JPS62254827A - Apparatus for recovering waste heat obtained from exhaust gas treatment apparatus - Google Patents

Apparatus for recovering waste heat obtained from exhaust gas treatment apparatus

Info

Publication number
JPS62254827A
JPS62254827A JP61098317A JP9831786A JPS62254827A JP S62254827 A JPS62254827 A JP S62254827A JP 61098317 A JP61098317 A JP 61098317A JP 9831786 A JP9831786 A JP 9831786A JP S62254827 A JPS62254827 A JP S62254827A
Authority
JP
Japan
Prior art keywords
heat medium
heat
exhaust gas
temperature
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61098317A
Other languages
Japanese (ja)
Inventor
Hideaki Nakadokoro
中所 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trinity Industrial Corp
Original Assignee
Trinity Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trinity Industrial Corp filed Critical Trinity Industrial Corp
Priority to JP61098317A priority Critical patent/JPS62254827A/en
Publication of JPS62254827A publication Critical patent/JPS62254827A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively utilize the waste heat of deodorized gas by interposing a heater for a heating medium in such a passage that the deodorized gas discharged from a catalytic layer is fed to a heat exchanger therethrough, feeding and circulating the heating medium to a heat recovery apparatus for the heating medium and providing a means controlling the flow rate of the heating medium. CONSTITUTION:Exhaust gas of a drying furnace 1 is sent to a catalytic layer 5 heated by a burner 4 via a heat exchanger 3 by means of a fan 2, and harmful offensive odor components are burned and decomposed. Deodorized gas discharged from the catalytic layer 5 is sent into a heater 7 for a heating medium to heat the heating medium incorporated in finned tubes 8 and then preheats the exhaust gas in a heat exchanger 3. The heating medium is sent to a heat recovery apparatus 10 for the heating medium by a pump 12 for the heating medium and preheats the air incorporated in the furnace which is heated by a burner 27 of a hot air circulation system 9 and it is circulated and sent to the heater 7. In this case, the number of revolutions of the circulation pump 12 is changed by a detection signal sent from a temp. detection sensor 14 and the flow rate of the heating medium is controlled and the preheating temp. of the exhaust gas is definitely maintained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、塗装用乾燥炉、印刷用乾燥炉、プラスチック
や合板の製造設備2食品加工設備、産業廃棄物処理設備
などの各種排ガス発生源から排出される排ガスを触媒層
に通して脱臭処理する排ガス処理装置からの排熱回収装
置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to various exhaust gas generation sources such as painting drying ovens, printing drying ovens, plastic and plywood manufacturing equipment, food processing equipment, and industrial waste processing equipment. The present invention relates to an exhaust heat recovery device from an exhaust gas treatment device that deodorizes exhaust gas discharged from the exhaust gas by passing it through a catalyst layer.

〔従来技術とその問題点〕[Prior art and its problems]

上記の如き塗装用乾燥炉等の各種施設内においては、塗
料、インキ、溶剤、接着剤1合成樹脂あるいは化学薬品
等からアルコール頚9エステル類や、有毒で特有の臭気
を持つフェノール類、アルデヒド類等の有害悪臭成分が
発生して作業環境を害するなどの問題がある。
In various facilities such as the above-mentioned paint drying ovens, paints, inks, solvents, adhesives, synthetic resins, chemicals, alcohol 9 esters, phenols with toxic and characteristic odors, aldehydes, etc. There are problems such as the generation of harmful and odor components such as harmful odor components that harm the working environment.

このため、有害悪臭成分を含む排ガスを施設外に排出さ
せる必要があるが、公害防止の観点からこれを直接大気
中に放出することができず、通常は触媒燃焼式の排ガス
処理装置を通じて無害無臭化した状態で放出することと
している。
For this reason, it is necessary to discharge the exhaust gas containing harmful odor components outside the facility, but from the perspective of pollution prevention, it is not possible to release it directly into the atmosphere, and it is usually done through a catalytic combustion type exhaust gas treatment device to make it harmless and odorless. The plan is to release it in a solidified state.

ところで、このように排ガスを無害無臭化する従来一般
の排ガス処理装置は、第3図に示す如く構成されている
By the way, a conventional general exhaust gas treatment device for making exhaust gas harmless and odorless is constructed as shown in FIG. 3.

即ら、第3図は、排ガス発生源となる塗装用乾燥炉から
排出される排ガスを脱臭処理する排ガス処理装置の従来
例を示し、乾燥炉1内がらファン2によって吸引排出さ
れる約150〜180℃の排ガスが熱交換器3を通じて
約300〜350 ”C程度に予熱されて、バーナ4に
より所定の反応温度(通常、約350〜450℃)に加
熱された触媒N5に送られ、当該触媒層5を通じて脱臭
処理された高温の脱臭ガスが熱交換器3に送り込まれて
前記排ガスの予熱に供されてから外部に排出されるよう
に成されている。
That is, FIG. 3 shows a conventional example of an exhaust gas treatment device that deodorizes exhaust gas discharged from a painting drying oven, which is an exhaust gas generation source. Exhaust gas at 180°C is preheated to about 300 to 350"C through a heat exchanger 3, and sent to a catalyst N5 heated to a predetermined reaction temperature (usually about 350 to 450°C) by a burner 4. The high-temperature deodorized gas that has been deodorized through the layer 5 is sent to the heat exchanger 3, used to preheat the exhaust gas, and then discharged to the outside.

つまり、乾燥炉1から触媒層5に送られる排ガスが、排
ガス中に含まれた有害悪臭成分の酸化燃焼熱を回収する
熱交換器3によって予熱されるように成されて、バーナ
4の燃料費節減を図っている。
In other words, the exhaust gas sent from the drying furnace 1 to the catalyst layer 5 is preheated by the heat exchanger 3 that recovers the heat of oxidation combustion of harmful malodorous components contained in the exhaust gas, and the fuel consumption of the burner 4 is reduced. We are trying to save money.

しかしながら、バーナ4で約350〜450 ’Cに加
熱された触媒層5に通して脱臭処理される排ガスは、当
該排ガス中に含まれた有害悪臭成分の酸化燃焼によって
、約450〜520℃程度の非常に高温の脱臭ガスとな
るから、これを熱交換器3に送り込んだ場合には当該熱
交換器3を通って触媒層5に送られる排ガスの予熱温度
が触媒層5の反応温度(脱臭コントロール温度)よりも
異常に高くなって装置全体の温度システムが崩れ、装置
各部の温度上昇により装置が破損されるおそれがある。
However, the exhaust gas that is deodorized by passing through the catalyst layer 5 heated to about 350 to 450'C by the burner 4 has a temperature of about 450 to 520'C due to oxidative combustion of harmful malodorous components contained in the exhaust gas. Since the deodorizing gas is extremely hot, when it is sent to the heat exchanger 3, the preheating temperature of the exhaust gas sent to the catalyst layer 5 through the heat exchanger 3 is set to the reaction temperature of the catalyst layer 5 (deodorization control temperature), the temperature system of the entire device may collapse, and the device may be damaged due to the temperature rise in each part of the device.

そこで、従来においては、触媒層5に送られる排ガスが
熱交換器3で異常な高温に予熱されることを防止するた
めに、次に掲げるような種々の方策を講じている。
Therefore, conventionally, in order to prevent the exhaust gas sent to the catalyst layer 5 from being preheated to an abnormally high temperature by the heat exchanger 3, various measures as listed below have been taken.

(方策I) 乾燥炉1内で乾燥される被塗装物の塗膜から発生する有
害悪臭成分の量は略一定であることに鑑み、乾燥炉1内
から排出して触媒層5に送る排ガス風量を増大させるこ
とにより排ガス濃度を相対的に低下させて触媒層5を通
る排ガスの酸化燃焼熱を小さくし、触媒rvJ5を通っ
て脱臭処理された脱臭ガスの温度が異常な高温になるこ
とを防止している。
(Measure I) Considering that the amount of harmful odor components generated from the coating film of the object to be coated dried in the drying oven 1 is approximately constant, the amount of exhaust gas discharged from the drying oven 1 and sent to the catalyst layer 5 is adjusted. By increasing the temperature, the exhaust gas concentration is relatively lowered and the heat of oxidation combustion of the exhaust gas passing through the catalyst layer 5 is reduced, thereby preventing the temperature of the deodorized gas that has been deodorized through the catalyst rvJ5 from reaching an abnormally high temperature. are doing.

しかし、このように排ガス風量を増大させると、ファン
2やバーナ4の容量が大きくなって動力費。
However, increasing the exhaust gas air volume in this way increases the capacity of the fan 2 and burner 4, which increases power costs.

燃料費が嵩むと同時に、排ガス処理装置全体が大型化す
るという問題がある。
There are problems in that fuel costs increase and at the same time, the overall size of the exhaust gas treatment device increases.

また、乾燥炉1内から排ガスを大量に吸引排出するから
、乾燥炉1の出入口を通じて当該乾燥炉1内に低温の外
気が流入して炉内の温度分布が崩れ、被塗装物の加熱不
良を生じてその製品品質が損なわれるだけでなく、乾燥
炉1内を加熱するバーナの燃焼量が大となって燃料費が
嵩むと共に、乾燥炉1内に配設する排ガス捕集ダクトが
大型化して乾燥装置の設備費も嵩むという問題がある。
In addition, since a large amount of exhaust gas is sucked and discharged from the inside of the drying furnace 1, low-temperature outside air flows into the drying furnace 1 through the entrance and exit of the drying furnace 1, disrupting the temperature distribution inside the furnace and causing poor heating of the object to be coated. This not only impairs the quality of the product, but also increases the combustion amount of the burner that heats the inside of the drying furnace 1, increasing fuel costs, and increasing the size of the exhaust gas collection duct installed inside the drying furnace 1. There is also a problem in that the equipment cost for the drying equipment increases.

(方策■) また、乾燥炉1内から排出する排ガス風量を増大させる
ことなく、熱交換器3の熱回収効率を低下させて排ガス
が異常な高温に予熱されることを防止することも行われ
ているが、この場合には脱臭ガスの排熱を有効利用する
ことができず、触媒層5を所定の反応温度に加熱するバ
ーナ4の燃焼量を従来よりも増大させなければならない
から、バーナ4の容量が大きくなって排ガス処理装置の
バーナ燃焼系が大型化し、燃料費及び設備費等が嵩むと
いう問題がある。
(Measure ■) In addition, the heat recovery efficiency of the heat exchanger 3 is reduced to prevent the exhaust gas from being preheated to an abnormally high temperature without increasing the volume of exhaust gas discharged from the inside of the drying oven 1. However, in this case, the exhaust heat of the deodorized gas cannot be used effectively, and the amount of combustion of the burner 4 that heats the catalyst layer 5 to a predetermined reaction temperature must be increased compared to the conventional one. 4, the burner combustion system of the exhaust gas treatment device becomes larger, resulting in an increase in fuel costs, equipment costs, etc.

(方策■) また、乾燥炉1内の排ガスを排ガス処理装置に送給する
通路の途中から第3図に示す如く所要量の新鮮空気を導
入して排ガスと混合することにより、乾燥炉1内から排
出する排ガス風量を増大させずに排ガス濃度を低下させ
て、乾燥炉1内の温度分布の崩れなどを防止するものも
ある。
(Measure ■) In addition, by introducing a required amount of fresh air from the middle of the passage that feeds the exhaust gas inside the drying furnace 1 to the exhaust gas treatment device as shown in Fig. 3 and mixing it with the exhaust gas, the inside of the drying furnace 1 can be There is also a method that reduces the concentration of exhaust gas without increasing the volume of exhaust gas discharged from the drying furnace 1, thereby preventing the temperature distribution within the drying oven 1 from becoming distorted.

しかし、この場合にも、方策Iと同様にファン2やバー
ナ4の容量が大きくなって動力費、燃料費が嵩むと同時
に、排ガス処理装置全体が大きくなるという問題がある
However, in this case as well, there is a problem that the capacity of the fan 2 and the burner 4 becomes large, increasing the power cost and fuel cost, and at the same time, the overall size of the exhaust gas treatment device becomes large.

(方策■) また、熱交換器3による排ガスの予熱温度が一定以上に
上昇した時に触媒層5を加熱するバーナ4の燃焼を停止
させ、一定収下に降下すると再びバーナ4を点火するよ
うにして、脱臭ガスが異常な高温になることを防止する
方策も講ぜられているやしかし、この場合には、バーナ
4を度々オン・オフしてその都度作業者が着火状態を確
認しなければならないという面倒があると共に、触媒層
5で酸化燃焼される排ガス濃度が高い時にはバーナ4の
燃焼を停止しても脱臭ガスの温度が低下しないという問
題がある。
(Measure ■) Also, when the preheating temperature of the exhaust gas by the heat exchanger 3 rises above a certain level, the combustion of the burner 4 that heats the catalyst layer 5 is stopped, and when the temperature drops to a certain level, the burner 4 is ignited again. Measures have been taken to prevent the deodorizing gas from reaching an abnormally high temperature.However, in this case, the burner 4 must be turned on and off frequently and the operator must check the ignition status each time. In addition to this, there is a problem that when the concentration of exhaust gas oxidized and burned in the catalyst layer 5 is high, the temperature of the deodorized gas does not decrease even if combustion in the burner 4 is stopped.

また、前記のようにバーナ4をオン・オフする面倒な作
業を自動化した場合には、自動機器の故障によりバーナ
4が着火せずに燃料が噴出し続けるという事故を生ずる
おそれがあり、安全上問題がある。
In addition, if the troublesome work of turning on and off the burner 4 is automated as described above, there is a risk of an accident in which the burner 4 does not ignite and fuel continues to spout due to a failure of the automatic equipment, which is a safety issue. There's a problem.

〔発明の目的〕[Purpose of the invention]

そこで本発明は、塗装用乾燥炉等の排ガス発生源から熱
交換器を通して排ガス処理装置の触媒層に送る排ガス風
量を増大させたり、触媒層を加熱する)<−ナをオン・
オフさせることなく、触媒層に送られる排ガスの予熱温
度が異常な高温になることを確実に防止できると同時に
、触媒層を通じて脱臭処理された脱臭ガスの排熱を極め
て有効に回収利用することができ、しかも回収利用する
排熱の温度を一定に調節することが可能な排ガス処理装
置からの排熱回収装置を提供することを目的とする。
Therefore, the present invention aims to increase the flow rate of exhaust gas sent from an exhaust gas generation source such as a paint drying oven to the catalyst layer of an exhaust gas treatment device through a heat exchanger, and to turn on and heat the catalyst layer.
It is possible to reliably prevent the preheating temperature of the exhaust gas sent to the catalyst layer from reaching an abnormally high temperature without turning it off, and at the same time, it is possible to extremely effectively recover and use the exhaust heat of the deodorized gas that has been deodorized through the catalyst layer. It is an object of the present invention to provide an exhaust heat recovery device from an exhaust gas treatment device that can control the temperature of exhaust heat to be recovered and used to a constant value.

〔発明の構成〕[Structure of the invention]

この目的を達成するために、本発明は、排ガス発生源か
ら排出される排ガスが熱交換器を通じて予熱されて、バ
ーナで所定の反応温度に加熱された触媒層に送られ、当
該触媒層を通じて脱臭処理された高温の脱臭ガスが前記
熱交換器に送り込まれて前記排ガスの予熱に供されてか
ら外部に排出されるように成された排ガス処理装置から
の排熱回収装置であって、前記触媒層を通じて脱臭処理
した高温の脱臭ガスを前記熱交換器に送給する通路に介
装された熱媒加熱器と、当該熱媒加熱器内で前記脱臭ガ
スとの熱交換によって加熱された熱媒を熱媒熱回収器に
循環供給する熱媒循環往路及び熱媒循環復路から成る熱
媒循環系と、前記熱媒循環復路を通じて前記熱媒加熱器
内に流通する熱媒の流量を可変調節する熱媒流量制御手
段とを具備したことを特徴とする。
To achieve this objective, the present invention provides that exhaust gas discharged from an exhaust gas generation source is preheated through a heat exchanger and sent to a catalyst layer heated to a predetermined reaction temperature by a burner, and deodorized through the catalyst layer. The exhaust heat recovery device from the exhaust gas treatment device is configured such that the treated high-temperature deodorized gas is sent to the heat exchanger to preheat the exhaust gas and then discharged to the outside, wherein the catalyst a heating medium heater interposed in a passage for feeding high-temperature deodorized gas deodorized through the layer to the heat exchanger; and a heating medium heated by heat exchange with the deodorizing gas in the heating medium heater. a heat medium circulation system consisting of a heat medium circulation outward path and a heat medium circulation return path for circulating and supplying heat medium to a heat medium heat recovery device; and variably adjusting the flow rate of the heat medium flowing into the heat medium heater through the heat medium circulation return path. It is characterized by comprising a heating medium flow rate control means.

〔発明の作用〕[Action of the invention]

本発明によれば、排ガス処理装置の触媒層を通じて脱臭
処理された高温の脱臭ガスが、排熱回収装置の熱媒加熱
器を通って熱媒との熱交換により放熱した後に、排ガス
を予熱する熱交換器に送り込まれるから、従来の如く排
ガス発生源から触媒層に送られる排ガス風量を増大させ
たり、触媒層を加熱するバーナの燃焼を停止させること
なく、排ガスの予熱温度の異常な上昇を防止することが
できると同時に、高温の脱臭ガスとの熱交換によって加
熱された熱媒を、例えば塗装用乾燥炉に循環供給する熱
風の加熱源や塗装前処理装置の前処理液の加熱源等とし
て各種用途に用いられる熱媒熱回収器に循環供給し、排
ガス処理装置からの排熱を最大限に有効利用して省エネ
ルギー化を図ることができる。
According to the present invention, the high-temperature deodorized gas that has been deodorized through the catalyst layer of the exhaust gas treatment device passes through the heat medium heater of the exhaust heat recovery device and radiates heat by heat exchange with the heat medium, and then the exhaust gas is preheated. Since the exhaust gas is sent to the heat exchanger, it is possible to prevent an abnormal rise in the preheating temperature of the exhaust gas without increasing the amount of exhaust gas sent from the exhaust gas generation source to the catalyst layer or stopping the combustion of the burner that heats the catalyst layer, as in the case of conventional methods. At the same time, a heating medium heated by heat exchange with high-temperature deodorizing gas can be circulated to a drying furnace for painting, for example, or a heating source for pretreatment liquid in a painting pretreatment device, etc. The exhaust heat from the exhaust gas treatment device can be used to its fullest extent and energy can be saved by circulating the heat medium and supplying it to a heat recovery device used for various purposes.

また、本発明によれば、熱媒加熱器内に流通する熱媒の
流量を可変調節する熱媒流量制御手段を具備しているか
ら、例えば熱媒加熱器から熱交換器に送り込まれる脱臭
ガスの温度変化や、熱媒加熱器から熱媒循環往路を通じ
て熱媒熱回収器に送給される熱   −媒の温度変化に
応じて熱媒流量を可変調節することにより、熱交換器に
おける排ガスの予熱温度や熱媒熱回収器の放熱温度を常
に一定に維持することかできる。
Further, according to the present invention, since the heat medium flow rate control means for variably adjusting the flow rate of the heat medium flowing in the heat medium heater is provided, for example, deodorizing gas sent from the heat medium heater to the heat exchanger is provided. By variably adjusting the heat medium flow rate according to the temperature change of the heat medium and the temperature change of the heat medium sent from the heat medium heater to the heat medium heat recovery device through the heat medium circulation outward path, the exhaust gas in the heat exchanger can be reduced. It is possible to always maintain the preheating temperature and the heat radiation temperature of the heat medium heat recovery device constant.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて具体的に説明す
る。
Embodiments of the present invention will be specifically described below based on the drawings.

第1図は、本発明による排ガス処理装置からの排熱回収
装置の一例を示すフローシート図である。
FIG. 1 is a flow sheet diagram showing an example of an exhaust heat recovery device from an exhaust gas treatment device according to the present invention.

なお、前述した第3図との共通部分については同一符号
を付してその詳細説明を省略する。
Note that parts common to those in FIG. 3 described above are given the same reference numerals, and detailed explanation thereof will be omitted.

第1図に示す排ガス処理装置Gは、触媒層5を通して脱
臭処理された高温の脱臭ガスを熱交換器3に送給する通
路6に、当該脱臭ガスとの熱交換によって熱媒を加熱す
る熱媒加熱器7が介装されている。
The exhaust gas treatment device G shown in FIG. A medium heater 7 is interposed.

脱臭ガスが送り込まれる熱媒加熱器7内には熱媒を循環
流通させるフィンチューブ8が配設され、当該フィンチ
ューブ8内を流通する熱媒が脱臭ガスとの熱交換で加熱
されて乾燥装置にの熱風循環系9に介装された熱媒熱回
収器10に循環供給されるように成されている。
A fin tube 8 for circulating the heat medium is disposed in the heat medium heater 7 into which the deodorizing gas is fed, and the heat medium flowing through the fin tube 8 is heated by heat exchange with the deodorizing gas to form a drying device. The hot air is circulated and supplied to a heat medium heat recovery device 10 installed in a hot air circulation system 9.

即ち、排ガス処理装置Gの通路6に介装された熱媒加熱
器7と、当該熱媒加熱器7内のフィンチューブ8を通っ
て脱臭ガスとの熱交換により加熱された熱媒を熱媒熱回
収器10に循環供給する熱媒循環往路11a及び熱媒循
環復路11bから成る熱媒循環系11とを具備した排熱
回収装置Hが設けられ、熱媒加熱器7で加熱された熱媒
が熱媒循環系11の熱媒循環復路11bに介装された熱
媒循環ポンプ12によって熱媒熱回収器10に循環供給
されるように成されている。
That is, the heat medium heated by heat exchange with the deodorizing gas is passed through the heat medium heater 7 interposed in the passage 6 of the exhaust gas treatment device G and the fin tube 8 in the heat medium heater 7. An exhaust heat recovery device H is provided, which includes a heat medium circulation system 11 consisting of a heat medium circulation outward path 11a and a heat medium circulation return path 11b that circulate and supply the heat medium to the heat recovery device 10. is configured to be circulated and supplied to the heat medium heat recovery device 10 by a heat medium circulation pump 12 interposed in the heat medium circulation return path 11b of the heat medium circulation system 11.

また、排熱回収装置■(には、熱媒循環ポンプ12によ
り熱媒循環復路11bを通じて熱媒加熱器7のフィンチ
ューブ8内に流通する熱媒の流量を可変調節する熱媒流
量制御手段13が具備されている。
In addition, the exhaust heat recovery device (1) includes a heat medium flow control means 13 that variably adjusts the flow rate of the heat medium flowing into the fin tube 8 of the heat medium heater 7 through the heat medium circulation return path 11b by the heat medium circulation pump 12. is equipped.

この熱媒流量制御手段13は、排ガス処理装置Gの通路
6を通って熱媒加熱器7から熱交換器3内に送り込まれ
る脱臭ガスの温度を検出する温度検出センサ14と、当
該センサ14からの検出信号に応じて熱媒循環ポンプ1
2の回転数を可変制御するインバータ・モータ15とか
ら構成され、温度検出センサI4で検出した脱臭ガスの
温度が一定以下であれば、熱媒循環ポンプ12の回転数
を低下させて熱媒加熱器7のフィンチューブ8内に流通
する熱媒の流量を減少させ、これにより熱媒を加熱する
脱臭ガスの熱負荷を低減させて熱交換器3内に送り込ま
れる脱臭ガスの温度を上昇させる。
The heat medium flow rate control means 13 includes a temperature detection sensor 14 that detects the temperature of the deodorizing gas sent into the heat exchanger 3 from the heat medium heater 7 through the passage 6 of the exhaust gas treatment device G; Heat medium circulation pump 1 according to the detection signal of
If the temperature of the deodorizing gas detected by the temperature detection sensor I4 is below a certain level, the rotation speed of the heat medium circulation pump 12 is lowered to heat the heat medium. The flow rate of the heat medium flowing in the fin tube 8 of the heat exchanger 7 is reduced, thereby reducing the thermal load on the deodorizing gas that heats the heat medium, and increasing the temperature of the deodorizing gas sent into the heat exchanger 3.

また、温度検出センサ14で検出した脱臭ガスの温度が
一定以上であれば、前記の場合と逆に熱媒循環ポンプ1
2の回転数を上昇させて、フィンチューブ8内に流通す
る熱媒の流量を増大させ、熱媒を加熱する脱臭ガスの熱
負荷を増大させて熱交換器3内に送り込まれる脱臭ガス
の温度を低下させるように制御する。
Further, if the temperature of the deodorizing gas detected by the temperature detection sensor 14 is above a certain level, the heat medium circulation pump 1
The temperature of the deodorizing gas fed into the heat exchanger 3 is increased by increasing the rotation speed of the heat exchanger 2 to increase the flow rate of the heat medium flowing in the fin tube 8 and increasing the thermal load of the deodorizing gas that heats the heat medium. control to reduce the

また、実施例においては、熱媒循環系11の熱媒循環往
路ILaと熱媒循環復路11bとの間に、圧力調整弁1
7を介装したバイパス管路18が熱媒熱回収器lOと並
列に接続され、熱媒循環往路11a内の圧力を検出する
圧力検出センサエ9からの検出信号によって圧力調整弁
17が開閉制御されるように成され、具体的には、熱媒
循環往路11aを通って熱媒熱回収器10に送給される
熱媒の圧力が一定以上に上昇した時に、熱媒加熱器7か
ら送給される熱媒の一部が熱媒熱回収器10の前段でバ
イパス管路18を通って熱媒循環復路11bに直接供給
されるように成されている。
Further, in the embodiment, a pressure regulating valve 1 is provided between the heat medium circulation outward path ILa and the heat medium circulation return path 11b of the heat medium circulation system 11.
A bypass pipe line 18 with a heat medium heat recovery device 10 interposed therein is connected in parallel with the heat medium heat recovery device lO, and the pressure regulating valve 17 is controlled to open and close by a detection signal from a pressure detection sensor 9 that detects the pressure in the heat medium circulation outward path 11a. Specifically, when the pressure of the heat medium fed to the heat medium heat recovery device 10 through the heat medium circulation outward path 11a rises above a certain level, the pressure of the heat medium fed from the heat medium heater 7 is A part of the heat medium is directly supplied to the heat medium circulation return path 11b through a bypass pipe 18 at a stage before the heat medium heat recovery device 10.

また、熱媒循環復路11bには、熱媒循環系ll内を循
環する熱媒の体積膨張を吸収する膨張タンク20に連結
される管路21が接続され、熱媒循環系11内を循環す
る熱媒が熱媒加熱器7で加熱されて膨張した時に、当該
熱媒の一部を膨張タンク20内に逃がしたり、あるいは
逆に熱媒循環系11内を循環する熱媒の体積が減少した
時にその減少した分だけ自動的に膨張タンク20内から
熱媒循環系1工内に熱媒を供給するように成されている
Further, a pipe line 21 connected to an expansion tank 20 that absorbs the volumetric expansion of the heat medium circulating within the heat medium circulation system 11 is connected to the heat medium circulation return path 11b. When the heat medium is heated and expanded by the heat medium heater 7, a part of the heat medium is released into the expansion tank 20, or conversely, the volume of the heat medium circulating in the heat medium circulation system 11 is reduced. At the same time, the heating medium is automatically supplied from the expansion tank 20 to the heating medium circulation system 1 by the amount reduced.

なお、図中、22は熱媒を貯留するストレージタンクで
あって、熱媒加熱器7の起動開始時に熱媒循環系11内
に熱媒を供給して充填させる熱媒供給ポンプ23を介装
した熱媒供給管路24と、膨張タンク20との間に接続
されて熱媒の熱膨張を吸収する熱膨張吸収管路25と、
膨張タンク20内の熱媒水位を調節する熱媒水位調節管
路26と、膨張タンク20内の熱媒を液抜きして回収す
るドレン管路27が、夫々連結されている。
In addition, in the figure, 22 is a storage tank for storing a heat medium, and a heat medium supply pump 23 is interposed to supply and fill the heat medium into the heat medium circulation system 11 when the heat medium heater 7 starts to start up. a thermal expansion absorption pipe 25 connected between the heating medium supply pipe 24 and the expansion tank 20 to absorb thermal expansion of the heating medium;
A heat medium level adjustment pipe 26 for adjusting the heat medium water level in the expansion tank 20 and a drain pipe 27 for draining and recovering the heat medium in the expansion tank 20 are connected to each other.

また、乾燥装置にの熱風循環系9には、乾燥炉1内から
吸引して熱媒熱回収器10で予熱された炉内空気を所定
の温度に加熱するバーナ28と、当該バーナ28で加熱
された空気をフィルタ29を通じて再び乾燥炉l内に循
環供給する熱風循環ファン30とが介装されている。
In addition, the hot air circulation system 9 of the drying device includes a burner 28 that heats the furnace air sucked from inside the drying furnace 1 and preheated by the heat medium heat recovery device 10 to a predetermined temperature; A hot air circulation fan 30 is installed which circulates and supplies the air through the filter 29 into the drying oven l.

また、乾燥炉1内には炉内温度を検出する温度検出セン
サ31が設置され、炉内温度が被塗装物の焼付乾燥に最
適な温度(例えば、約170〜180℃程度)よりも一
定収上高くなった時又は低くなった時に、これを検出し
た温度検出センサ31からの検出信号に基づいて、温度
制御装置32a及び32bから夫々バーナ28の燃焼量
を調節するコントロールモータ33と、熱媒熱回収器l
Oの流入口側と流出口側とを短絡して連通させるバイパ
ス管路34に介装された電磁弁35の作動を制御する制
御信号が夫々出力されるように成され、具体的には例え
ば、炉内温度が一定以上高くなった時には、コントロー
ルモータ33によりバーナ28に供給する燃料と、ブロ
アー36から供給する燃焼用空気の量を減少させたり、
電磁弁35を開けて熱媒熱回収器10内への熱媒の流通
量を減少させ、もしくは流通を停止させるように制御す
る。
Further, a temperature detection sensor 31 is installed in the drying oven 1 to detect the temperature inside the oven, and the temperature inside the oven is kept at a constant level lower than the optimum temperature for baking and drying the object to be coated (for example, about 170 to 180 degrees Celsius). A control motor 33 that adjusts the combustion amount of the burner 28 from temperature control devices 32a and 32b, respectively, based on a detection signal from a temperature detection sensor 31 that detects when the temperature becomes high or low; heat recovery device l
A control signal for controlling the operation of a solenoid valve 35 installed in a bypass pipe 34 that short-circuits and communicates the inlet side and the outlet side of O is outputted, and specifically, for example, When the temperature inside the furnace becomes higher than a certain level, the control motor 33 reduces the amount of fuel supplied to the burner 28 and the amount of combustion air supplied from the blower 36,
The electromagnetic valve 35 is opened to reduce the flow rate of the heat medium into the heat medium heat recovery device 10 or to control the flow to be stopped.

なお、図中、37はストレーナ、38は空気抜き弁であ
る。
In addition, in the figure, 37 is a strainer, and 38 is an air vent valve.

以上が、本発明による排ガス処理装置Gからの排熱回収
装置■(と、これらを用いた乾燥装置にの一例構成であ
り、次にその動作について説明する。
The above is an example of the configuration of the exhaust heat recovery device (1) from the exhaust gas treatment device G (and the drying device using these) according to the present invention.Next, the operation thereof will be explained.

排ガス処理装置Gの起動開始に先立って、まず膨張タン
ク20の空気抜き弁38を開き、熱媒供給ポンプ23を
稼動させてストレージタンク22内に貯留された熱媒を
熱媒供給管路23を通じて熱媒循環系11内に送給し、
当該熱媒循環系11内が熱媒で充填されると前記ポンプ
23を停止させて熱媒の供給を停止すると同時に、熱媒
の高温酸化を防止するために空気抜き弁38を全閉して
おく。なお、熱媒としては、例えば約300〜330℃
程度の高温まで成環で使用可能な芳香族炭化水素系の熱
媒体油が用いられ、この種の熱媒体油は温度が100℃
上昇する毎に体積が約10%程度膨張する性状を有して
いる。
Prior to starting up the exhaust gas treatment device G, first open the air vent valve 38 of the expansion tank 20 and operate the heat medium supply pump 23 to transfer heat from the heat medium stored in the storage tank 22 through the heat medium supply pipe 23. feeding into the medium circulation system 11,
When the heating medium circulation system 11 is filled with the heating medium, the pump 23 is stopped to stop the supply of the heating medium, and at the same time, the air vent valve 38 is fully closed to prevent high-temperature oxidation of the heating medium. . In addition, as a heating medium, for example, about 300 to 330°C
Aromatic hydrocarbon heat transfer oil that can be used for ring formation up to a high temperature of 100℃ is used.
Each time it rises, its volume expands by about 10%.

この状態で、乾燥炉1の熱風循環系9に介装されたバー
ナ28を燃焼させて、その燃焼ガスを熱風循環ファン3
0で乾燥炉1内に循環供給し、当該乾燥炉1内の雰囲気
を被塗装物の焼付乾燥に好適な温度である約170〜1
80℃程度に加熱昇温して被塗装物の搬送を開始する。
In this state, the burner 28 installed in the hot air circulation system 9 of the drying oven 1 is combusted, and the combustion gas is transferred to the hot air circulation fan 3.
The atmosphere inside the drying oven 1 is maintained at a temperature of approximately 170 to 1, which is a temperature suitable for baking and drying the object to be coated.
The temperature is raised to about 80°C and the conveyance of the object to be coated is started.

これと同時に、乾燥炉1内の排ガスをファン2により吸
引排出し、これを排ガス処理袋fiGの熱交換器3を通
じてバーナ4で加熱された触媒層5に送ると共に、排熱
回収装置Hの熱媒循環復路11bに介装された熱媒循環
ポンプ12を稼動させて熱媒加熱器7のフィンチューブ
8内に熱媒を流通させる。
At the same time, the exhaust gas in the drying oven 1 is sucked and discharged by the fan 2, and sent through the heat exchanger 3 of the exhaust gas treatment bag fiG to the catalyst bed 5 heated by the burner 4, and the exhaust gas of the exhaust heat recovery device H is The heat medium circulation pump 12 installed in the medium circulation return path 11b is operated to flow the heat medium into the fin tube 8 of the heat medium heater 7.

これにより、乾燥炉1内からファン2によって吸引排出
された約150〜180℃の排ガスが、バーナ4により
所定の反応温度である約350〜450℃に加熱された
触媒層5に通され、当該排ガス中の有害悪臭成分が触媒
層5を通じて燃焼分解する際の酸化燃焼熱で約450〜
520℃に加熱された高温の脱臭ガスが得られる。
As a result, the exhaust gas at about 150 to 180°C, which is suctioned and discharged from the inside of the drying oven 1 by the fan 2, is passed through the catalyst layer 5, which is heated to about 350 to 450°C, which is a predetermined reaction temperature, by the burner 4. The heat of oxidation combustion when the harmful malodorous components in the exhaust gas are combusted and decomposed through the catalyst layer 5 is about 450 ~
A high temperature deodorized gas heated to 520°C is obtained.

そして、このように高温に加熱された脱臭ガスが熱媒加
熱器7内に送り込まれ、当該熱媒加熱器7内に配設され
たフィンチューブ8内を流通する熱媒との熱交換により
熱を奪われて一定温度以下に低下せられてから熱交換器
3内に送り込まれ、当該熱交換器3を通じて触媒層5に
送られる排ガスとの熱交換によって当該排ガスを触媒層
5の反応温度以下である例えば約250〜300℃程度
に予熱する。
The deodorizing gas heated to a high temperature in this way is sent into the heat medium heater 7, and heat is generated by heat exchange with the heat medium flowing in the fin tube 8 disposed in the heat medium heater 7. The temperature of the exhaust gas is lowered to a certain level or below, and then sent into the heat exchanger 3, and through heat exchange with the exhaust gas sent to the catalyst layer 5 through the heat exchanger 3, the exhaust gas is lowered to a temperature lower than the reaction temperature of the catalyst layer 5. For example, preheat to about 250 to 300°C.

このように、排ガス処理装置Gは、触媒層5に通して脱
臭処理された高温の脱臭ガスが、排熱回収装置IIの熱
媒加熱器7内を流通する熱媒との熱交換によって熱を奪
われ、温度が一定以下に低下せられてから熱交換器3内
に送り込まれる。
In this way, in the exhaust gas treatment device G, the high-temperature deodorized gas that has been deodorized through the catalyst layer 5 loses heat through heat exchange with the heating medium flowing in the heating medium heater 7 of the exhaust heat recovery device II. The heat exchanger 3 is then fed into the heat exchanger 3 after its temperature is lowered below a certain level.

したがって、従来のように排ガス風量を増大させて排ガ
ス濃度を低下させたり、熱交換器3の熱回収効率を低下
させたり、あるいはバーナ4の燃焼をオフ・オフするこ
となく、排ガスが触媒層5の反応温度以上に予熱されて
装置G全体の温度システムが崩れることを確実に防止す
ることができると同時に、熱媒加熱器7で加熱した熱媒
を乾燥装置にの熱風循環系9に介装された熱媒熱回収器
10に送給して炉内空気の予熱する加熱源に供し、排ガ
ス処理装置Gからの排熱を無駄なく最大限に有効利用す
ることができる。
Therefore, the exhaust gas is transferred to the catalyst layer 5 without increasing the exhaust gas flow rate to lower the exhaust gas concentration, reducing the heat recovery efficiency of the heat exchanger 3, or turning off/off the combustion of the burner 4 as in the past. At the same time, it is possible to reliably prevent the temperature system of the entire device G from being preheated to a temperature higher than the reaction temperature of The exhaust heat from the exhaust gas treatment device G can be used effectively to the maximum without wasting it by sending the heat medium to the heat recovery device 10 and providing it as a heating source for preheating the air in the furnace.

即ち、熱媒加熱器7のフィンチューブ8内に流通せられ
て脱臭ガスとの熱交換で加熱された熱媒を、熱媒循環ポ
ンプ12により熱媒循環往路11aを通じて熱媒熱回収
器10に送給し、熱風循環系9のバーナ27で加熱する
炉内空気を予熱するから、バーす28の燃焼量が低減さ
れて燃料費が節約される。
That is, the heat medium passed through the fin tube 8 of the heat medium heater 7 and heated by heat exchange with the deodorizing gas is sent to the heat medium heat recovery device 10 through the heat medium circulation outward path 11a by the heat medium circulation pump 12. Since the air in the furnace that is fed and heated by the burner 27 of the hot air circulation system 9 is preheated, the amount of combustion in the burner 28 is reduced and fuel costs are saved.

この際、熱媒加熱器7を通じて熱交換器3内に送り込ま
れる脱臭ガスの温度が、触媒層5に送る排ガスを充分に
予熱できない一定以下になった時は、温度検出センサ1
4からの検出信号により、インバータ・モータ15で駆
動される熱媒循環ポンプ12の回転数が低下せられて、
熱媒加熱器7のフィンチューブ8内に流通する熱媒の流
量が減少し、熱媒を加熱する脱臭ガスの熱負荷を低減さ
せることによって熱交換器3内に送り込まれる脱臭ガス
の温度を上昇させ、排ガスの予熱温度を一定に維持する
At this time, when the temperature of the deodorizing gas sent into the heat exchanger 3 through the heat medium heater 7 falls below a certain level, which makes it impossible to sufficiently preheat the exhaust gas sent to the catalyst layer 5, the temperature detection sensor 1
In response to the detection signal from 4, the rotation speed of the heat medium circulation pump 12 driven by the inverter motor 15 is reduced.
The flow rate of the heat medium flowing through the fin tubes 8 of the heat medium heater 7 decreases, reducing the thermal load on the deodorizing gas that heats the heat medium, thereby increasing the temperature of the deodorizing gas sent into the heat exchanger 3. to maintain the preheating temperature of the exhaust gas constant.

また、逆に、温度検出センサ14で検出した脱臭ガスの
温度が一定以上になった時は、熱媒循環ポンプ12の回
転数が上昇せられて、熱媒加熱器7のフィンチューブ8
内に流通する熱媒の流量が増大し、熱媒を加熱する脱臭
ガスの熱負荷を増大させることによって熱交換器3内に
送り込まれる脱臭ガスの温度を低下させ、排ガスの予熱
温度が異常な高温となることを防止する。
Conversely, when the temperature of the deodorized gas detected by the temperature detection sensor 14 exceeds a certain level, the rotation speed of the heat medium circulation pump 12 is increased, and the fin tube 8 of the heat medium heater 7 is increased.
By increasing the flow rate of the heat medium flowing in the heat exchanger 3 and increasing the heat load of the deodorizing gas that heats the heat medium, the temperature of the deodorizing gas sent into the heat exchanger 3 is lowered, and the preheating temperature of the exhaust gas is abnormal. Prevent high temperatures.

これにより、排ガス処理装置Gの熱交換器3内を通って
触媒層5に送られる排ガスが常に一定の温度に予熱され
ると同時、に、熱媒熱回収器1oの放熱温度も一定に維
持されることとなる。
As a result, the exhaust gas sent to the catalyst layer 5 through the heat exchanger 3 of the exhaust gas treatment device G is always preheated to a constant temperature, and at the same time, the heat dissipation temperature of the heat medium heat recovery device 1o is also maintained constant. It will be done.

また、熱媒加熱器7から熱媒循環往路11aを通って熱
媒熱回収器10に送給される熱媒の圧力が一定以上高く
なった時は、熱媒熱回収器1oを保8mするために、圧
力検出センサ19からの検出信号によって圧力調整弁1
7が開かれ、熱媒循環往路!la内を送給される熱媒の
一部がバイパス管路18を通じて熱媒循環復路11bに
直接流入せられる。
In addition, when the pressure of the heat medium sent from the heat medium heater 7 to the heat medium heat recovery device 10 through the heat medium circulation outward path 11a becomes higher than a certain level, the heat medium heat recovery device 1o is maintained at 8 m. Therefore, the pressure regulating valve 1 is activated by the detection signal from the pressure detection sensor 19.
7 is opened and the heat medium circulation goes out! A part of the heating medium fed through the inside of la is directly flowed into the heating medium circulation return path 11b through the bypass pipe line 18.

また、熱媒循環系11内を流通する熱媒が熱媒加熱器7
のフィンチューブ8内で加熱されて膨張すると、その体
積膨張分が管路2Iを通じて膨張タンク20内に逃がさ
れ、熱媒循環系11が保護される。
Further, the heat medium flowing in the heat medium circulation system 11 is connected to the heat medium heater 7.
When the heat medium is heated and expanded within the fin tube 8, the volume expansion is released into the expansion tank 20 through the pipe line 2I, and the heat medium circulation system 11 is protected.

また、乾燥装置Kにおいては、乾燥炉1内の温度が所定
の焼付温度よりも高くなった時は、温度検出センサ31
からの検出信号によって、温度制御装置32a及び32
bからバーナ28の燃焼量を調節するコントロールモー
タ33と、管路34に介装された電磁弁35に対して、
夫々バーナ28の燃焼量を低減させる制御信号と、管路
34内を流通する熱媒の量を増大させる制御信号が出力
され、乾燥炉I内の雰囲気が被塗装物の焼付乾燥に好適
な温度に維持される。
In addition, in the drying device K, when the temperature inside the drying oven 1 becomes higher than a predetermined baking temperature, a temperature detection sensor 31
The temperature control devices 32a and 32
From b to a control motor 33 that adjusts the combustion amount of the burner 28 and a solenoid valve 35 installed in the pipe line 34,
A control signal for reducing the combustion amount of the burner 28 and a control signal for increasing the amount of heat medium flowing through the pipe line 34 are output, respectively, so that the atmosphere in the drying oven I reaches a temperature suitable for baking and drying the object to be coated. will be maintained.

なお、上記実施例においては、熱媒流量制御手段13と
して、熱媒加熱器7から熱交換器3内に送り込まれる脱
臭ガスの温度を温度検出センサ14で検出し、その検出
信号により熱媒循環ポンプ12の回転数を可変調節する
場合について説明したが、本発明に係る熱媒流量制御手
段はこれに限らず、例えば第2図に示すような場合であ
っても良い。
In the above embodiment, as the heat medium flow rate control means 13, the temperature of the deodorizing gas sent from the heat medium heater 7 into the heat exchanger 3 is detected by the temperature detection sensor 14, and the heat medium circulation is controlled based on the detection signal. Although the case where the rotational speed of the pump 12 is variably adjusted has been described, the heat medium flow rate control means according to the present invention is not limited to this, and may be, for example, as shown in FIG. 2.

即ち、第2図は本発明の他の実施例を示す排熱回収装置
の要部の説明図であって、熱媒加熱器7内に流通する熱
媒の流量を可変調節する熱媒流量制御手段13゛が、熱
媒循環往路11a内を流通する熱媒の温度を検出する温
度検出センサ40と、当該センサ40からの検出信号に
応じて熱媒循環ポンプ12の回転数を可変制御するイン
バータ・モータ15とから構成されている。
That is, FIG. 2 is an explanatory diagram of the main parts of an exhaust heat recovery device showing another embodiment of the present invention, in which the heat medium flow rate control that variably adjusts the flow rate of the heat medium flowing in the heat medium heater 7 is shown. The means 13' includes a temperature detection sensor 40 that detects the temperature of the heat medium flowing in the heat medium circulation outward path 11a, and an inverter that variably controls the rotation speed of the heat medium circulation pump 12 according to a detection signal from the sensor 40. - It is composed of a motor 15.

コノ場合には、排ガス処理装置Gの脱臭ガス七の熱交換
により熱媒加熱器7内で加熱される熱媒の温度が脱臭ガ
スの温度変化によって変動した時に、その温度変化を温
度検出センサ40で検出して熱媒循環ポンプ12の回転
数を可変調節することにより、熱媒加熱器7のフィンチ
ューブ8内に流通する熱媒の流量を可変調節して、熱交
換器3内に送り込まれる脱臭ガスの温度が一定に維持さ
れると同時に、熱媒熱回収器10に送給される熱媒の温
度も常に一定に維持される。
In this case, when the temperature of the heat medium heated in the heat medium heater 7 due to heat exchange of the deodorized gas 7 of the exhaust gas treatment device G fluctuates due to the temperature change of the deodorized gas, the temperature detection sensor 40 detects the temperature change. By detecting this and variably adjusting the rotation speed of the heat medium circulation pump 12, the flow rate of the heat medium flowing through the fin tubes 8 of the heat medium heater 7 is variably adjusted, and the flow rate of the heat medium is sent into the heat exchanger 3. At the same time as the temperature of the deodorizing gas is maintained constant, the temperature of the heat medium fed to the heat medium heat recovery device 10 is also maintained constant.

したがって、熱媒熱回収器10を例えば輻射式乾燥炉の
輻射パネルとして使用すると、当該輻射パネルから被塗
装物に対して放射される輻射熱量が一定となるから、被
塗装物の乾燥状態が最適に維持されて塗膜品質を損なう
ことがないという利点がある。
Therefore, when the heat medium heat recovery device 10 is used, for example, as a radiant panel of a radiant drying furnace, the amount of radiant heat radiated from the radiant panel to the object to be coated is constant, so that the drying state of the object to be coated is optimal. It has the advantage that it is maintained at a high temperature without impairing the quality of the coating.

なお、熱媒熱回収器10は、上記の如く乾燥装置にの熱
風循環系9に介装して乾燥炉1内に循環供給する炉内空
気を予熱する加熱源として用いたり、あるいは前記の如
く輻射式乾燥炉の輻射パネル等として用いる場合に限ら
ず、塗装前処理装置の前処理液を加熱するヒータ等の種
々の加熱源として使用することができる。
The heat medium heat recovery device 10 may be used as a heat source for preheating the furnace air that is interposed in the hot air circulation system 9 of the drying device and circulated into the drying furnace 1 as described above, or as a heating source as described above. It can be used not only as a radiant panel of a radiant drying furnace, but also as a heater for heating a pretreatment liquid in a painting pretreatment device, and other various heating sources.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、 本発明によれば、排ガス処理装置
の触媒層を通じて脱臭処理された高温の脱臭ガスが、排
熱回収装置の熱媒加熱器を通って熱媒との熱交換により
放熱した後に、排ガスを予熱する熱交換器に送り込まれ
るから、従来のように排ガス発生源から触媒層に送られ
る排ガス風量を増大させたり、触媒層を加熱するバーナ
の燃焼を停止させることなく排ガスの予熱温度の異常な
上界を防止できると同時に、高温の脱臭ガスとの熱交換
により加熱された熱媒を各種加熱源となる熱媒熱回収器
に循環供給して、排ガス処理装置からの排熱を最大限に
有効利用することができるという優れた効果がある。
As described above, according to the present invention, the high-temperature deodorized gas that has been deodorized through the catalyst layer of the exhaust gas treatment device passes through the heat medium heater of the exhaust heat recovery device and radiates heat by heat exchange with the heat medium. Afterwards, the exhaust gas is sent to a heat exchanger that preheats it, so the exhaust gas can be preheated without increasing the amount of exhaust gas sent from the exhaust gas source to the catalyst layer or stopping the combustion of the burner that heats the catalyst layer, as in the case of conventional methods. At the same time, it is possible to prevent abnormal upper limits of temperature, and at the same time, the heat medium heated by heat exchange with high-temperature deodorizing gas is circulated and supplied to the heat medium heat recovery device, which serves as a various heating source, and the exhaust heat from the exhaust gas treatment equipment is recovered. It has the excellent effect of being able to utilize it to the maximum extent possible.

また、熱媒加熱器から熱媒va環環路路通じて熱媒熱回
収器に供給されて、熱媒循環復路を通じて熱媒加熱器内
に流通する熱媒の流量を可変調節する熱媒流量制御手段
を具備しているから、熱媒加熱器から排ガスを予熱する
熱交換器に送り込まれる脱臭ガスの温度を一定に維持す
ることができると共に、熱媒加熱器から熱媒が送給され
る熱媒熱回収器の放熱温度も一定に維持することができ
るという効果を有する。
In addition, the heat medium flow rate is supplied from the heat medium heater to the heat medium heat recovery device through the heat medium va ring path, and variably adjusts the flow rate of the heat medium flowing into the heat medium heater through the heat medium circulation return path. Since it is equipped with a control means, it is possible to maintain a constant temperature of the deodorizing gas sent from the heating medium heater to the heat exchanger that preheats the exhaust gas, and the heating medium is also fed from the heating medium heater. This has the effect that the heat radiation temperature of the heat medium heat recovery device can also be maintained constant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による排ガス処理装置からの排熱回収装
置の一例を示すフローシート図、第2図は本発明の他の
実施例を示す要部の説明図、第3図は従来の排ガス処理
装置を示す概略構成図である。 符号の説明 G・−排ガス処理装置、1−塗装用乾燥炉(排ガス発生
源)、2−ファン、3−熱交換器、4−バーナ、5−・
−触媒層、6−・−通路、H−排熱回収装置、7−熱媒
加熱器、8・−フィンチューブ、1o−熱媒熱回収器、
11−・−熱媒循環系、11 a−熱媒循環往路、11
b・−熱媒循環復路、12−・熱媒循環ポンプ、13.
13”−・−熱媒流量制御手段、14−・一温度検出セ
ンサ、15−・インバータ・モータ、4o−・温度検出
センサ。
FIG. 1 is a flow sheet diagram showing an example of an exhaust heat recovery device from an exhaust gas treatment device according to the present invention, FIG. 2 is an explanatory diagram of main parts showing another embodiment of the present invention, and FIG. FIG. 1 is a schematic configuration diagram showing a processing device. Explanation of symbols G・-Exhaust gas treatment device, 1-Painting drying furnace (exhaust gas generation source), 2-Fan, 3-Heat exchanger, 4-Burner, 5-・
- catalyst layer, 6 - passage, H - exhaust heat recovery device, 7 - heat medium heater, 8 - fin tube, 1o - heat medium heat recovery device,
11-.-Heating medium circulation system, 11 a-Heating medium circulation outward path, 11
b.-Heat medium circulation return path, 12-.Heat medium circulation pump, 13.
13''--Heat medium flow rate control means, 14--One temperature detection sensor, 15--Inverter motor, 4o--Temperature detection sensor.

Claims (3)

【特許請求の範囲】[Claims] (1)排ガス発生源から排出される排ガスが熱交換器を
通じて予熱されて、バーナで所定の反応温度に加熱され
た触媒層に送られ、当該触媒層を通じて脱臭処理された
高温の脱臭ガスが前記熱交換器に送り込まれて前記排ガ
スの予熱に供されてから外部に排出されるように成され
た排ガス処理装置からの排熱回収装置であって、前記触
媒層を通じて脱臭処理した高温の脱臭ガスを前記熱交換
器に送給する通路に介装された熱媒加熱器と、当該熱媒
加熱器内で前記脱臭ガスとの熱交換によって加熱された
熱媒を熱媒熱回収器に循環供給する熱媒循環往路及び熱
媒循環復路から成る熱媒循環系と、前記熱媒循環復路を
通じて前記熱媒加熱器内に流通する熱媒の流量を可変調
節する熱媒流量制御手段とを具備したことを特徴とする
排ガス処理装置からの排熱回収装置。
(1) Exhaust gas discharged from an exhaust gas generation source is preheated through a heat exchanger and sent to a catalyst layer heated to a predetermined reaction temperature by a burner, and the high-temperature deodorized gas is deodorized through the catalyst layer. An exhaust heat recovery device from an exhaust gas treatment device configured to be sent to a heat exchanger to preheat the exhaust gas and then discharged to the outside, the high-temperature deodorized gas being deodorized through the catalyst layer. a heat medium heater interposed in a passage for feeding the deodorizing gas to the heat exchanger; and a heat medium heated by heat exchange with the deodorizing gas in the heat medium heater and circulatingly supplying the heat medium to a heat medium heat recovery device. A heat medium circulation system comprising an outward heat medium circulation path and a return heat medium circulation path, and a heat medium flow rate control means for variably adjusting the flow rate of the heat medium flowing into the heat medium heater through the return heat medium circulation path. An exhaust heat recovery device from an exhaust gas treatment device, characterized in that:
(2)前記熱媒流量制御手段が、前記熱媒加熱器から前
記熱交換器に送り込まれる前記脱臭ガスの温度を検出す
る温度検出センサからの検出信号に応じて、前記熱媒加
熱器内に熱媒を供給する熱媒循環ポンプの回転数を可変
制御するように成された前記特許請求の範囲第1項記載
の排ガス処理装置からの排熱回収装置。
(2) The heat medium flow rate control means controls the heat medium flow rate in the heat medium heater in response to a detection signal from a temperature detection sensor that detects the temperature of the deodorizing gas sent from the heat medium heater to the heat exchanger. An exhaust heat recovery device from an exhaust gas treatment device according to claim 1, which is configured to variably control the rotation speed of a heat medium circulation pump that supplies a heat medium.
(3)前記熱媒流量制御手段が、前記熱媒循環往路を流
通する熱媒の温度を検出する温度検出センサからの検出
信号に応じて、前記熱媒加熱器内に熱媒を供給する熱媒
循環ポンプの回転数を可変制御するように成された前記
特許請求の範囲第1項記載の排ガス処理装置からの排熱
回収装置。
(3) The heat medium flow rate control means supplies heat to the heat medium into the heat medium heater in response to a detection signal from a temperature detection sensor that detects the temperature of the heat medium flowing through the heat medium circulation outward path. An exhaust heat recovery device from an exhaust gas treatment device according to claim 1, which is configured to variably control the rotational speed of a medium circulation pump.
JP61098317A 1986-04-30 1986-04-30 Apparatus for recovering waste heat obtained from exhaust gas treatment apparatus Pending JPS62254827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61098317A JPS62254827A (en) 1986-04-30 1986-04-30 Apparatus for recovering waste heat obtained from exhaust gas treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61098317A JPS62254827A (en) 1986-04-30 1986-04-30 Apparatus for recovering waste heat obtained from exhaust gas treatment apparatus

Publications (1)

Publication Number Publication Date
JPS62254827A true JPS62254827A (en) 1987-11-06

Family

ID=14216537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61098317A Pending JPS62254827A (en) 1986-04-30 1986-04-30 Apparatus for recovering waste heat obtained from exhaust gas treatment apparatus

Country Status (1)

Country Link
JP (1) JPS62254827A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7275011B2 (en) 2005-06-30 2007-09-25 International Business Machines Corporation Method and apparatus for monitoring integrated circuit temperature through deterministic path delays
CN103041701A (en) * 2012-12-26 2013-04-17 冯国宇 Catalytic oxidation furnace
US8591844B1 (en) * 2012-05-17 2013-11-26 Fluor Technologies Corporation Start up catalyst heating
JP2015068636A (en) * 2013-09-30 2015-04-13 ティーエスアールシー コーポレイション Environment conservation system and plant using the same
CN107327856A (en) * 2017-05-25 2017-11-07 四川亚联高科技股份有限公司 One kind catalysis combustion heat supplying system and heating technique

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147359A (en) * 1976-06-03 1977-12-07 Babcock Hitachi Kk Temperature controller for heat exchanger
JPS5577697A (en) * 1978-12-06 1980-06-11 Hitachi Ltd Controlling of temperature equivalence in multistage heat exchanger
JPS5757968U (en) * 1980-09-22 1982-04-05
JPS5758012A (en) * 1980-09-24 1982-04-07 Nippon Shokubai Kagaku Kogyo Co Ltd Method and device for waste gas treatment
JPS5822898A (en) * 1981-08-04 1983-02-10 Miura Co Ltd Exhaust hot water heat collecting system
JPS5989158A (en) * 1982-11-15 1984-05-23 Netsu Kogyo Kk Drying furnace with deodorizing device for press

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147359A (en) * 1976-06-03 1977-12-07 Babcock Hitachi Kk Temperature controller for heat exchanger
JPS5577697A (en) * 1978-12-06 1980-06-11 Hitachi Ltd Controlling of temperature equivalence in multistage heat exchanger
JPS5757968U (en) * 1980-09-22 1982-04-05
JPS5758012A (en) * 1980-09-24 1982-04-07 Nippon Shokubai Kagaku Kogyo Co Ltd Method and device for waste gas treatment
JPS5822898A (en) * 1981-08-04 1983-02-10 Miura Co Ltd Exhaust hot water heat collecting system
JPS5989158A (en) * 1982-11-15 1984-05-23 Netsu Kogyo Kk Drying furnace with deodorizing device for press

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7275011B2 (en) 2005-06-30 2007-09-25 International Business Machines Corporation Method and apparatus for monitoring integrated circuit temperature through deterministic path delays
US8591844B1 (en) * 2012-05-17 2013-11-26 Fluor Technologies Corporation Start up catalyst heating
CN103041701A (en) * 2012-12-26 2013-04-17 冯国宇 Catalytic oxidation furnace
JP2015068636A (en) * 2013-09-30 2015-04-13 ティーエスアールシー コーポレイション Environment conservation system and plant using the same
CN104515374A (en) * 2013-09-30 2015-04-15 台橡股份有限公司 Environmental protection system and its application in factory
US9561465B2 (en) 2013-09-30 2017-02-07 Tsrc Corporation Ecosystem and plant using the same
CN104515374B (en) * 2013-09-30 2017-09-26 台橡股份有限公司 Environmental protection system and its application in factory
CN107327856A (en) * 2017-05-25 2017-11-07 四川亚联高科技股份有限公司 One kind catalysis combustion heat supplying system and heating technique

Similar Documents

Publication Publication Date Title
US4255132A (en) Incinerator-heater system
US20200254378A1 (en) Concentrated catalyst combustion system having active concentration ratio control means
JP3534702B2 (en) Evaporative thermal storage incineration system for organic wastewater
KR20060089319A (en) A food garbage treating appartus
KR100680028B1 (en) Wasteheat recovery system applied for rto
NL8020118A (en) METHOD FOR EXTRACTING HEAT FROM MANURE, SEWER AND OTHER WET WASTE FROM COMBUSTION.
JPS62254827A (en) Apparatus for recovering waste heat obtained from exhaust gas treatment apparatus
US5881952A (en) Heater for liquids
KR100533587B1 (en) The warming boiler by oil circulation
KR101105134B1 (en) Apparatus for treating material and recovering waste heat of high efficiency
JPS62254826A (en) Catalytic combustion type exhaust gas treatment apparatus
EP0629500B1 (en) A drying apparatus for a rotary printing press
JP6132217B2 (en) Printing machine drying equipment
JP3673060B2 (en) Thermal storage type exhaust gas treatment device and operation method thereof
JP3993538B2 (en) Waste treatment method
JP3648005B2 (en) Dryer control device
KR0145981B1 (en) Apparatus for kitchen garbage
JP2016187954A (en) Waste-heat control system of off-set rotary press
KR200278294Y1 (en) Waste heat air supply device for hot stove
JPH0621579Y2 (en) Hot air circulation type paint drying oven
JP3652778B2 (en) Catalytic heat storage deodorization treatment equipment
KR200152695Y1 (en) Garbage disposer using the waste heat of incinerator
JPH07122549B2 (en) Drying machine
KR200385826Y1 (en) Circulation & Fire Safety Type Catalistic Cleaning Desorber
JP2813421B2 (en) Drying machine for rotary printing press