JPS622553A - Trimming unit - Google Patents

Trimming unit

Info

Publication number
JPS622553A
JPS622553A JP60141175A JP14117585A JPS622553A JP S622553 A JPS622553 A JP S622553A JP 60141175 A JP60141175 A JP 60141175A JP 14117585 A JP14117585 A JP 14117585A JP S622553 A JPS622553 A JP S622553A
Authority
JP
Japan
Prior art keywords
fine movement
movement device
trimming mechanism
members
measuring means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60141175A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Sugihara
和佳 杉原
Tsutomu Ito
力 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60141175A priority Critical patent/JPS622553A/en
Publication of JPS622553A publication Critical patent/JPS622553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Control Of Position Or Direction (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To accomplish high-precision positioning by a method wherein a displacement gauge accurately determines the position of a trimming mechanism and the difference between the actual position signals and target position signals is fed back into a controlling unit for the actuating of driving members. CONSTITUTION:A closed loop servo is constructed for the actuation of a trimming mechanism. The attitude of the trimming mechanism is determined by an eddy current type non-contact displacement gauge 41 detecting the positions of the X, Y and theta axes of the trimming mechanism. The detected signals are amplified by a pre-amplifier 42 and then digitized in an AD converter, whereafter they are applied to a comparator 44. Target position signals yielded by a computer 45 are also applied to the comparator 44. A controlling circuit 46 goes into operation and actuates driving members 6-9, which continues until the difference is small enough to fall within the range of tolerance outputted by the computer 45. This neutralizes the interference with each other of the three axes in a trimming mechanism, and allows the trimming mechanism to accomplish its inherent long-stroke movement and high-precision positioning.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、物体位置の回転及び直進を高精度に行わせる
微動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fine movement device for rotating and rectilinearly moving an object position with high precision.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、半導体ウェーハやマスク基板等の試料に微細パタ
ーンを形成するものとして、電子ビーム描画装置、縮小
投影型転写装置及びX線転写装置等が開発されているが
、この種の装置ではサブミクロン単位の精度を保持する
ために、微小変位を駆動する微動機構が必要である。ま
た、上記装置に限らず測定機器で精密な測定を行う分野
等においても、高精度を有する微動機構が必要である。
In recent years, electron beam lithography equipment, reduction projection type transcription equipment, X-ray transcription equipment, etc. have been developed to form fine patterns on samples such as semiconductor wafers and mask substrates. In order to maintain accuracy, a fine movement mechanism is required to drive minute displacements. Further, a fine movement mechanism with high precision is required not only in the above-mentioned apparatus but also in fields where precise measurements are performed using measuring instruments.

微動機構としては、−軸方向に移動させるものや回転運
動を行わせるもの等があるが、回転運動を行わせる従来
の回転微動機構にあっては次のような問題があった。即
ち、ストロークが長いものでは微動駆動が困難であり、
微動駆動が可能なものはストロークを長くできない等の
問題があった。
Fine movement mechanisms include those that move in the -axial direction and those that perform rotational movement, but conventional rotary fine movement mechanisms that perform rotational movement have the following problems. In other words, fine movement drive is difficult with long strokes;
Those capable of fine movement had problems such as not being able to lengthen the stroke.

また、微動機構として回転及び直進運動の両方を行える
ものが要望されているが、このような機構で微動駆動が
可能で、且つ長いストロークがとれるものは未だ報告さ
れていない。
Furthermore, there is a demand for a fine movement mechanism that can perform both rotational and linear movements, but no such mechanism has been reported that is capable of fine movement and has a long stroke.

上記問題を解決するものとして最近本発明者等は、第3
図に示す如く圧電素子を利用した微動機構を開発した(
特開昭58−190079号)。
In order to solve the above problem, the present inventors have recently developed the third
As shown in the figure, we have developed a fine movement mechanism using piezoelectric elements (
JP 58-190079).

この方式では、複数の駆動部材6.〜,9による各伸縮
作用と、複数の固定部材12.〜,15による固定作用
とを適当に組合せることによって、同一駆動源による移
動部材1.〜,4の回転運動及び直進運動が可能となる
。そして、微動を行わせるとストロークが極めて小さく
なると云う欠点がなく、微動で十分長いストロークがと
れ、原理的には無限の回転と直進とが可能である。
In this system, a plurality of drive members 6. . . . , 9 and a plurality of fixing members 12 . . . , 15, and the fixing action of the movable members 1. to 15 by the same driving source. ~, 4 rotational movement and linear movement are possible. Further, there is no disadvantage that the stroke becomes extremely small when fine movement is performed, and a sufficiently long stroke can be obtained with fine movement, and in principle, infinite rotation and straight movement are possible.

しかしながら、この種の微動m構にあっては、次のよう
な問題があった。即ち、移動部材が任、意の方向に移動
可能な状態にあり、その構造からどうしても各軸間の相
互干渉を避けられない。つまり、微動機構(移動部材)
を、例えばX軸方向に移動させた場合でも、第6図に示
す如く微動機構がY軸及びθ軸方向に若干移動してしま
う。この位置ずれは、電子ビーム描画装置等の高精度位
置決めが要求されるものにあっては大きな問題となる。
However, this type of micro-motion mechanism has the following problems. That is, the movable member is in a state where it can move in any desired direction, and due to its structure, mutual interference between the respective axes cannot be avoided. In other words, the fine movement mechanism (moving member)
For example, even if the fine movement mechanism is moved in the X-axis direction, the fine movement mechanism will move slightly in the Y-axis and θ-axis directions, as shown in FIG. This positional deviation becomes a big problem in devices that require highly accurate positioning, such as electron beam lithography devices.

なお、第6図において、上側のプロット点○は第7図に
示す如く微動機構をX方向に順方向に移動したときの移
動部材のA点のY方向位置を検出したもの。プロット点
・はX方向に逆方向に移動したときのA点のY方向位置
を検出したもの。
In addition, in FIG. 6, the upper plot point ○ is the detected position of point A of the movable member in the Y direction when the fine movement mechanism is moved forward in the X direction as shown in FIG. Plot point ・ is the detected position of point A in the Y direction when moving in the opposite direction to the X direction.

同様に、下側のプロット点O・は移動部材の8点の位置
を検出したもの。そして、中央の直線はA。
Similarly, the lower plot point O. detects the positions of 8 points of the moving member. And the straight line in the center is A.

Bの中点の移動位置を示している。It shows the moving position of the midpoint of B.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情を考慮してなされたもので、その目的
とするところは、同一駆動源を用いて回転及び直進の微
動運動を行うことができ、そのストO−りを十分長くす
ることができ、且つ極めて高い精度で位置決めを行い得
る微動装置を提供することにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to be able to perform rotational and linear fine movement using the same drive source, and to make the stroke sufficiently long. The object of the present invention is to provide a fine movement device that can perform positioning with extremely high accuracy.

(発明の概要) 本発明の骨子は、変位計により微動機構の位置を正確に
計測し、その位置信号と目標位置信号との差を制御回路
に帰還させて駆動部材を駆動することにより、高い精度
の位置決めを行うことにある。
(Summary of the Invention) The gist of the present invention is to accurately measure the position of the fine movement mechanism using a displacement meter, and feed back the difference between the position signal and the target position signal to the control circuit to drive the drive member. The purpose is to perform accurate positioning.

即ち本発明は、基台上に移動自在に載置された少なくと
も3個の移動部材、これらの移動部材間にそれぞれ接続
された圧電素子からなる駆動部材。
That is, the present invention provides a drive member comprising at least three moving members movably placed on a base and piezoelectric elements connected between the moving members.

及び各移動部材を基台上にそれぞれ固定する固定部材と
を備え、上記駆動部材の伸縮作用及び固定部材の固定作
用により上記移動部材を回転及び直進せしめる微動装置
において、前記移動部材の実際位置をX、Y、θ方向に
ついて測定する測定手段と、この測定手段により得られ
た測定位置と前記移動部材の実際にあるべき設定位置と
を比較する比較手段と、この比較手段により得られた位
置ずれ情報に応じて前記駆動部材による移動部材の移動
量を制御する制■手段とを設けるようにしたものである
and a fixing member that fixes each movable member on a base, and rotates and moves the movable member in a straight line by the expansion and contraction action of the drive member and the fixing action of the fixed member, wherein the actual position of the movable member is determined. A measuring means for measuring in the X, Y, and θ directions; a comparing means for comparing the measured position obtained by the measuring means with a set position that the moving member should actually be; and a positional deviation obtained by the comparing means. A control means is provided for controlling the amount of movement of the movable member by the drive member in accordance with the information.

〔発明の効果〕〔Effect of the invention〕

本発明によれば一複数の駆動部材による各伸縮作用と、
複数の固定部材による各固定作用とを適当に組み合せる
ことによって、同一駆動源による移動部材の回転運動及
び直進運動が可能となる。
According to the present invention, each expansion and contraction action by one or more drive members,
By appropriately combining the fixing actions of the plurality of fixing members, rotational movement and linear movement of the movable member by the same driving source are possible.

そして、従来機構のように微動を行わせるとストローク
が極めて小さくなると云う欠点がなく、微動で十分長い
ストロークがとれ、原理的には無限の回転と直進とが可
能である。このため、駆動用及び微動用の機構が不要と
なる。また、駆動源として圧電素子からなる駆動部材で
移動部材を直接駆動しているため、例えば印加電圧1[
V]で0.005 [μm]と云う超微動を確実に行う
ことができる。さらに、圧電効果を有する部材は、印加
電圧の大きさによって異なるが数100[Kg]〜数[
1]の力を発生することが可能であり、大きなトルクを
発生する微動機構を提供することができる。
In addition, there is no disadvantage that the stroke becomes extremely small when fine movement is performed as in the conventional mechanism, and a sufficiently long stroke can be obtained with fine movement, and in principle, infinite rotation and straight movement are possible. This eliminates the need for drive and fine movement mechanisms. In addition, since the movable member is directly driven by a drive member made of a piezoelectric element as a drive source, for example, an applied voltage of 1[
Ultra-fine movement of 0.005 [μm] can be reliably performed at [V]. Furthermore, the piezoelectric effect of members varies from several hundred [Kg] to several [Kg] depending on the magnitude of the applied voltage.
1], and it is possible to provide a fine movement mechanism that generates a large torque.

また、本発明は微動機構の持つ各軸間の干渉を閉ループ
制御を行うことにより解消し、本来持つ長ストロークと
微動とを極めて精度の高い位置決めを実現することが可
能となり、真空装置等内の駆動機構としてその応用範囲
が広がる。
In addition, the present invention eliminates interference between each axis of the fine movement mechanism by performing closed loop control, making it possible to achieve extremely accurate positioning using the inherent long stroke and fine movement. Its range of applications expands as a drive mechanism.

〔発明の実施例〕[Embodiments of the invention]

まず、実施例を説明する前に1本発明の基本となった微
動機構の構造及び動作について説明する。
First, before explaining embodiments, the structure and operation of the fine movement mechanism, which is the basis of the present invention, will be explained.

第3図(a)〜(C)はそれぞれ従来の微動装置の概略
構成を示すもので(a>は平面図、(b)は(a)の矢
視A−A断面図、(C)は(a)の矢視B−B断面図で
ある。図中1.2.3.4はそれぞれ矩形板状の移動部
材であり、これらの移動部材1.〜.4は導電性の基台
5上に全体として正方形をなすよう離間して載置されて
いる。移動部材1.〜.4の隣接するもの同士は駆動部
材6.7.8.9によりそれぞれ接続されている。
Figures 3 (a) to (C) each show a schematic configuration of a conventional fine movement device (a> is a plan view, (b) is a sectional view taken along arrow A-A in (a), and (C) is a It is a sectional view taken along arrow B-B in (a). In the figure, reference numerals 1, 2, 3, and 4 are rectangular plate-shaped moving members, and these moving members 1. to .4 are attached to a conductive base 5. Adjacent movable members 1.-.4 are connected by drive members 6, 7, 8, and 9, respectively.

即ち、移動部材1.2間には駆動部材6が、移動部材2
.3間には駆動部材7が、移動部材3..4間には駆動
部材8が、そして移動部材4,1間には駆動部材9が設
けられている。駆動部材6.〜。
That is, the driving member 6 is disposed between the moving members 1 and 2, and the driving member 6 is disposed between the moving members 1 and 2.
.. A driving member 7 is disposed between the movable member 3. .. A driving member 8 is provided between the moving members 4 and 1, and a driving member 9 is provided between the moving members 4 and 1. Drive member 6. ~.

9はそれぞれ印加電圧に応じて伸縮する圧電素子、例え
ばチタン酸ジルコン酸鉛からなるもので、その伸縮方向
く図中に示す矢印方向〉両端に前記移動部材1.〜.4
がそれぞれ取着固定されている。
Reference numeral 9 denotes a piezoelectric element, for example, made of lead zirconate titanate, which expands and contracts depending on the applied voltage, and the movable member 1. ~. 4
are each attached and fixed.

なお、この固定は接着、ねじ止め或いは圧入等のいずれ
であってもよい。また、駆動部材6にはスイッチ10a
を介して可変電圧電源11aが接続され、同様に駆動部
材7にはスイッチ 10bを介して電源11bが、駆動
部材8にはスイッチ10Cを介して電源11cが、駆動
部材9にはスイッチ10dを介して電源11dが接続さ
れるものとなっている。
Note that this fixing may be done by adhesion, screwing, press-fitting, or the like. Further, the drive member 6 includes a switch 10a.
Similarly, the drive member 7 is connected to a power supply 11b via a switch 10b, the drive member 8 is connected to a power supply 11c via a switch 10C, and the drive member 9 is connected to a power supply 11c via a switch 10d. The power source 11d is connected to the power source 11d.

一方、前記移動部材1の下部には電極12a及び絶縁層
12b、12Gからなる静電チャック(固定部材)12
が設けられており、同様に移動部材2.〜.4の下部に
は静電チャック13,14.15がそれぞれ設けられて
いる。そして、これらの移動部材1.〜.4、例えば移
動部材1は上記電極12aと前記基台5との間にスイッ
チ16aを介して電源17aを接続することにより、基
台5上に吸着固定されるものとなっている。なお、図中
13a、 〜、15aはミル、13b、〜。
On the other hand, an electrostatic chuck (fixed member) 12 consisting of an electrode 12a and insulating layers 12b and 12G is disposed under the movable member 1.
Similarly, a moving member 2. is provided. ~. Electrostatic chucks 13, 14, and 15 are provided at the bottom of 4, respectively. These moving members 1. ~. 4. For example, the movable member 1 is fixed to the base 5 by suction by connecting a power source 17a between the electrode 12a and the base 5 via the switch 16a. In addition, in the figure, 13a, 15a are mills, and 13b, 15a are mills.

15b、13c、〜15cは絶縁層、16b、〜。15b, 13c, ~15c are insulating layers; 16b, ~.

16dはスイッチ、17b、〜、17dは電源をそれぞ
れ示している。
16d represents a switch, and 17b to 17d represent power supplies, respectively.

このように構成において、回転運動をさせるには、静電
チャック14.15により移動部材3゜4を基台5上に
固定したのち、第4図(a)に示す如く駆動部材7を伸
長させると共に駆動部材9を縮長させる。これにより、
移動部材1,2が矢印P方向に微小回転する。次に、静
電チャック12.13により移動部材1,2を基台5上
に固定したのち上記静電チャック14.15による移動
部材3,4の固定を解除する。この状態で第4図(b)
に示す如く駆動部材7を縮長させると共に、駆動部材9
を伸長させると、移動部材3.4が矢印P方向に微小回
転する。以上の操作を繰り返すことによって:移動部材
1.〜,4は矢印P方向に回転せしめられることになる
In this configuration, in order to perform rotational movement, the moving member 3.4 is fixed on the base 5 by the electrostatic chuck 14, 15, and then the driving member 7 is extended as shown in FIG. 4(a). At the same time, the driving member 9 is contracted. This results in
The moving members 1 and 2 rotate slightly in the direction of arrow P. Next, after the movable members 1 and 2 are fixed on the base 5 by the electrostatic chucks 12 and 13, the fixation of the movable members 3 and 4 by the electrostatic chucks 14 and 15 is released. In this state, Figure 4(b)
As shown in FIG.
When extended, the moving member 3.4 rotates slightly in the direction of arrow P. By repeating the above operations: Moving member 1. . . , 4 are rotated in the direction of arrow P.

直進運動をさせるには、静電チャック13,14により
移動部材2.3を基台5上に固定したのち、第5図(a
)に示す如く駆動部材6.8を共に伸長させる。これに
より、移動部材1.4は矢印Q方向に微小移動(直進移
動)する。次に、静電チャック12.15により移動部
材1.4を基台5上に固定したのち、上記静電チャック
13゜14による移動部材2.3の固定を解除する。こ
の状態で第5図(b)に示す如く駆動部材6.8を共に
縮長させると、移動部材2.3が矢印Q方向に微小移動
する。以上の操作を繰り返すことによって移動部材1.
〜,4は矢印Q方向に直進せしめられることになる。
In order to move in a straight line, the movable member 2.3 is fixed on the base 5 using the electrostatic chucks 13 and 14, and then the movable member 2.3 is
), the drive members 6.8 are extended together. As a result, the moving member 1.4 moves slightly (straight ahead) in the direction of arrow Q. Next, after the movable member 1.4 is fixed on the base 5 by the electrostatic chuck 12.15, the fixation of the movable member 2.3 by the electrostatic chucks 13 and 14 is released. In this state, when the drive members 6.8 are both retracted as shown in FIG. 5(b), the moving member 2.3 moves slightly in the direction of the arrow Q. By repeating the above operations, moving member 1.
. . . , 4 are forced to go straight in the direction of arrow Q.

かくして、移動部材1.〜,4を回転成いは直進運動さ
せることができ、さらに回転及び直進運動を同時に行わ
せることも可能である。また、移動部材1.〜,4の運
動方向は駆動部材6.〜。
Thus, moving member 1. . In addition, moving member 1. The direction of movement of the drive member 6. ~.

9の各伸縮作用と静電チャック12.〜.15の各固定
作用とを適当に選択することによって、自由に設定する
ことができる。
9 and the electrostatic chuck 12. ~. It can be freely set by appropriately selecting each of the 15 fixing functions.

次に、上記微動機構を用いた本発明の一実施例について
説明する。
Next, an embodiment of the present invention using the above fine movement mechanism will be described.

第1図は、本発明の一実施例に係わる微動装置を示す概
略構成図である。なお、第3図と同一部分には同一符号
を付して、その詳しい説明は省略する。この実施例が第
3図に示した装置と異なる点は、閉ループサーボを組ん
で微動機構を駆動したことにあり、駆動機構本体は第3
図の装置と同様である。即ち、微動機構(移動部材)は
渦電流型の非接触変位計41によって、その位置が(X
FIG. 1 is a schematic configuration diagram showing a fine movement device according to an embodiment of the present invention. Note that the same parts as in FIG. 3 are given the same reference numerals, and detailed explanation thereof will be omitted. This embodiment differs from the device shown in Fig. 3 in that the fine movement mechanism is driven by a closed-loop servo, and the drive mechanism body
It is similar to the device shown in the figure. That is, the position of the fine movement mechanism (moving member) is determined by the eddy current type non-contact displacement meter 41 (X
.

Y、θの3軸について)検出され、この検出信号はプリ
アンプ42で増幅されたあとADコンバータ43により
デジタル化され、コンパレータ44に送られる。一方、
目標位置は計Wi1145からコンパレータ44に送ら
れ、それらの差が計算11[45から送られた許容誤差
範囲に入るまで、制御回路46により駆動部材6.〜,
9が駆動される。
This detection signal is amplified by a preamplifier 42, digitized by an AD converter 43, and sent to a comparator 44. on the other hand,
The target position is sent from the meter Wi 1145 to the comparator 44, and the control circuit 46 controls the drive member 6. ~,
9 is driven.

次に、このように構成された本装置の作用について説明
する。
Next, the operation of this device configured as described above will be explained.

第2図は駆動のアルゴリズムを示すフローチャートであ
る。まず、Reat dataで目標位置、許容誤差の
読込みを行う。xdriveで変位計によりX方向位置
を測定し、目標位置と測定位置の差△Xが許容ΔεX以
下になるまで微動機構をX方向に駆動する。ΔXが△ε
X以下になるとYdriVeでY方向位置を測定し、目
標位置と測定位置の差Δyが許容誤差Δεy以下になる
まで微動機構をY方向に駆動する。しかし、前述したよ
うに各軸間に干渉があるため、Y方向に移動させた際に
X方向にも変化が生じる。このため、再度ΔXが△εX
以内に入っているかを確認し、入っていれば次に進み入
っていなければX driveに戻る。
FIG. 2 is a flowchart showing the driving algorithm. First, the target position and allowable error are read using Reat data. The position in the X direction is measured using a displacement meter using the xdrive, and the fine movement mechanism is driven in the X direction until the difference ΔX between the target position and the measured position becomes less than or equal to the allowable ΔεX. ΔX is △ε
When the value becomes less than or equal to X, the Y-direction position is measured by YdriVe, and the fine movement mechanism is driven in the Y-direction until the difference Δy between the target position and the measured position becomes less than or equal to the allowable error Δεy. However, as described above, since there is interference between the respective axes, when moving in the Y direction, a change also occurs in the X direction. For this reason, ΔX again becomes ΔεX
Check if it is within the range, and if it is, proceed to the next step and return to the X drive if it is not.

次いで、θdriveでθ方向の角度を変位計から求め
、目標角度と測定角度の差へ〇が許容誤差Δεθ以下に
なるまで微動機構をθ方向に駆動する。
Next, with θdrive, the angle in the θ direction is obtained from the displacement meter, and the fine movement mechanism is driven in the θ direction until the difference between the target angle and the measured angle becomes less than or equal to the allowable error Δεθ.

許容誤差以内であれば、ΔX、ΔyがΔε×、Δεy以
内であることを確認する。この△X、ΔyがΔεX、△
εyを越えていれば、上述したシーケンスを繰り返して
目標位置への位置決め制御する。
If it is within the allowable error, confirm that ΔX and Δy are within Δε× and Δεy. These △X, Δy are ΔεX, △
If it exceeds εy, the above-described sequence is repeated to perform positioning control to the target position.

かくして、本実施例装置によれば、微動機構の持つ3軸
間の干渉を解消し、微動機構が本来もっている長ストロ
ークの移動と高精度な位置決めを行うことができる。こ
のため、電子ビーム描画装置等の高精度な位置決めが要
求されるものにあっても十分゛適用することができ、そ
の効果は絶大である。
Thus, according to the device of this embodiment, the interference between the three axes of the fine movement mechanism can be eliminated, and the long stroke movement and highly accurate positioning that the fine movement mechanism originally has can be performed. Therefore, the present invention can be sufficiently applied to applications that require highly accurate positioning, such as electron beam lithography equipment, and its effects are tremendous.

なお本発明は上述した実施例に限定されるものではない
。例えば、前記微動i構の位置を測定する測定器には、
レーザ干渉計や静電容置型の非接触型の測定器を用いて
もよい。また、駆動アルゴリズムは前記第2図に回答限
定されるものではなく、その状況に合せて適宜変更すれ
ばよい。また、実施例では移動部材及び駆動部材をそれ
ぞれ41Il用いた場合を説明したが、これらは3個以
上の数であればよい。ざらに、移動部材の形状や寸法等
は、仕様に応じて適宜型めればよい。また、前記固定部
材は必ずしも静電チャックに限るものではなく、電磁チ
ャックその他のものであってもよいのは、勿論のことで
ある。要するに本発明は、その要旨を逸脱しない範囲で
、種々変形して実施することができる。
Note that the present invention is not limited to the embodiments described above. For example, the measuring device that measures the position of the fine movement i-structure includes:
A laser interferometer or an electrostatic container type non-contact measuring device may also be used. Further, the driving algorithm is not limited to the answer shown in FIG. 2, but may be changed as appropriate depending on the situation. Further, in the embodiment, a case has been described in which 41Il of moving members and 41Il of driving members are used, but the number of these may be three or more. In general, the shape, dimensions, etc. of the moving member may be appropriately shaped according to the specifications. Furthermore, it goes without saying that the fixing member is not necessarily limited to an electrostatic chuck, and may be an electromagnetic chuck or other type of chuck. In short, the present invention can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係わる微動装置の概略構成
を示す平面図、第2図は上記実施例装置の作用を説明す
るためのフローチャート、第3図は本発明の基本となる
微動機構の概略構成を示すもので第3図(a)は平面図
、第3図(b)は同図(a)の矢視A−A断面図、第3
図(C)は同図(a)の矢視B−8断面図、第4図(a
)(b)及び第5図(a)(b)はそれぞれ上記微動機
構の作用を説明するための模式図、第6図は微動機構の
各軸間の干渉例を示す特性図、第7図は微動閤構の移動
方向及び位置測定点を示す模式図である。 1、〜.4・・・移動部材、5・・・基台、6.〜.9
・・・駆動部材、10a、 〜、10d、16a、 〜
。 16 d ・・・スイッチ、11a、 〜、11d、1
7a。 〜、17d・・・電源、12.〜.15・・・静電チャ
ック(固定部材) 、12a、 〜、14cj−・・電
極、12a、 〜、14d、12a、 〜、14cj・
・・絶縁層、41・・・非接触型変位計、42・・・増
幅器、43・・・A/Dコンバータ、44・・・コンパ
レータ、45・・・計算機、46・・・制御回路、47
・・・駆動部材制御信号、48・・・固定部材制御信号
。 出願人代理人 弁理士 鈴 江 武 彦(a) 第4図 (a) (b) 第5図
Fig. 1 is a plan view showing a schematic configuration of a fine movement device according to an embodiment of the present invention, Fig. 2 is a flowchart for explaining the operation of the above embodiment device, and Fig. 3 is a fine movement device which is the basis of the present invention. 3(a) is a plan view, FIG. 3(b) is a sectional view taken along arrow A-A in FIG. 3(a), and 3.
Figure (C) is a sectional view taken along arrow B-8 in Figure (a), and Figure 4 (a).
)(b) and FIGS. 5(a) and 5(b) are schematic diagrams for explaining the action of the fine movement mechanism, respectively, FIG. 6 is a characteristic diagram showing an example of interference between each axis of the fine movement mechanism, and FIG. 7 FIG. 2 is a schematic diagram showing the moving direction and position measurement points of the fine movement mechanism. 1, ~. 4... Moving member, 5... Base, 6. ~. 9
... Drive member, 10a, ~, 10d, 16a, ~
. 16 d...switch, 11a, ~, 11d, 1
7a. ~, 17d... power supply, 12. ~. 15... Electrostatic chuck (fixing member), 12a, ~, 14cj-... Electrode, 12a, ~, 14d, 12a, ~, 14cj-
... Insulating layer, 41 ... Non-contact displacement meter, 42 ... Amplifier, 43 ... A/D converter, 44 ... Comparator, 45 ... Computer, 46 ... Control circuit, 47
. . . Drive member control signal, 48 . . . Fixed member control signal. Applicant's agent Patent attorney Takehiko Suzue (a) Figure 4 (a) (b) Figure 5

Claims (7)

【特許請求の範囲】[Claims] (1)基台上に移動自在に載置された少なくとも3個の
移動部材、これらの移動部材間にそれぞれ接続された圧
電素子からなる駆動部材、及び各移動部材を基台上にそ
れぞれ固定する固定部材とを備え、上記駆動部材の伸縮
作用及び固定部材の固定作用により上記移動部材を回転
及び直進運動せしめる微動装置において、前記移動部材
の実際位置をX、Y、θ方向について測定する測定手段
と、この測定手段により得られた測定位置と前記移動部
材の実際にあるべき設定位置とを比較する比較手段と、
この比較手段により得られた位置ずれ情報に応じて前記
駆動部材による移動部材の移動量を制御する制御手段と
を具備してなることを特徴とする微動装置。
(1) At least three movable members movably placed on a base, drive members each made of a piezoelectric element connected between these movable members, and each movable member fixed on the base. and a fixing member, the fine movement device rotates and rectilinearly moves the movable member by the expansion and contraction action of the driving member and the fixing action of the fixed member, a measuring means for measuring the actual position of the movable member in the X, Y, and θ directions. and a comparison means for comparing the measured position obtained by the measuring means and the actual set position of the moving member;
A fine movement device characterized by comprising: control means for controlling the amount of movement of the moving member by the drive member in accordance with the positional deviation information obtained by the comparison means.
(2)前記測定手段は、前記移動部材の位置を少なくと
も3箇所で測定することである特許請求の範囲第1項記
載の微動装置。
(2) The fine movement device according to claim 1, wherein the measuring means measures the position of the moving member at at least three locations.
(3)前記測定手段として、渦電流型変位計を用いたこ
とを特徴とする特許請求の範囲第2項記載の微動装置。
(3) The fine movement device according to claim 2, wherein an eddy current displacement meter is used as the measuring means.
(4)前記測定手段として、静電容量型変位計を用いた
ことを特徴とする特許請求の範囲第2項記載の微動装置
(4) The fine movement device according to claim 2, wherein a capacitive displacement meter is used as the measuring means.
(5)前記測定手段として、レーザ干渉計を用いたこと
を特徴とする特許請求の範囲第2項記載の微動装置。
(5) The fine movement device according to claim 2, wherein a laser interferometer is used as the measuring means.
(6)前記固定部材は、前記各移動部材の表面層に電極
及び誘電層からなる静電チャックをそれぞれ形成してな
るものであることを特徴とする特許請求の範囲第1項記
載の微動装置。
(6) The fine movement device according to claim 1, wherein the fixed member is formed by forming an electrostatic chuck consisting of an electrode and a dielectric layer on the surface layer of each moving member. .
(7)前記基台及び各部材の全てを非磁性材料で形成す
ると共に、前記伸縮作用を有する圧電素子としてチタン
酸ジルコン酸鉛を用い、且つその他の構成材料としてベ
リリウム銅、アルミニウム或いはチタンを用いたことを
特徴とする特許請求の範囲第1項記載の微動装置。
(7) The base and all of the members are made of non-magnetic materials, and lead zirconate titanate is used as the piezoelectric element having the expansion and contraction action, and beryllium copper, aluminum, or titanium is used as other constituent materials. The fine movement device according to claim 1, characterized in that:
JP60141175A 1985-06-27 1985-06-27 Trimming unit Pending JPS622553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60141175A JPS622553A (en) 1985-06-27 1985-06-27 Trimming unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60141175A JPS622553A (en) 1985-06-27 1985-06-27 Trimming unit

Publications (1)

Publication Number Publication Date
JPS622553A true JPS622553A (en) 1987-01-08

Family

ID=15285885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60141175A Pending JPS622553A (en) 1985-06-27 1985-06-27 Trimming unit

Country Status (1)

Country Link
JP (1) JPS622553A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027793U (en) * 1988-06-27 1990-01-18
US5138463A (en) * 1989-09-07 1992-08-11 Sharp Kabushiki Kaisha Double decker housing and paper handling device for facsimile apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027793U (en) * 1988-06-27 1990-01-18
US5138463A (en) * 1989-09-07 1992-08-11 Sharp Kabushiki Kaisha Double decker housing and paper handling device for facsimile apparatus

Similar Documents

Publication Publication Date Title
KR100935956B1 (en) Flexure assembly for a scanner
JPH0212381B2 (en)
US6949845B2 (en) Planar motor
US5896032A (en) Position detection device positioning device and moving medium-type memory device
JP2003523567A (en) Abbe error correction apparatus and method
JPS62130413A (en) X-y-theta stage assembly
US6860020B2 (en) Ultra-precision feeding apparatus
JPS622553A (en) Trimming unit
JPS5972135A (en) Super-precise x-y shifter
JP2001351839A (en) Charged particle beam exposure device and manufacturing method of semiconductor device
JP2003022959A (en) Stage unit
Clark et al. Modeling of two-plate capacitive position sensing systems for high precision planar three DOF measurement
JPS61243511A (en) Fine positioning device
US20230221658A1 (en) Machine measurement metrology frame for a lithography system
KR100381974B1 (en) Three-axis stage control device using frictionless flexure bearings
Atherton Nanometre precision mechanisms
JPH0679254B2 (en) Multi-axis positioning device
JPH0527034Y2 (en)
JPS63153405A (en) Scanning type tunnel microscope
JP3472553B2 (en) Gap adjusting device and adjusting method
WO2024087679A1 (en) Position measurement apparatus, semiconductor device manufacturing device, and device manufacturing method
RU2011153C1 (en) Method of calibrating measuring head
JPH0358855B2 (en)
JPH10303281A (en) Xytheta table
JPH0449675B2 (en)