a function of the level (() (due to; done to correct the difference?).The tilt angle signal from the tilt angle corrector valve circuit 16 (V≦) is output to the tilt angle display section 17. Ru.

このJ、うな出力に基づき、燃料タンク中の液浄を測定
づるような場合には、更に、これら信号に燃料タンクの
形状に応じた?iIi正m粋を施し、正しい液mをめる
。こ駕の場合の補正演算には、例えば、前n+−!燃料
タンクの形状、傾斜方向及び液面レベルと9+71¥!
との同右の関係を、コンピユーラダシュミレー932手
法を用いて予めめ、このデータを用いて補正演算する方
法等が採用される。
When measuring the liquid purity in a fuel tank based on this output, it is also possible to use these signals according to the shape of the fuel tank. Apply the correct liquid and add the correct liquid. For example, the correction calculation for the case of this size includes the previous n+-! Fuel tank shape, inclination direction and liquid level and 9+71 yen!
A method is adopted in which the same relationship as the one on the right is calculated in advance using the data of the computer using the Compute La Simillet 932 method.

第6R口よ、本発明の他の実施例装置で、前記液面のレ
ベル信号、傾斜方向信号、及び傾斜角信号をめる為の回
路構成を承りブロック線図である。
6th R port is a block diagram illustrating a circuit configuration for obtaining the liquid level signal, tilt direction signal, and tilt angle signal in another embodiment of the device of the present invention.

実施例においては、対向電極3.4.5に前記多相信号
と2相位号とが交互に時分割的に与えられている場合で
ある。図中、第5図にJ5Iノる要素と同じ要素には同
一符号をイ]シ、これらについての説明は省略する。
In the embodiment, the multiphase signal and the two-phase signal are alternately applied to the counter electrodes 3.4.5 in a time-division manner. In the figure, the same elements as those shown in FIG.

7′は発振回路で、3相交流信号V1=。7' is an oscillation circuit, which generates a three-phase AC signal V1=.

V2′、V3′とこれら交流信号と同波数が同じ基準信
号v/I′を発生づる。81.82は信号源18より与
えられた信号によって、発振回路7′からの交流信)3
V1=、V2′と2相信丹とを交Hに対向電極3,4に
与えるスイッチである。3相交流信号v3−は対向電極
4に与えられると共に、2相位号として利用されている
。S3は信号源18よれ与えられた信号によって、発振
回路7−からの交流信号V3−をインバータ19へ与え
るスイッチである。インバータ19の出力は2相位号の
他の1相として基準容量8に与えられる。
A reference signal v/I' having the same wave number as V2', V3' and these AC signals is generated. 81.82 is an AC signal from the oscillation circuit 7' by the signal given from the signal source 18)3
This is a switch that applies V1=, V2' and two-phase Shintan to the opposing electrodes 3 and 4 as alternating current. The three-phase AC signal v3- is applied to the counter electrode 4 and is used as a two-phase signal. S3 is a switch that applies an AC signal V3- from the oscillation circuit 7- to the inverter 19 in response to a signal provided by the signal source 18. The output of the inverter 19 is given to the reference capacitor 8 as the other one phase of the two-phase signal.

84は、復調回raioからの出力を、スイッチ81〜
S3に同期して、液面レベル表示部11と位相差測定回
路12及び電圧測定回路13へ選択的に与えるスイッチ
である。
84 outputs the output from the demodulator raio to the switches 81 to 84.
This is a switch that selectively applies to the liquid level display section 11, the phase difference measuring circuit 12, and the voltage measuring circuit 13 in synchronization with S3.

このような構成により、前記多相18号成分と2相位号
成分とが交互に検出され、これら信号より導かれIc流
体のレベル信@V7.傾斜方向信号V 8 ’+ II
rj斜角1.′i弓■9を、)^当な信号保持手段を介
し、渋面レベル表示部11.傾斜方向表示部15 * 
I!’i斜角度表示部17に出力すれば、第5図に示し
l、実施例の場合と同様、3方向の変((Zが検出出来
る。
With such a configuration, the multiphase No. 18 component and the two-phase phase component are detected alternately, and the Ic fluid level signal @V7. is derived from these signals. Tilt direction signal V8'+II
rj oblique angle 1. 'i bow■9, )^ Via appropriate signal holding means, frown level display section 11. Tilt direction display section 15 *
I! If output to the inclination angle display section 17, changes in three directions ((Z) can be detected as shown in FIG. 5, as in the embodiment.

く効果〉 本発明によれば、3方向の変位を1木のプローブで検出
出来る為、検出部分を簡単、11つ安価に構成出来る。
Effects> According to the present invention, since displacement in three directions can be detected with one probe, the number of detection parts can be easily configured at a low cost.

更に、従来、複数のプローブを用いた場合、10−ブが
剛れていたり、配信の仕方によっては、3方向の変位(
3号を得るのに、その都度複雑<41算をしなければな
らなかったが、本発明では、このような複雑な81算は
不要となる。
Furthermore, conventionally, when multiple probes are used, the 10-beam is stiff, and depending on the delivery method, displacement in three directions (
In order to obtain No. 3, it was necessary to perform a complicated <41 calculation each time, but with the present invention, such a complicated calculation of 81 is no longer necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図番よ一木発明実施例装首にJ5G]る検出部分の
平面図、第2図は、第1図で示mA−A面で検出部分を
切断した断面図、第3図は、流体2に浸漬された電極の
状態を電極部分を展開して示したl111明図、第4図
は、本発明実施例装置にお【ノる対向電極の接続図、t
J5図及び第6図は、本発明実施例装置における、流体
2のレベル信号、傾斜信号、並びに傾斜角信号をめる為
の回路構成を承りブロック線図である。 1・・・容器、2・・・誘電性流体、3,4.5・・・
対向電極、6・・・トランス、7,7′・・・発振回路
、8・・・基準容量、10・・・復調回路、12・・・
位相差測定回路、13・・・電圧測定回路、19・・・
インバータ、81〜S4・・・スイッチ。 M1図 箪2図 り 第3図 【−
Figure 1 is a plan view of the detection part of the neck strap according to the embodiment of the invention, Figure 2 is a cross-sectional view of the detection part taken along the plane mA-A shown in Figure 1, and Figure 3 is Figure 4 is a diagram showing the state of the electrode immersed in the fluid 2 with the electrode part expanded, and Figure 4 is a connection diagram of the counter electrode of the device according to the present invention.
FIG. J5 and FIG. 6 are block diagrams showing the circuit configuration for receiving the level signal, tilt signal, and tilt angle signal of the fluid 2 in the apparatus according to the embodiment of the present invention. 1... Container, 2... Dielectric fluid, 3, 4.5...
Counter electrode, 6...Transformer, 7, 7'...Oscillation circuit, 8...Reference capacitance, 10...Demodulation circuit, 12...
Phase difference measuring circuit, 13... Voltage measuring circuit, 19...
Inverter, 81-S4... switch. M1 figure 2 figure 3 [-

Claims (1)

【特許請求の範囲】[Claims] 同一161栢、同一ギャップを有する三つ以上の対向電
極を同一円周上に等間隔に配置したプC1−ブを誘ff
N!I流体に部分的に浸漬し、前記対向電極の一方の極
板に、夫々2相信号のうちの1相で変調され、この信す
とは周波数が異なる3相以上の多相信号の各1相を与え
、或は、2相4rJ号のうちの1相と多相信号とを交互
に与えて、前記対向電極の他方の横板の共通接続点に発
生した信号型11のうち、前記2相信号成分を、前記2
相信号の他の1相をj、4準容量に与えて得られた電圧
と比較し、#2対向電極の静電容量の総和の変化に対応
した電圧を141で、これより前記流体の液面レベルに
関連した信号を得ると共に、前記共通接続点に発生した
信号電圧のうち、前記多相信号成分につき、その人6さ
、並びにこの成分の基準信号からの位相差を検出して前
記流体の液面の傾斜方向、並びに傾斜角に1I131L
、た信号を得るようにした容量式3式%
The same 161 layer and three or more opposing electrodes with the same gap are arranged at equal intervals on the same circumference.
N! Partially immersed in the I fluid, each one of three or more multiphase signals modulated by one phase of the two-phase signals and having a different frequency from the two-phase signal is applied to one plate of the counter electrode. phase, or by alternately applying one phase of the two-phase 4rJ signal and a multi-phase signal, the signal type 11 generated at the common connection point of the other horizontal plate of the counter electrode is The phase signal component is
The other phase of the phase signal is compared with the voltage obtained by applying it to j, 4 quasi-capacitance, and the voltage corresponding to the change in the total capacitance of the #2 counter electrode is determined at 141. In addition to obtaining a signal related to the surface level, the level of the multiphase signal component of the signal voltage generated at the common connection point is detected, as well as the phase difference of this component from the reference signal. 1I131L for the direction and angle of inclination of the liquid level.
, capacitive type 3 formula to obtain a signal%
JP58249163A 1983-12-29 1983-12-29 Capacitance type three-way displacement detector Pending JPS60143722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58249163A JPS60143722A (en) 1983-12-29 1983-12-29 Capacitance type three-way displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58249163A JPS60143722A (en) 1983-12-29 1983-12-29 Capacitance type three-way displacement detector

Publications (1)

Publication Number Publication Date
JPS60143722A true JPS60143722A (en) 1985-07-30

Family

ID=17188838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58249163A Pending JPS60143722A (en) 1983-12-29 1983-12-29 Capacitance type three-way displacement detector

Country Status (1)

Country Link
JP (1) JPS60143722A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204114A (en) * 1986-03-05 1987-09-08 Yokogawa Electric Corp Inclination measurement system for gas holder piston
JPS63302302A (en) * 1987-06-02 1988-12-09 Agency Of Ind Science & Technol Two-dimensional tilt angle sensor
JPH0377022A (en) * 1989-08-21 1991-04-02 Nippondenso Co Ltd Liquid level detecting device
KR100794945B1 (en) 2003-12-22 2008-01-15 알프스 덴키 가부시키가이샤 Liquid surface level sensor
JP2012220220A (en) * 2011-04-04 2012-11-12 Toyota Motor Corp Liquid level detection device
JP2013193319A (en) * 2012-03-19 2013-09-30 Ulvac Japan Ltd Liquid amount detecting device, and liquid supply device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204114A (en) * 1986-03-05 1987-09-08 Yokogawa Electric Corp Inclination measurement system for gas holder piston
JPS63302302A (en) * 1987-06-02 1988-12-09 Agency Of Ind Science & Technol Two-dimensional tilt angle sensor
JPH0377022A (en) * 1989-08-21 1991-04-02 Nippondenso Co Ltd Liquid level detecting device
KR100794945B1 (en) 2003-12-22 2008-01-15 알프스 덴키 가부시키가이샤 Liquid surface level sensor
JP2012220220A (en) * 2011-04-04 2012-11-12 Toyota Motor Corp Liquid level detection device
JP2013193319A (en) * 2012-03-19 2013-09-30 Ulvac Japan Ltd Liquid amount detecting device, and liquid supply device

Similar Documents

Publication Publication Date Title
US5479104A (en) Electrical sensor for determining the moisture content of soil
US20180245956A1 (en) Electromagnetic flow meter
US7772854B2 (en) High-conductivity contacting-type conductivity measurement
US8913033B2 (en) Projected capacitive touch sensor circuit
JPS6089717A (en) Capacitive filling-level measuring device
CN105378492A (en) Apparatus and method for measuring electrical properties of matter
JP3158063B2 (en) Non-contact voltage measurement method and device
JP2003028900A (en) Non-contact voltage measurement method and apparatus
JPS632064B2 (en)
US4846954A (en) Inclination sensor
JPS60143722A (en) Capacitance type three-way displacement detector
CN111998841A (en) Hemisphere harmonic oscillator dabber vibration detection circuitry and device
JPH0476408B2 (en)
NO790298L (en) MEALEKRETS.
JP7009025B2 (en) Voltage measuring device, voltage measuring method
US6753678B2 (en) Voltage detector with improved accuracy
US20180246050A1 (en) Electrical conductivity meter
JP2002131347A (en) Grounding resistance measurement device and its method
JP2802322B2 (en) Impedance measuring device
JPH06222032A (en) Capacitive alcohol concentration measuring equipment
CN103197153B (en) A kind of capacitor and inductor parameter measurement circuit based on vector triangle and measuring method thereof
RU2491517C1 (en) Method to measure liquid level in case of reservoir position change and device for its realisation
US20090108853A1 (en) Measurement apparatus and measurement method
JPS61266965A (en) Impedance measuring instrument
JPS60138415A (en) Capacity type clinometer