JPS62255506A - Combined type geothermal power plant - Google Patents

Combined type geothermal power plant

Info

Publication number
JPS62255506A
JPS62255506A JP9884086A JP9884086A JPS62255506A JP S62255506 A JPS62255506 A JP S62255506A JP 9884086 A JP9884086 A JP 9884086A JP 9884086 A JP9884086 A JP 9884086A JP S62255506 A JPS62255506 A JP S62255506A
Authority
JP
Japan
Prior art keywords
steam
pressure steam
low
pressure
superheated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9884086A
Other languages
Japanese (ja)
Inventor
Keijiro Yamaoka
山岡 敬次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP9884086A priority Critical patent/JPS62255506A/en
Publication of JPS62255506A publication Critical patent/JPS62255506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve the heat efficiency and reduce the wetness at the outlet side of a steam turbine, by overheating a high-pressure saturated steam and a hot water to be discharged from a steam separator, so as to convert the same to an overheated steam, and feeding the overheated steam to the steam turbine. CONSTITUTION:A geothermal two-phase flow blown out from the underground is inducted to a steam separator 10, and is separated into a hot water and a high-pressure saturated steam. Then, the high-pressure saturated steam is fed to an overheated high-pressure steam generator in a boiler 24, and is converted to an overheated high-pressure steam. On the other hand, the hot water is fed to an overheated low-pressure steam generator in the boiler 24 by a pump 26, and is converted to an overheated low-pressure steam. Both the overheated high-pressure steam and the overheated low-pressure steam are fed to a steam turbine 14 to drive a generator 18. Accordingly, the steam temperature at the inlet side of the steam turbine 14 is increased, thereby improving the heat efficiency. At the same time, as the steam having a reduced wetness is discharged from the outlet side of the steam turbine 14, a turbine blade may be prevented from being eroded or corroded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複合型地熱発電プラントに係り、特に、蒸気タ
ービンとガスタービンを併用して地熱エネルギーを電力
に変換するに好適な複合型地熱発電プラントに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a combined geothermal power generation plant, and particularly to a combined geothermal power generation plant suitable for converting geothermal energy into electric power using both a steam turbine and a gas turbine. Regarding plants.

〔従来の技術〕[Conventional technology]

地下より抽出される地熱エネルギーはその形態が□天然
蒸気あみの場合と、蒸気と熱水を含む二相流体の場合が
ある。このような地熱エネルギーのうち二相流体を用い
た発電プラントとして、第7図に示されるように、2段
フラッシュ地熱発電プラントが知られている。
Geothermal energy extracted from underground can take the form of natural steam or two-phase fluid containing steam and hot water. A two-stage flash geothermal power generation plant, as shown in FIG. 7, is known as a power generation plant using two-phase fluid among such geothermal energy.

第7図に示す発電プラントにおいては、地下から抽出さ
れた地熱二相流を気水分離器10に導入して高圧飽和蒸
気と熱水とに分離し、高圧飽和蒸気をミストセパレータ
12を介して高圧蒸気に変換し、高圧蒸気を蒸気タービ
ン14へ送給し、一方熱水をフラッシャ(蒸発器)16
へ送給して低圧蒸気に変換し、この低気蒸気を蒸気ター
ビン14へ送給するようになっている。蒸気タービン1
4は低圧蒸気と高圧蒸気とを導入して発電機18を駆動
するようになっている。なお、蒸気タービン14から排
出される蒸気は復水器20へ送給されるようになってい
る。復水器20へ送給された蒸気は水に変換され、復水
器20と冷却塔22との間を循環するようになっている
。またフラッシャ16に送給された熱水の一部は還元水
として排出される。上記構成によるプラントによれば、
地熱エネルギーを電力に有効に変換することができる。
In the power plant shown in FIG. 7, a geothermal two-phase flow extracted from underground is introduced into a steam separator 10 to be separated into high pressure saturated steam and hot water, and the high pressure saturated steam is passed through a mist separator 12. The high-pressure steam is converted into high-pressure steam and sent to a steam turbine 14, while the hot water is sent to a flasher (evaporator) 16.
The low-pressure steam is converted into low-pressure steam, and the low-pressure steam is sent to the steam turbine 14. steam turbine 1
4 introduces low pressure steam and high pressure steam to drive the generator 18. Note that the steam discharged from the steam turbine 14 is supplied to the condenser 20. The steam fed to the condenser 20 is converted into water and circulated between the condenser 20 and the cooling tower 22. Further, a part of the hot water fed to the flasher 16 is discharged as reduced water. According to the plant with the above configuration,
Geothermal energy can be effectively converted into electricity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、第7図に示す地熱発電プラントにおいて
は、蒸気タービンliこ供給される高圧蒸気及び低圧蒸
気が共に飽和蒸気であるため、熱効率が悪く、また蒸気
タービン14の出口側の湿り度が高くなり、タービン翼
が浸食或いは腐食されやすいという不具合があった。
However, in the geothermal power plant shown in FIG. 7, both high-pressure steam and low-pressure steam supplied to the steam turbine 14 are saturated steam, resulting in poor thermal efficiency and high humidity on the exit side of the steam turbine 14. However, there was a problem that the turbine blades were easily eroded or corroded.

本発明は、前記従来の課題に鑑みてなされたものであり
、その目的は、熱効率の向上及び蒸気タービン出口側の
湿り度を低くすることができる複合型地熱発電プラント
を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to provide a combined geothermal power plant that can improve thermal efficiency and reduce humidity on the steam turbine outlet side.

C問題点を解決するための手段〕 前記目的を達成するために、本発明は、地熱二相流を熱
水と高圧飽和蒸気とに分離する気水分離器と、気水分離
器からの高圧飽和蒸気を過熱して過熱高圧蒸気に変換す
る加熱高圧蒸気発生器と、気水分離器からの熱水を過熱
低圧蒸気に変換する過熱低圧蒸気発生器と、前記過熱高
圧蒸気と過熱低圧蒸気とを導入して発電機を駆動する蒸
気タービンとを有する複合型地熱発電プラントを構成し
たものである。
Means for Solving Problem C] To achieve the above object, the present invention provides a steam separator that separates a geothermal two-phase flow into hot water and high-pressure saturated steam, and a high-pressure saturated steam from the steam separator. a heating high-pressure steam generator that superheats saturated steam and converts it into superheated high-pressure steam; a superheated low-pressure steam generator that converts hot water from a steam-water separator into superheated low-pressure steam; and the superheated high-pressure steam and superheated low-pressure steam. This is a combined geothermal power plant with a steam turbine that drives a generator.

〔作用〕[Effect]

地下から噴出した地熱二相流を気水分離器に導入して熱
水と高圧飽和蒸気とに分離し、高圧飽和蒸気を過熱高圧
蒸気発生器へ送給して過熱高圧蒸気に変換する。一方熱
水を過熱低圧蒸気発生器へ送給して過熱低圧蒸気に変換
する。そしてこれら加熱高圧蒸気と過熱低圧蒸気をそれ
ぞれ蒸気タービンへ送給して発電機を駆動する。
Geothermal two-phase flow erupted from underground is introduced into a steam-water separator to separate it into hot water and high-pressure saturated steam, and the high-pressure saturated steam is sent to a superheated high-pressure steam generator to be converted into superheated high-pressure steam. On the other hand, hot water is sent to a superheated low pressure steam generator and converted into superheated low pressure steam. These heated high-pressure steam and superheated low-pressure steam are then respectively sent to a steam turbine to drive a generator.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の実施例を図面に基づいて詳細に説明する
EMBODIMENT OF THE INVENTION Below, one embodiment of the present invention will be described in detail based on the drawings.

第1図には、本発明の好適な実施例の構成が示されてい
る。
FIG. 1 shows the configuration of a preferred embodiment of the present invention.

本実施例は、第1図に示されるように、ミストセパレー
タ12と蒸気タービン14との間にボイラ24を挿入す
ると共に気水分離器10とフラッシャ16との間にポン
プ26とボイラ24を挿入したものであり、他の構成は
第7図のものと同様であるので、同一のものには同一符
号を付してその説明は省略する。
In this embodiment, as shown in FIG. 1, a boiler 24 is inserted between a mist separator 12 and a steam turbine 14, and a pump 26 and a boiler 24 are inserted between a steam separator 10 and a flasher 16. Since the other configurations are the same as those shown in FIG. 7, the same components are given the same reference numerals and their explanation will be omitted.

ボイラ24にはガスタービン28の駆動に伴う高温廃ガ
スが供給されるようになっており、この高温排ガスが低
温排ガスとしてボイラ24から排出されるとき、高圧蒸
気が過熱され過熱高圧蒸気として出力される。さらに、
ポンプ26によって排出される熱水が過熱され高温熱水
として出力されるようになっている。すなわち、ボイラ
24は過熱高圧蒸気発生器と過熱低圧蒸気発生器の一部
を構成している。そして過熱高圧蒸気が蒸気タービン1
4の高圧側に送給され、高温熱水がフラッシャ16で低
圧蒸気に変換され、蒸気タービン14の低圧側へ送給さ
れるようになっている。このように、本実施例において
は、蒸気タービン14には過熱された高圧蒸気と低圧蒸
気が導入されるので、蒸気タービン14人口側の蒸気の
温度が高くなり、従来のものよりも熱効率の向上を図る
ことができる。またさらに、蒸気タービン14の出口側
には湿り度が大幅に低下した蒸気が排出されるので、蒸
気タービン14のタービン翼が浸食或いは腐食されるの
を抑制することができる。
The boiler 24 is supplied with high-temperature waste gas from the drive of the gas turbine 28, and when this high-temperature exhaust gas is discharged from the boiler 24 as low-temperature exhaust gas, high-pressure steam is superheated and output as superheated high-pressure steam. Ru. moreover,
The hot water discharged by the pump 26 is superheated and output as high temperature hot water. That is, the boiler 24 constitutes a part of a superheated high pressure steam generator and a superheated low pressure steam generator. The superheated high pressure steam is then transferred to the steam turbine 1.
The high-temperature hot water is converted into low-pressure steam by a flasher 16 and is then fed to the low-pressure side of the steam turbine 14. In this way, in this embodiment, superheated high-pressure steam and low-pressure steam are introduced into the steam turbine 14, so the temperature of the steam on the artificial side of the steam turbine 14 becomes higher, and the thermal efficiency is improved compared to the conventional one. can be achieved. Furthermore, since steam with significantly reduced humidity is discharged to the outlet side of the steam turbine 14, erosion or corrosion of the turbine blades of the steam turbine 14 can be suppressed.

なお、ガスタービン28は、空気圧縮機30から供給さ
れる圧縮空気と燃料との混合気が燃焼器32によって燃
焼したときの熱エネルギーによって、発電機34を駆動
するようになっている。
Note that the gas turbine 28 drives the generator 34 using thermal energy generated when a mixture of compressed air and fuel supplied from the air compressor 30 is combusted in the combustor 32.

第2図には、本発明の他の実施例の構成が示されている
FIG. 2 shows the configuration of another embodiment of the invention.

本実施例は、第1図に示すフラッシャ16の代りに回転
分離式二相流タービン36を用いたものであり、他の構
成は、第1図のものと同様であるので、同一のものには
同一符号を付してそれらの説明は省略する。
In this embodiment, a rotary separation type two-phase flow turbine 36 is used in place of the flasher 16 shown in FIG. 1, and the other configurations are the same as those in FIG. are given the same reference numerals and their explanation will be omitted.

本実施例においては、ボイラ24から排出される高温熱
水が低圧蒸気に変換される際、第1図のフラッシャ16
では減圧によって運動エネルギーが失われるが、二相流
タービン36によれば、高温熱水を低圧蒸気に変換する
際の減圧による運動エネルギー損失を回収することがで
きるので、第1図のものよりも熱効率の向上を図ること
ができる。
In this embodiment, when high-temperature hot water discharged from the boiler 24 is converted into low-pressure steam, the flasher 16 in FIG.
However, with the two-phase flow turbine 36, the kinetic energy loss due to pressure reduction when converting high-temperature hot water into low-pressure steam can be recovered. It is possible to improve thermal efficiency.

また本実施例によれば、第1図に示すプラントと同様、
第3図に示されるように、高温熱水の温度を特性Aで、
示されるものとすることができると共に高圧蒸気の温度
を特性Bで示される特性にすることができ、従来のもの
よりも熱効率の向上および蒸気タービン14出口側の湿
り度を大幅に低下させることができる。なお、特性Cは
ボイラ24に導入される高温ガスが低温排ガスとして排
出される過程を示す。
Furthermore, according to this embodiment, similar to the plant shown in FIG.
As shown in Figure 3, the temperature of high-temperature hot water is given by characteristic A.
In addition, the temperature of the high-pressure steam can be made to have the characteristic shown by characteristic B, and the thermal efficiency can be improved and the humidity on the exit side of the steam turbine 14 can be significantly reduced compared to conventional ones. can. Note that characteristic C indicates a process in which high-temperature gas introduced into the boiler 24 is discharged as low-temperature exhaust gas.

第4図には、本発明の他の実施例の構成が示されている
FIG. 4 shows the configuration of another embodiment of the present invention.

本実施例は、第4図に示されるように、気水分離器10
から排出される熱水をフラッシャ16へ導くと共にフラ
ッシャ16から排出される低圧蒸気をミストセパレータ
38を介してボイラ24へ送給し、ボイラ24から発生
する加熱低圧蒸気をボイラ14へ送給するようにしたも
のであり、他の構成は第1図のものと同様であるので、
同一のものには同一の符号を付してそれらの説明は省略
する。
In this embodiment, as shown in FIG.
The hot water discharged from the flasher 16 is guided to the flasher 16, the low pressure steam discharged from the flasher 16 is sent to the boiler 24 via the mist separator 38, and the heated low pressure steam generated from the boiler 24 is sent to the boiler 14. The other configuration is the same as that in Figure 1, so
Identical components are given the same reference numerals and their descriptions will be omitted.

本実施例においては、熱水をフラッシャ16で低圧蒸気
に変換し、低圧蒸気をミストセパレータ38を介してボ
イラ24へ供給するようにしているため、地熱二相流の
温度が高く、フラッシャ16で発生する低圧蒸気の温度
がボイラ24における硫酸腐食などを防げるほど高く設
定できる場合に好適である。この場合は、第6図に示さ
れるように、低圧蒸気を特性Aで示されるように、過熱
低圧蒸気の温度まで過熱することができる。なお特性B
、Cは第1図のものと同様な特性となる。
In this embodiment, hot water is converted into low-pressure steam by the flasher 16, and the low-pressure steam is supplied to the boiler 24 via the mist separator 38, so the temperature of the geothermal two-phase flow is high, and the flasher 16 converts the hot water into low-pressure steam. This is suitable when the temperature of the generated low-pressure steam can be set high enough to prevent sulfuric acid corrosion in the boiler 24. In this case, as shown in FIG. 6, the low pressure steam can be superheated to the temperature of superheated low pressure steam as shown by characteristic A. Furthermore, characteristic B
, C have characteristics similar to those in FIG.

また本実施例においても、前記各実施例と同様蒸気ター
ビン14に導入される低圧蒸気および高圧蒸気の温度を
高めることができるので、熱効率の向上およびタービン
14の出力側の湿り度を大幅に低下させることができる
Furthermore, in this embodiment as well, the temperatures of the low-pressure steam and high-pressure steam introduced into the steam turbine 14 can be increased, as in the previous embodiments, thereby improving thermal efficiency and significantly reducing the humidity on the output side of the turbine 14. can be done.

第5図には1本発明のさらに他の実施例の構成が示され
ている。
FIG. 5 shows the configuration of yet another embodiment of the present invention.

本実施例は、第4図に示されるフラッシャ16の代りに
回転分離式二相流タービン36を用いたものであり、他
の構成は第4図のものと同様であるので、同一のものに
は同一符号を付してそれらの説明は省略とする。
In this embodiment, a rotary separation type two-phase flow turbine 36 is used in place of the flasher 16 shown in FIG. 4, and the other configurations are the same as those in FIG. are given the same reference numerals and their explanation will be omitted.

本実施例においては、第2図のものと同様、フラッシャ
16の代りに二相流タービン36を用いているので、熱
水を低圧蒸気に変換する際に失われる運動エネルギーを
回収することができ、第4図のものよりも熱効率の向上
を図ることができる。
In this embodiment, like the one in FIG. 2, a two-phase flow turbine 36 is used in place of the flasher 16, so that the kinetic energy lost when converting hot water into low-pressure steam can be recovered. , the thermal efficiency can be improved more than that shown in FIG.

また、ガスタービンコンバインド型発電プラントとして
は、第8図に示されるように、蒸気タービン14、発電
機18、復水器20、冷却塔22、ボイラ24、ポンプ
26、ガスタービン28.空気圧縮機30、燃焼器32
、発電機34を有するものが知られているが、この発電
プラントの方式では、ガスタービン28の排ガス中に硫
黄分が含まれているため、硫酸腐食を避けるために、ボ
イラ24の入口温度が130〜140”C前後に設定さ
れている。このため、第8図の発電プラントによる方式
では、第9図に示されるように、ボイラ24に導入され
る復水の温度を高めるためには予熱する必要があると共
にボイラ24から排出される排ガスの温度を150℃以
下に維持することが困難であった。
Further, as shown in FIG. 8, the gas turbine combined power generation plant includes a steam turbine 14, a generator 18, a condenser 20, a cooling tower 22, a boiler 24, a pump 26, a gas turbine 28. Air compressor 30, combustor 32
, a generator 34 is known, but in this power generation plant system, the exhaust gas of the gas turbine 28 contains sulfur, so in order to avoid sulfuric acid corrosion, the inlet temperature of the boiler 24 is lowered. It is set at around 130 to 140"C. Therefore, in the power generation plant system shown in Figure 8, preheating is required to raise the temperature of the condensate introduced into the boiler 24, as shown in Figure 9. In addition, it was difficult to maintain the temperature of the exhaust gas discharged from the boiler 24 at 150° C. or lower.

これに対して、本発明に係る前記各実施例においては、
第3図および第6図に示されるように、蒸気を予熱する
必要がなく、またボイラ24に導入される高温排ガス(
500”C前後)を高圧蒸気の過熱に利用すると共に、
熱水の過熱に利用し、排ガスを150℃前後まで低下さ
せて低温排ガスとして排出するようにしているため、ガ
スタービンコンバインド型発電プラントのものよりも吸
熱効率の向上を図ることができる。
On the other hand, in each of the above embodiments according to the present invention,
As shown in FIGS. 3 and 6, there is no need to preheat the steam, and the high temperature exhaust gas (
500"C) to superheat high-pressure steam,
Since hot water is used to superheat the exhaust gas and the exhaust gas is lowered to around 150°C and then discharged as low-temperature exhaust gas, it is possible to improve the heat absorption efficiency compared to that of a gas turbine combined power generation plant.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明によれば、気水分離器から
排出される高圧飽和蒸気と熱水をそれぞれ過熱して過熱
高圧蒸気と過熱低圧蒸気とに変換し、これらの蒸気を蒸
気タービンへ導いて蒸気タービンの入口側の温度を高め
ると共に蒸気タービン出口側の湿り度を低下させるよう
にしたため、蒸気タービンの駆動による熱効率の向上が
図れると共に、蒸気タービンの耐久性の向上に寄与する
ことができるという優れた効果が得られる。
As explained above, according to the present invention, high-pressure saturated steam and hot water discharged from a steam-water separator are respectively superheated and converted into superheated high-pressure steam and superheated low-pressure steam, and these steams are sent to a steam turbine. This increases the temperature at the inlet side of the steam turbine and reduces the humidity at the outlet side of the steam turbine, which not only improves the thermal efficiency of the steam turbine drive, but also contributes to improving the durability of the steam turbine. You can get excellent results.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す構成図、第2図は本
発明の第2実施例を示す構成図、第3図は第1図および
第2図に示すプラントの熱量と温度との関係を示す線図
、第4図は本発明の第3実施例を示す構成図、第5図は
本発明の第4実施例を示す構成図、第6図は第4図に示
すプラントの熱量と温度との関係を示す線図、第7図は
従来の地熱発電プラントの構成図、第8図は従来のガス
タービンコンバインド型発電プラントの構成図、第9図
は第8図に示すプラントの熱量と温度との関係を示す線
図である。 1o・・・気水分離器、12.38・・・ミストセパレ
ータ、14・・・蒸気タービン、16・・・フラッシャ
、18.34・・・発電機、24・・・ボイラ、28・
・・ガスタービン、36・・・回転分離式二相流タービ
ン。
Fig. 1 is a block diagram showing the first embodiment of the present invention, Fig. 2 is a block diagram showing the second embodiment of the present invention, and Fig. 3 is the amount of heat and temperature of the plant shown in Figs. 1 and 2. Fig. 4 is a diagram showing the configuration of the third embodiment of the present invention, Fig. 5 is a block diagram showing the fourth embodiment of the invention, and Fig. 6 is a diagram showing the plant shown in Fig. 4. A diagram showing the relationship between the amount of heat and temperature, Figure 7 is a configuration diagram of a conventional geothermal power generation plant, Figure 8 is a configuration diagram of a conventional gas turbine combined power generation plant, and Figure 9 is shown in Figure 8. It is a diagram showing the relationship between the amount of heat and temperature of a plant. 1o... Steam water separator, 12.38... Mist separator, 14... Steam turbine, 16... Flasher, 18.34... Generator, 24... Boiler, 28...
...Gas turbine, 36...Rotation separation type two-phase flow turbine.

Claims (5)

【特許請求の範囲】[Claims] (1)地熱二相流を熱水と高圧飽和蒸気とに分離する気
水分離器と、気水分離器からの高圧飽和蒸気を加熱して
過熱高圧蒸気に変換する過熱高圧蒸気発生器と、気水分
離器からの熱水を過熱低圧蒸気に変換する過熱低圧蒸気
発生器と、前記過熱高圧蒸気と過熱低圧蒸気とを導入し
て発電機を駆動する蒸気タービンと、を有することを特
徴とする複合型地熱発電プラント。
(1) A steam-water separator that separates geothermal two-phase flow into hot water and high-pressure saturated steam; and a superheated high-pressure steam generator that heats the high-pressure saturated steam from the steam-water separator and converts it into superheated high-pressure steam; It is characterized by having a superheated low pressure steam generator that converts hot water from a steam water separator into superheated low pressure steam, and a steam turbine that introduces the superheated high pressure steam and superheated low pressure steam to drive a generator. A combined geothermal power plant.
(2)前記過熱低圧蒸気発生器は、熱水を過熱するボイ
ラと、ボイラで過熱された熱水を過熱低圧蒸気に変換す
る蒸発器と、を含むことを特徴とする特許請求の範囲第
1項記載の複合型地熱発電プラント。
(2) The superheated low-pressure steam generator includes a boiler that superheats hot water and an evaporator that converts the hot water superheated by the boiler into superheated low-pressure steam. The combined geothermal power plant described in Section 1.
(3)前記過熱低圧蒸気発生器は、熱水を過熱するボイ
ラと、ボイラで過熱された熱水を過熱低圧蒸気に変換す
る回転分離式二相流タービンと、を含むことを特徴とす
る特許請求の範囲第1項記載の複合型地熱発電プラント
(3) A patent characterized in that the superheated low-pressure steam generator includes a boiler that superheats hot water and a rotary separation type two-phase flow turbine that converts the hot water superheated by the boiler into superheated low-pressure steam. A combined geothermal power plant according to claim 1.
(4)前記過熱低圧蒸気発生器は、熱水を低圧蒸気に変
換する蒸発器と、蒸発器からの低圧蒸気を過熱するボイ
ラと、を含むことを特徴とする特許請求の範囲第1項記
載の複合型地熱発電プラント。
(4) The superheated low-pressure steam generator includes an evaporator that converts hot water into low-pressure steam, and a boiler that superheats the low-pressure steam from the evaporator. combined geothermal power plant.
(5)前記加熱低圧蒸気発生器は、熱水を低圧蒸気に変
換する回転分離式二相流タービンと、該タービンからの
低圧蒸気を加熱するボイラと、を含むことを特徴とする
特許請求の範囲第1項記載の複合型地熱発電プラント。
(5) The heated low-pressure steam generator includes a rotary separation type two-phase flow turbine that converts hot water into low-pressure steam, and a boiler that heats the low-pressure steam from the turbine. A combined geothermal power plant according to scope 1.
JP9884086A 1986-04-28 1986-04-28 Combined type geothermal power plant Pending JPS62255506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9884086A JPS62255506A (en) 1986-04-28 1986-04-28 Combined type geothermal power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9884086A JPS62255506A (en) 1986-04-28 1986-04-28 Combined type geothermal power plant

Publications (1)

Publication Number Publication Date
JPS62255506A true JPS62255506A (en) 1987-11-07

Family

ID=14230455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9884086A Pending JPS62255506A (en) 1986-04-28 1986-04-28 Combined type geothermal power plant

Country Status (1)

Country Link
JP (1) JPS62255506A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170504A (en) * 1994-12-16 1996-07-02 Kawasaki Heavy Ind Ltd Geothermal electric power generation facility
WO2013061928A1 (en) * 2011-10-24 2013-05-02 三菱重工業株式会社 Liquefied gas treatment system, control method therefor, liquefied gas carrier provided therewith, and liquefied gas storage facility provided therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170504A (en) * 1994-12-16 1996-07-02 Kawasaki Heavy Ind Ltd Geothermal electric power generation facility
WO2013061928A1 (en) * 2011-10-24 2013-05-02 三菱重工業株式会社 Liquefied gas treatment system, control method therefor, liquefied gas carrier provided therewith, and liquefied gas storage facility provided therewith

Similar Documents

Publication Publication Date Title
US6715294B2 (en) Combined open cycle system for thermal energy conversion
EP0676532B1 (en) Steam injected gas turbine system with topping steam turbine
US5678401A (en) Energy supply system utilizing gas and steam turbines
CA2324162C (en) Gas turbine combined cycle system
EP1752617A2 (en) Combined cycle power plant
SE437541B (en) COMBINED GAS TURBIN ANGTURBIN INSTALLATION WITH INTEGRATED PART COMBUSTION OF FUEL
EP2132415A2 (en) Arrangement with a steam turbine and a condenser for feedwater preheating
JP2000000078U (en) Gas / steam power generation equipment
JPH11247669A (en) Gas turbine combined cycle
KR100814940B1 (en) Thermal power plant having pure oxygen combustor
JP2003074375A (en) Gas-turbine-incorporated boiler
EP0293206A1 (en) Air turbine cycle
JPS62255506A (en) Combined type geothermal power plant
JPH06212909A (en) Compound electric power plant
JPH1113488A (en) Full fired heat recovery combined plant using steam cooling type gas turbine
JPS60138213A (en) Composite cycle waste heat recovery power generating plant
JP2690566B2 (en) Combined power plant
WO1999040305A1 (en) Gas turbine for combined cycle power plant
JP2960371B2 (en) Hydrogen combustion turbine plant
JPH06330709A (en) Power generation plant
Rahman et al. IMPROVE THE EFFICIENCY OF COMBINED CYCLE POWER PLANT
JPS59126005A (en) Power generating system supplying heat energy simultaneously
JPS635102A (en) Exhaust heat recovery power plant
JPH1113489A (en) Gas turbine cooling method for combined cycle power plant
JPH11117714A (en) Gas turbine combined plant