JPS62255868A - Multiple-kind cell separation type cell sorter - Google Patents

Multiple-kind cell separation type cell sorter

Info

Publication number
JPS62255868A
JPS62255868A JP61098691A JP9869186A JPS62255868A JP S62255868 A JPS62255868 A JP S62255868A JP 61098691 A JP61098691 A JP 61098691A JP 9869186 A JP9869186 A JP 9869186A JP S62255868 A JPS62255868 A JP S62255868A
Authority
JP
Japan
Prior art keywords
cells
cell
different
droplets
types
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61098691A
Other languages
Japanese (ja)
Inventor
Shinji Takahashi
慎二 高橋
Shunichi Yoshimura
俊一 吉村
Kiyoshi Yajima
矢島 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Japan Spectroscopic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Spectroscopic Co Ltd filed Critical Japan Spectroscopic Co Ltd
Priority to JP61098691A priority Critical patent/JPS62255868A/en
Publication of JPS62255868A publication Critical patent/JPS62255868A/en
Pending legal-status Critical Current

Links

Classifications

    • G01N15/149

Abstract

PURPOSE:To enable the sepn. of plural cells with a cell sorter and the effective utilization of a sample and to shorten the time for measurement by forming a voltage waveform for electrifying liquid drops to a staircase form and impressing the voltages of plural kinds of waveforms which are nearly analogous in the waveform and are different in levels to the different cells, thereby electrifying the cells. CONSTITUTION:A sample liquid and sheath liquid are conducted from vessels 5, 6 to a jet nozzle 1. Microoscillation is impressed to the nozzle 1 and ejection flow 7 is separated to the liquid drops after the flow passes the irradiation point of laser light 10. The voltages of the plural waveforms which have the staircase shape nearly analogous with each other and are different in levels are impressed from a sepn. controller 8 to the different cells in the liquid drops. The electrified liquid drops pass the space between polarizing plates 16. The liquid drops contg. the difference cells enter different test tubes 17, by which the cells are dispensed.

Description

【発明の詳細な説明】 衾」Lり」L伯 (産業上の利用分野) 本発明は細胞等微小粒子の光学特性を分析し。[Detailed description of the invention] 衾 "L ri" L Haku (Industrial application field) The present invention analyzes the optical properties of microparticles such as cells.

その特性に応じて細胞を振り分は分取するセルソータに
関し、特に2種類より多い細胞を同時に分離でき、サン
プルの有効利用と測定時間の短縮を可能とする多種類細
胞分離形セルソータに関するものである。
This invention relates to a cell sorter that sorts cells according to their characteristics, and in particular to a multi-type cell sorter that can separate more than two types of cells at the same time, making effective use of samples and shortening measurement time. .

(従来技術) まずセルソータの全体構成を、第1図に基き概略的に説
明する。lはジェットノズルで、サンプル液流入管2と
シース液流入管3を備え、内部にシースフロー(鞘流)
形成室4を有する。サンプル液とシース液はそれぞれの
容器5.6から8管2.3を介してジェットノズル1内
に導かれ、シースフロー形成室4内でサンプル液を中心
に周囲をシース液で取り囲んだ2重の形のシースフロー
が形成されて、下方のノズル先端から噴出流7として噴
出される。
(Prior Art) First, the overall structure of a cell sorter will be schematically explained based on FIG. 1. 1 is a jet nozzle, which is equipped with a sample liquid inflow pipe 2 and a sheath liquid inflow pipe 3, and has a sheath flow inside.
It has a forming chamber 4. The sample liquid and sheath liquid are guided into the jet nozzle 1 through the respective containers 5.6 to 8 tubes 2.3, and in the sheath flow forming chamber 4, a double layer is formed with the sample liquid in the center and the sheath liquid surrounding it. A sheath flow in the form of is formed and is ejected from the lower nozzle tip as a jet stream 7.

一方、光源9から出たレーザ光10は、照射光学系11
を経て噴出流7へ直角にぶつかる。噴出流から生じた散
乱光、けい光等は、集光系12.12“を経て検出器1
3.13′に入り、そこで光信号から電気信号に変換さ
れる。検出器13.13°からの電気信号は、増巾器1
4.14゛で増[lJされた後電気処理系15で処理さ
れ、噴出流に含まれている1個1個の細胞の光学特性が
分析される。尚図中、18は泡抜き管、20は泡抜き用
のバルブである。
On the other hand, the laser beam 10 emitted from the light source 9 is transmitted to the irradiation optical system 11.
and collides with jet stream 7 at right angles. Scattered light, fluorescent light, etc. generated from the jet stream are sent to the detector 1 through a condensing system 12.
3.13', where the optical signal is converted into an electrical signal. The electrical signal from the detector 13.13° is transmitted to the amplifier 1
After being increased by 4.14 liters, it is processed by an electrical processing system 15, and the optical characteristics of each cell contained in the jet stream are analyzed. In the figure, 18 is a bubble removal pipe, and 20 is a bubble removal valve.

」二足において、ジェットノズルlには微小振動が加え
られ、噴出流7はレーザ光による照射点を過ぎた後図示
のごとく液滴に分離する。上述した個々の細胞の分析に
基き、液滴形成点に、必要な細胞が来た時にのみ分離コ
ントローラ8から液滴に電圧を印加し、細胞を含んだ液
滴にプラス又はマイナスの電荷を与える。こうして帯電
された液滴は高電圧(例えば2000V)を印加した偏
向板16の間を通過することで左又は右に偏向され、所
望の細胞を含む液滴がそれぞれ異なった受は試験管17
に入り細胞が分取される。
At two points, minute vibrations are applied to the jet nozzle 1, and the jet stream 7 separates into droplets as shown in the figure after passing the point irradiated by the laser beam. Based on the above-mentioned analysis of individual cells, a voltage is applied to the droplet from the separation controller 8 only when a necessary cell arrives at the droplet formation point, giving a positive or negative charge to the droplet containing the cell. . The thus charged droplets are deflected to the left or right by passing between the deflection plates 16 to which a high voltage (for example, 2000 V) is applied, and the droplets containing the desired cells are placed in different test tubes 17.
cells are sorted.

このようなセルソータは、分析の結果判明した光学4ν
性に基き高速で細胞を分離採取できるために、細胞の一
般分析、DNAΔIII定、染色体A11l定、細胞融
合細胞等に関する諸研究、細胞診(血球検査)やカン検
診等の病状診断、遺伝子生物学の分野等で[[1広く利
用されている。
This type of cell sorter is based on the optical 4ν
Because cells can be separated and collected at high speed based on sex, we are able to perform general cell analysis, DNA ΔIII determination, chromosome A111 determination, various research on cell fusion cells, etc., medical condition diagnosis such as cytology (blood cell test) and cancer screening, and gene biology. It is widely used in the fields of [[1].

(発明が解決しようとする問題点) ところで上記のごときセルソータにおいては、次のよう
な問題がある。
(Problems to be Solved by the Invention) The cell sorter described above has the following problems.

(1)任意の細胞を分離する場合ノズル全体に超音波振
動をかけてジェット流を液滴化するが。
(1) When separating arbitrary cells, the jet stream is turned into droplets by applying ultrasonic vibration to the entire nozzle.

超音波振動をかけられたジェット流が液滴になるまでに
はノズルの先端より数mm必要であり、そのためジェッ
ト流中のある細胞がレーザ光を受けて信号を出してから
、その細胞を含むジェット流の一部分が液滴になるまで
には時間の遅れが生じる。そしてこの遅れ時間を設定し
、分離したい細胞を含んだ液滴にのみ又はその細胞を含
む数滴にプラスまたはマイナスのチャージをかけ、この
帯電した液滴が高圧に印加された偏向板間を通り抜ける
ことによって静電気的に分離がなされるが、ジェット流
の流速は微妙なずれが生じるため、それぞれの細胞によ
って遅れ時間が若干異る。そこで遅れ時間のずれが生じ
ても目的の細胞を確実に回収できるように、一般に細胞
が入っていると思われる1滴のみならずその前後にも同
様にチャージをかけている。つまり、細胞の分離純度を
上げるため、目的の細胞が含まれている液滴の能吏に1
11後1滴合計3滴に、第2a図に示すような同一パル
スでチャージがかれられている。尚i2b図は実際のチ
ャージ波形である。しかし、それぞれの液滴が1いに影
響しあうため実際には同一のチャージ状態にならず、そ
の結果細胞の偏向流線は第2C図中A、Bで示すように
分かれてしまう。
It takes a few millimeters from the tip of the nozzle for the jet stream subjected to ultrasonic vibration to turn into droplets, so a certain cell in the jet stream receives the laser beam and emits a signal before it becomes a droplet. There is a time delay before a portion of the jet stream becomes droplets. Then, by setting this delay time, a positive or negative charge is applied only to the droplet containing the cell to be separated, or to several droplets containing the cell, and this charged droplet passes between the deflection plates applied with high pressure. Electrostatic separation is achieved by this, but since there is a slight difference in the flow velocity of the jet flow, the delay time differs slightly depending on each cell. Therefore, in order to ensure that the target cells can be recovered even if there is a delay time difference, charging is applied not only to the droplet that is generally thought to contain cells, but also to the parts before and after the droplet. In other words, in order to increase the separation purity of cells, one
One drop after 11, a total of three drops, are charged with the same pulse as shown in FIG. 2a. Note that the i2b diagram is an actual charge waveform. However, since each droplet influences each other, the charge state is not actually the same, and as a result, the deflection streamlines of the cells are separated as shown by A and B in FIG. 2C.

(2)またこの方法を用いるとジェット流から左右2木
に分かれたFL線として2種類の細胞を同時に分離でき
るが、数種類の帯電波形を用いて2種類より多い細胞を
分離しようとすると、上記のごとく目的の細胞を中心に
3滴ずつ等しい電圧で帯電しても、実際にはそれぞれの
相互作用により3滴全てが同等の電荷をもたず、高電圧
の偏向板間の通過後は1本の流線となりにくいことから
、他種類の細胞を同時分離すると隣りの流線同志が混じ
り合い、他の細胞が混入する結果分離純度が低下してし
まう。
(2) Also, using this method, two types of cells can be simultaneously separated from the jet stream by using the FL line divided into two left and right trees, but if you try to separate more than two types of cells using several types of charged waveforms, the above Even if three droplets are charged with the same voltage around the target cell, in reality, all three droplets do not have the same charge due to their interactions, and after passing between the high-voltage deflection plates, the droplets become 1. Because it is difficult to form streamlines, if other types of cells are separated at the same time, adjacent streamlines will mix and other cells will be mixed in, resulting in a decrease in separation purity.

(3)多種類の細胞を分離する場合、各2種類の細胞分
離だけでは数回の繰り返し操作が必要となり、その分サ
ンプルの損失が大きいと共に、測定分析時間も長くなる
(3) When separating many types of cells, it is necessary to repeat the operation several times to separate only two types of cells each, which increases sample loss and increases measurement and analysis time.

本出願人は特に上記第1の点に着目し、帯電液滴相互間
の影響を補償して3t4の流線を1本とするため、第3
a図に示すように階段状の波形を印加することを提案し
た(特願昭第60−号)、第3b図は実際のチャージ波
形で、このような波形の電圧を印加すれば3滴の流線は
第3C図に示すごとく1本にまとまって安定する。また
、同一種類の細胞に関する3滴のIi線がまとまれば、
隣りの流線同志が混じり合う可能性は避けられ、多種類
細胞の同時分離が可能となり、その結果上記第2および
第3の点も解決される。
The present applicant particularly focused on the first point, and in order to compensate for the influence between charged droplets and reduce the number of 3t4 streamlines to one, the third
It was proposed to apply a step-like waveform as shown in Figure A (Patent Application No. 60-1989). Figure 3B shows the actual charging waveform, and if a voltage with such a waveform is applied, three droplets will be charged. The streamlines become stable as they come together as one as shown in Figure 3C. Also, if three drops of Ii lines related to the same type of cell are grouped together,
The possibility of mixing of adjacent streamlines is avoided, allowing simultaneous separation of many types of cells, and as a result, the second and third points mentioned above are also solved.

従って本発明の目的は、上記の出願をさらに発展させ、
セルソータにおいて2種類より多い細胞を同時に分離可
能とし、サンプルの有効利用と測定時間の短縮を可能と
する多種類細胞分離形セルソータを提供することにある
The object of the present invention is therefore to further develop the above-mentioned application and to
It is an object of the present invention to provide a cell sorter for separating multiple types of cells, which enables the cell sorter to separate more than two types of cells at the same time, and enables effective use of samples and shortening of measurement time.

i乱立虜羞 (問題点を解決する手段) 上記の目的を達成するため、本発明による多種類細胞分
離形セルソータは、サンプル懸濁液をシース液で包み込
むような形でジェットノズルから噴出し、この噴出流に
レーザ光を照射し、サンプルがレーザ光を通過するとき
に出る散乱光、けい光等を測定してサンプル中の1個1
個の細胞を分析すると共に、噴出流全体に振動をかけて
液滴化し、上記測定分析に基いて液滴形成点で液滴に電
荷を与えて帯電し、高電圧を印加した偏向板によって各
液滴を偏向させて分取するセルソータにおいて、液滴を
帯電させるための正または負電圧の波形を階段状にする
と共に、相互にほぼ相似の階段状の波形を有するがそれ
ぞれレベルの異る数種類の波形の゛電圧を異った細胞に
印加して帯電させ2種類より多い細胞を同時に分取する
ことを特徴とするものである。
(Means for solving the problem) In order to achieve the above object, the cell sorter for separating multiple types of cells according to the present invention sprays a sample suspension from a jet nozzle so as to surround it with a sheath liquid, This jet stream is irradiated with a laser beam, and the scattered light, fluorescence, etc. emitted when the sample passes through the laser beam is measured.
In addition to analyzing individual cells, the entire jet stream is vibrated to form droplets, and based on the above measurement analysis, the droplets are charged at the droplet formation point, and each droplet is charged by a deflection plate to which a high voltage is applied. In a cell sorter that deflects and sorts droplets, the waveform of the positive or negative voltage used to charge the droplets is stepped, and there are several types of stepwise waveforms that are almost similar to each other but each with a different level. This method is characterized by applying a voltage having a waveform of 1 to different cells to charge them and sorting out more than two types of cells at the same time.

すなわち本発明は、液滴を帯電する電圧の波形を段階状
とし偏向される帯電液滴の流線を最大限1木化するとと
もに、はぼ相似の波形だがレベルの異る電圧を性質の異
った細胞に印加して同じ極性の帯電液滴の偏向角度を異
らせることによって多種類細胞を高純度で同時分離を可
能とする。
In other words, the present invention makes the waveform of the voltage that charges the droplet step-wise so that the streamline of the deflected charged droplet can be made into a single tree as much as possible. By applying this to charged cells and changing the deflection angle of charged droplets of the same polarity, it is possible to simultaneously separate many types of cells with high purity.

(実施例) 以下、本発明の実施例を第4及び5図を参照して詳しく
説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to FIGS. 4 and 5.

ここでは第4a、b図に示すような2つの帯電電圧Vl
、V2をそれぞれプラスとマイナスの極性で電圧を液滴
に印加するものとする。帯電電圧■1、V2は図示のご
とく各々段階状の波形を持ち、その波形形状はほぼ相似
だが相互にレベルが異る。すなわち−例として、vl、
v2はそれぞれ粛続時間が90g5ecで、3つの領域
(各30psec)に分割され、そのレベルが順次上昇
し−(いる(Vlは80V−102V−110、V2t
*40V−51V−55V)、尚図中、左側に示したの
は比較のための従来の対応する帯電波形である。
Here, two charging voltages Vl as shown in FIGS. 4a and 4b are used.
, V2 with positive and negative polarities, respectively, are applied to the droplet. As shown in the figure, the charged voltages (1) and (V2) each have a step-like waveform, and the waveform shapes are almost similar, but the levels are different from each other. i.e. - as an example, vl,
V2 is divided into three regions (30 psec each) with a duration of 90g5ec, and the level increases sequentially (Vl is 80V-102V-110, V2t
*40V-51V-55V), and what is shown on the left side of the figure is a conventional corresponding charging waveform for comparison.

このような階段状の波形電圧を液滴に印加すると、帯電
液滴相互間の影響が補償されて偏向状態が安定し各帯電
電圧に対応する3滴の流線が1本状にまとまる。この点
の更に詳しい説明については、前出の特許出願を参照さ
れたい、その特許出願では第3図のように2段状の波形
を用いているが、本発明では多種類の細胞分離という目
的上隣り合う流線が混じり合う可能性を最大限避けるた
め、3段状の波形を用いできるだけ厳密に1木化される
ようにする。尚、上記の数値は任意のもので、勿論状況
に応じて変更可能である。
When such a stepped waveform voltage is applied to the droplets, the influence between the charged droplets is compensated, the deflection state is stabilized, and the streamlines of the three droplets corresponding to each charging voltage are brought together into one line. For a more detailed explanation of this point, please refer to the above-mentioned patent application. In that patent application, a two-stage waveform is used as shown in FIG. In order to avoid as much as possible the possibility that the upper adjacent streamlines will mix together, a three-stage waveform is used to ensure that they are made into one tree as strictly as possible. Note that the above numerical values are arbitrary and can of course be changed depending on the situation.

光学測定の分析によって得られた細胞の性質に関する情
報に基き、分取したい細胞を含むジェット流が液滴化さ
れる地点で+v1、−Vl、+V2、−V2の帯電電圧
を順次印加したとすると゛、第5図に示すように液滴は
各々3滴20 a −dずつ偏向されてそれぞれ1本の
流線をたどり、対応する受は試験Ir′?17 a −
dに分取される。このように、分離したい細胞の各種類
について液滴帯電電圧の極性とレベルを順次具らせて設
定すれば各々の細胞は左右いずれかの側で独自の偏向距
離だけ偏向されて受は試験管に至り、目的とする細胞を
4種類間時に分離できる0本実施例ではvlとv2を用
いたため4種類の細胞を分離可能だが、されに別レベル
のv3を用いれば6種類の細胞を分離でき、その数は状
況に応じて任意に設定可能である。尚図中、21は噴出
ジェット流7の真下に位置したドレンである。
Based on the information regarding the properties of the cells obtained through optical measurement analysis, it is assumed that charging voltages of +v1, -Vl, +V2, and -V2 are sequentially applied at the point where the jet flow containing the cells to be sorted is turned into droplets. Then, as shown in FIG. 5, the droplets are each deflected by three drops 20 a - d to follow one streamline, and the corresponding receivers are in the test Ir'? 17 a-
d. In this way, by sequentially setting the polarity and level of the droplet charging voltage for each type of cell you want to separate, each cell will be deflected by a unique deflection distance on either side of the test tube. In this example, since vl and v2 were used, it was possible to separate four types of cells, but if v3, which is at a different level, was used, six types of cells could be separated. , the number can be arbitrarily set depending on the situation. In the figure, 21 is a drain located directly below the jet stream 7.

(発明の効果) 以−1二述べたように本発明によれば、液滴を帯電する
′電圧の波形を階段状とし偏向される帯電液滴の流線を
最大限1木化するとともに、はぼ相似の波形だがレベル
の異る電圧を性質の異った細胞に印加して同じ極性の帯
電液滴の偏向角度を異らせることによって多種類細胞を
高純度で同時分離を可能とするセルジータが得られる。
(Effects of the Invention) As described above, according to the present invention, the waveform of the voltage used to charge the droplet is step-shaped, and the streamline of the deflected charged droplet is made into one tree as much as possible. By applying voltages with similar waveforms but different levels to cells with different properties and varying the deflection angle of charged droplets with the same polarity, it is possible to simultaneously separate many types of cells with high purity. You will get Sergita.

さらにこの結果サンプルの有効利用及び作業時間の短縮
という効果も得られる。例えば数種類のポピユレーショ
ンを持つ細胞集団から4種類の細胞を各々分離する場合
の従来法との比較を第6図に示す。第6a図が従来法、
第6b図が本発明の場合で、図中aは1回の分離のため
の条件設定時間、bは2種類の細胞分離に要する時間を
夫々表わしている。第6図から明らかなように、従来法
では1回の操作につき2種類の細胞しか分離できないた
め、目的とする4種類のうちまず最初の2種類の細胞を
blで分離した後、さらに残りの2種類をb2で分離す
るという操作を行わねばならず、これら2回の操作でそ
れぞれサンプルを使うためサンプルつまり細胞を無駄に
損失する。これに対し本発明では、4種類の細胞を−サ
ンプルから1回で分離できるから、細胞の損失を最小に
押えサンプルを有効に利用できる。また分離作業に要す
る時間を比較すると、どちらも分離のみに要する時間は
同じであるが(bl+b2=2b)、受は試験管の取り
替え及び分離条件の再設定にっいてみると、従来法では
分離操作のつど必質であるのに対しくalとa2)、本
発明では最初のaの1回のみであるからその分必要な作
業時間が短縮される。
Furthermore, as a result, it is possible to effectively utilize samples and shorten working time. For example, FIG. 6 shows a comparison with the conventional method when four types of cells are separated from a population of cells having several types of populations. Figure 6a shows the conventional method;
Figure 6b shows the case of the present invention, in which a represents the time required to set conditions for one separation, and b represents the time required for two types of cell separation. As is clear from Figure 6, in the conventional method, only two types of cells can be separated in one operation, so after separating the first two types of cells out of the four target types with BL, the remaining It is necessary to perform an operation to separate the two types using b2, and since samples are used for each of these two operations, samples, that is, cells, are wasted. In contrast, in the present invention, four types of cells can be separated from a sample in one go, so cell loss can be minimized and the sample can be used effectively. Also, when comparing the time required for separation work, the time required for separation alone is the same in both cases (bl + b2 = 2b), but when it comes to replacing test tubes and resetting separation conditions, the conventional method Al and a2) are essential for each operation, but in the present invention, the first step a is only performed once, so the required work time is shortened accordingly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はセルソータの全体構成を示すブロック図、第2
a、b及び0図はそれぞれ従来法における印加電圧の波
形、帯電電圧の波形及び帯電液滴の流線を示す図、第3
a、b及び0図はそれぞれ改良法における印加電圧の波
形、帯電電圧の波形及び帯電液滴の流線を示す図、第4
a、b図は木で用いる異った帯電電圧の波形を示す図、
第5図は本発明による帯電液滴の分取を説明するための
図、第6a、b図は従来法と本発明における測定の作業
工程を説明するための図である。 l・・・ジェットノズル、  203.サンプル液流入
管、  306.シース液流入管、  7.。 、噴出流、  io、、、レーザ光、  16.、。 偏向板、17a−d、、、受は試験管、 20a〜d1
2.液滴、Ml、V2.、、帯電電圧。 皓 宇  l  口 (り 第2図 (a) (b) (C) 八B 第  3  図 (α) (b) (c) 第   4   rA (a) (b) 第   5   図
Figure 1 is a block diagram showing the overall configuration of the cell sorter, Figure 2 is a block diagram showing the overall configuration of the cell sorter.
Figures a, b, and 0 are diagrams showing the waveform of applied voltage, the waveform of charging voltage, and the streamline of charged droplets in the conventional method, respectively.
Figures a, b, and 0 are diagrams showing the waveform of applied voltage, the waveform of charging voltage, and the streamline of charged droplets in the improved method, respectively.
Figures a and b are diagrams showing waveforms of different charging voltages used on wood;
FIG. 5 is a diagram for explaining the separation of charged droplets according to the present invention, and FIGS. 6a and 6b are diagrams for explaining the measurement work steps in the conventional method and the present invention. l...Jet nozzle, 203. Sample liquid inflow tube, 306. sheath liquid inflow pipe, 7. . , jet flow, io, , laser beam, 16. ,. Deflection plates, 17a-d,... test tubes, 20a-d1
2. Droplet, Ml, V2. ,, charging voltage. Figure 2 (a) (b) (C) Figure 3 (α) (b) (c) Figure 4 (a) (b) Figure 5

Claims (1)

【特許請求の範囲】[Claims] サンプル懸濁液をシース液で包み込むような形でジェッ
トノズルから噴出し、この噴出流にレーザ光を照射し、
サンプルがレーザ光を通過するときに出る散乱光、けい
光等を測定してサンプル中の1個1個の細胞を分析する
と共に、噴出流全体に振動をかけて液滴化し、上記測定
分析に基いて液滴形成点で液滴に電荷を与えて帯電し、
高電圧を印加した偏向板の間に通し各帯電液滴を偏向さ
せて分取するセルソータにおいて、液滴を帯電させるた
めの正または負電圧の波形を階段状にすると共に、相互
にほぼ相似の階段状の波形を有するがそれぞれレベルの
異る数種類の波形の電圧を異った細胞に印加して帯電さ
せ、2種類より多い細胞を同時に分取することを特徴と
する多種類細胞分離形セルソータ。
The sample suspension is ejected from a jet nozzle in a way that it is surrounded by a sheath liquid, and this ejected flow is irradiated with a laser beam.
Each cell in the sample is analyzed by measuring the scattered light, fluorescence, etc. emitted when the sample passes through the laser beam, and the entire jet stream is vibrated to form droplets, which can be used for the above measurement analysis. Based on the droplet formation point, the droplet is charged with an electric charge,
In a cell sorter that deflects and separates each charged droplet by passing it between deflection plates to which a high voltage is applied, the waveform of the positive or negative voltage for charging the droplets is made step-like, and the waveforms are almost similar to each other. A cell sorter for separating multiple types of cells, characterized in that voltages of several types of waveforms having different levels are applied to different cells to charge them, and more than two types of cells can be sorted at the same time.
JP61098691A 1986-04-28 1986-04-28 Multiple-kind cell separation type cell sorter Pending JPS62255868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61098691A JPS62255868A (en) 1986-04-28 1986-04-28 Multiple-kind cell separation type cell sorter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61098691A JPS62255868A (en) 1986-04-28 1986-04-28 Multiple-kind cell separation type cell sorter

Publications (1)

Publication Number Publication Date
JPS62255868A true JPS62255868A (en) 1987-11-07

Family

ID=14226531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61098691A Pending JPS62255868A (en) 1986-04-28 1986-04-28 Multiple-kind cell separation type cell sorter

Country Status (1)

Country Link
JP (1) JPS62255868A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100938926B1 (en) 2008-03-05 2010-01-27 재단법인서울대학교산학협력재단 Cell Sorting Apparatus using Ultrasonic Wave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100938926B1 (en) 2008-03-05 2010-01-27 재단법인서울대학교산학협력재단 Cell Sorting Apparatus using Ultrasonic Wave

Similar Documents

Publication Publication Date Title
US10197493B2 (en) Multiple flow channel particle analysis system
EP2258172B1 (en) Flow cytometer for diffentiating x-chromosome bearing and y-chromosome bearing populations of spermatozoa
EP3343200B1 (en) Image processing device, microparticle separation device, and image processing method
EP2671065B1 (en) Particle sorting apparatus and method
JP3830904B2 (en) Microfluidic device and method for sorting particles in a fluid
US8613890B2 (en) Microparticle sorting apparatus, flow cytometer using the same and microparticle sorting method
JPS61137062A (en) Method and device for classifying fine particle
WO2011028818A2 (en) High throughput multichannel reader and uses thereof
US11733152B2 (en) Microfluidic system with combined electrical and optical detection for high accuracy particle sorting and methods thereof
WO2006037561A1 (en) Selection of particles in laminar flow
Johnson et al. Fluorescence activated cell sorting: a window on the stem cell
WO2022014643A1 (en) Fine-particle sorting apparatus, fine-particle sorting method, program, and fine particle-sorting system
JPS62255868A (en) Multiple-kind cell separation type cell sorter
Naeem et al. Fluorescence activated cell sorting (FACS): an advanced cell sorting technique
JPH04110639A (en) Particle fractionating apparatus
JPH058515Y2 (en)
Hoffman et al. Cell separation using flow cytometric cell sorting
Greig et al. Genomic, genetic and physiological effects of bio-electrospraying on live cells of the model yeast Saccharomyces cerevisiae
JPS62116259A (en) Method for correcting deflection angle of liquid droplet of cell sorter
RU1778631C (en) Device for multifraction sorting of cells, chromosomes and microparticles
US11953419B2 (en) Apparatus for monitoring bioaerosols using machine learning and method thereof
US20230294109A1 (en) Method and fluidic microsystem for the dielectrophoretic manipulation of suspended particles
Radbruch FLUORESCENCE-ACTIVATED CELL SORTING: ISOLATION OF GENETIC VARIANTS FOR THE ANALYSIS OF PROTEIN STRUCTURE AND FUNCTION
JPH01291781A (en) Cell grinding and selecting device and selective gene introducing device
JPH03125944A (en) Particle classifying apparatus