JPS62254594A - Stereoscopic picture display method and its device - Google Patents

Stereoscopic picture display method and its device

Info

Publication number
JPS62254594A
JPS62254594A JP61096870A JP9687086A JPS62254594A JP S62254594 A JPS62254594 A JP S62254594A JP 61096870 A JP61096870 A JP 61096870A JP 9687086 A JP9687086 A JP 9687086A JP S62254594 A JPS62254594 A JP S62254594A
Authority
JP
Japan
Prior art keywords
image display
image
light
eyes
glasses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61096870A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kato
康之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61096870A priority Critical patent/JPS62254594A/en
Publication of JPS62254594A publication Critical patent/JPS62254594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

PURPOSE:To realize the display of a three dimensional stereoscopic picture without depending on a viewing angle or position by alternately feeding right and left pictures in time division to the right and left eyes. CONSTITUTION:In a picture display device 11, the left picture 12 viewed by the right eye and the right picture 12 viewed by the left eye are alternately displayed in time division at a prescribed timing. In both light shielding films 14, 15 of glasses 8, when the left picture 12 is displayed on the screen of the picture display device 11, the light shielding film 14 of a left window interrupts an incident light to the left eye 1 and the picture display device 11 is viewed only by the right eye 2. As for the right picture 13, the light shielding film 15 of the right window of the glasses 8 interrupts an incident light to the right eye 2 and the right picture 13 displayed on the picture display device 11 is viewed only by the left eye 1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、立体テレビ等に好適な立体画像表示方法およ
びその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a stereoscopic image display method and apparatus suitable for stereoscopic television and the like.

[従来の技術] 本来、人間が3次元立体像を認識するためには、左右の
目の網膜に結像された像に視差がなければならない。
[Prior Art] Originally, in order for humans to recognize three-dimensional stereoscopic images, there must be parallax between the images formed on the retinas of the left and right eyes.

この現象を第1θ図および第11図を参照して説明する
。第10図において、1,2はそれぞれ人間の左目、右
目を示し、3はその左右の目1,2によりこれから認識
しようとする3次元の立体的な被写体、例えば円柱を示
す。また、破線の4,5はそれぞれ左目1.右目2の視
界の範囲を表わしている。このとき、左右の目1,2に
は、第11図に示すような互いに水平方向の位置のずれ
た2次元の画像(平面画像)が見えていることになる。
This phenomenon will be explained with reference to FIG. 1θ and FIG. In FIG. 10, 1 and 2 indicate the left and right eyes of a human being, respectively, and 3 indicates a three-dimensional three-dimensional object, such as a cylinder, which is to be recognized by the left and right eyes 1 and 2. Also, the broken lines 4 and 5 indicate left eye 1. It represents the range of vision of the right eye 2. At this time, the left and right eyes 1 and 2 see two-dimensional images (planar images) whose positions are shifted from each other in the horizontal direction as shown in FIG. 11.

すなわち、第11図において3次元立体像として認識す
るについて重要なことは、被写体3の結像の位置関係で
ある。視界4.°5の相違により、左目1では物体像6
は右寄りに見え、右目2では逆に左寄りに見える。この
像の結像位置関係のずれを一般に視差と称するが、この
視差が人間には立体空間として認識される要因となるの
もである。
That is, what is important in recognizing a three-dimensional stereoscopic image in FIG. 11 is the positional relationship of the image of the subject 3. Visibility 4. Due to the difference of 5°, the left eye 1 has an object image 6
looks to the right, and to the right eye 2 it looks to the left. This deviation in the image formation positional relationship is generally referred to as parallax, and this parallax is a factor that causes humans to perceive it as a three-dimensional space.

よって、3次元立体画像表示を行うには上述の視差を画
像表示装置の表示画面にうまく作り出すことが技術的に
、最も重要である。そのために、従来は、例えば第12
図に示すような立体表示方法が提供されていた。第12
図において、8は眼鏡であり、この眼鏡8の左右(左枠
)9に例えば青色フィルターを使用し、眼鏡8の8窓(
右枠)10には赤色フィルターを使用する。一方、立体
像を表示するための画像表示装置11の画面では物体の
左像12を青色で物体の左像13を赤色で同時に表示す
ると、左右9の青色フィルタを通して見る左目1には左
側の像12は認識されず、右側の像13だけが認識され
、また8窓10の赤色フィルターを通して見る右目2に
ついてはこの逆に左像12だけが認識される。この結果
、視差が生じて人間には立体像が認識されることになる
Therefore, in order to display a three-dimensional stereoscopic image, it is technically most important to successfully create the above-mentioned parallax on the display screen of the image display device. For this purpose, conventionally, for example, the 12th
A stereoscopic display method as shown in the figure has been provided. 12th
In the figure, reference numeral 8 indicates glasses, for example, blue filters are used on the left and right (left frame) 9 of the glasses 8, and the 8 windows of the glasses 8 (
Right frame) Use a red filter for 10. On the other hand, if the left image 12 of the object is displayed in blue and the left image 13 of the object is displayed in red at the same time on the screen of the image display device 11 for displaying a three-dimensional image, the left eye 1 sees the left image through the left and right blue filters 9. 12 is not recognized, only the right image 13 is recognized, and conversely, only the left image 12 is recognized for the right eye 2 viewing through the red filter of the 8-window 10. As a result, parallax occurs and humans perceive a three-dimensional image.

しかしながら、このような従来の表示方法ではカラーフ
ィルターを使用するため普通の自然なカラー画像(多色
カラー、ナチュラルカラーの画像)を立体視することは
できない。そこで、カラー画像においても、単色画像と
同様に視差を作り出す方法として次のような方法が採用
されていた。すなわち、眼鏡8の左右9.8窓10をそ
れぞれ偏光板で構成し、その左右の偏光板の互いの偏光
軸の角度を垂直にずらし、−万両像表示装置11の画面
上では、左右の偏光板の各偏光軸に合わせて偏光させた
それぞれの画像を視差位置に同時表示する。このように
、左右の偏光板の軸が互いに垂直であるので左目1と右
目2は左右別々の画像を個別に択えることができ、カラ
ー画像の視差を作り出すことができ、3次元立体カラー
画像を認識することができる。
However, since such conventional display methods use color filters, it is not possible to stereoscopically view ordinary natural color images (multicolor, natural color images). Therefore, the following method has been adopted to create parallax in color images as well as in monochrome images. That is, the left and right 9.8 windows 10 of the glasses 8 are each configured with a polarizing plate, and the angles of the polarization axes of the left and right polarizing plates are shifted perpendicularly, so that on the screen of the 10-man image display device 11, the left and right windows are Images polarized according to the respective polarization axes of the polarizing plates are simultaneously displayed at parallax positions. In this way, since the axes of the left and right polarizing plates are perpendicular to each other, left eye 1 and right eye 2 can select separate left and right images, creating parallax between color images, and creating a three-dimensional color image. can be recognized.

[発明が解決しようとする問題点] しかしながら、このような従来の3次元立体画像表示方
法では、画像表示装置側で偏光させた左右の画像を送り
出すための複雑な機構が必要であり、また認識する側の
目を傾けると左右の像が左右の目に同時に見えてしまい
、視差がなくなるので、立体目の軸を固定しなければな
らないという重大な欠点がある。
[Problems to be Solved by the Invention] However, in such a conventional three-dimensional image display method, a complicated mechanism is required for sending polarized left and right images on the image display device side, and recognition If you tilt your eye, the left and right images will be visible to both eyes at the same time, eliminating parallax, so there is a serious drawback in that the axis of the stereoscopic eye must be fixed.

そこで、本発明は、左右の画像をそれぞれ別々に時分割
で左右の目に送り込むことにより、カラー画像の視差を
作り出し、これにより見る角度に依存せずに、かつ簡略
な構成で3次元の立体画像を表示し得る立体画像表示方
法およびそのための装置を提供することを目的とする。
Therefore, the present invention creates a color image parallax by sending left and right images to the left and right eyes separately in a time-sharing manner, thereby creating a three-dimensional three-dimensional image without depending on the viewing angle and with a simple configuration. It is an object of the present invention to provide a stereoscopic image display method capable of displaying images and a device therefor.

[問題点を解決するための手段] このような目的を達成するために、本発明は、同一の被
写体を両眼の各々の視界で撮影した各画像を交互に出力
表示する画像表示手段と、両眼への入射光を単眼づつ交
互に遮断する機能を備えた眼鏡とを用い、左眼の視界で
撮影した右画像を画像表示手段で表示しているときには
眼鏡により左眼への入射光を遮断し、次に右眼の視界で
撮影した左画像を画像表示手段で表示しているときには
眼鏡により右眼への入射光を遮断して、時分割で左右の
眼にそれぞれ別々に左右の画像を送り込み、眼の残像効
果で表示画像に対する左右の視差を作り、立体画像を認
識することを特徴とする。
[Means for Solving the Problems] In order to achieve such an object, the present invention provides an image display means that alternately outputs and displays images taken of the same subject with each field of view of both eyes; Use glasses that have a function of alternately blocking incident light to each eye, and when the right image taken in the field of view of the left eye is displayed on the image display means, the glasses block the incident light to the left eye. Then, when the left image taken in the field of view of the right eye is displayed on the image display means, the glasses are used to block the incident light to the right eye, and the left and right images are displayed separately to the left and right eyes in a time-sharing manner. The system is characterized by the ability to recognize a three-dimensional image by creating a parallax between the left and right sides of the displayed image using the afterimage effect of the eyes.

本発明の他の形態では、同一の被写体を両眼の各々の視
界で撮影した各画像を交互に出力表示する画像表示手段
と、両眼への入射光を交互に遮断する機能を備えた眼鏡
と、眼鏡の遮断時期と画像表示手段の表示時期の同期を
とる同期手段とを具備したことを特徴とする。
In another aspect of the present invention, there is provided a pair of glasses having an image display means for alternately outputting and displaying images of the same subject photographed with each field of view of both eyes, and a function of alternately blocking incident light to both eyes. and a synchronizing means for synchronizing the shut-off timing of the glasses and the display timing of the image display means.

[作用] 本発明では、本発明によれば、3次元画像の認識に必要
な左右の画像をそれぞれ別々に時分割で左右の目に交互
に送り込むことによりカラー画像の視差を作り出すよう
にしているので、見る角度や位置に依存せず、かつ簡潔
な構成で3次元の立体画像表示を実現できる。
[Function] According to the present invention, the left and right images necessary for three-dimensional image recognition are separately and alternately sent to the left and right eyes in a time-sharing manner to create color image parallax. Therefore, it is possible to realize a three-dimensional stereoscopic image display with a simple configuration and independent of the viewing angle or position.

[実施例] 以下図面を参照して本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.

まず、第1図(A) 、  (B)および第2図を参照
して、本発明の基本構成を説明する。
First, the basic configuration of the present invention will be explained with reference to FIGS. 1(A) and 2(B) and FIG.

第1図(A) 、  (B)において、14.15は眼
鏡8に設けられた左右の光遮断膜である。画像表示装置
11では右目で見える左画像12と左目て見える右画像
13を交互に所定のタイミングで時分割で表示する。眼
鏡8の両光遮断膜14.15では画像表示装置11の画
面に左画像12が表示されているときには、左窓の光遮
断[14が左目1への入射光を遮断し、右目2だけで画
像表示装置11を見るようにする。
In FIGS. 1A and 1B, reference numerals 14 and 15 indicate left and right light shielding films provided on the glasses 8. The image display device 11 displays a left image 12 that can be seen with the right eye and a right image 13 that can be seen with the left eye alternately at predetermined timing in a time-sharing manner. In both light blocking films 14 and 15 of the glasses 8, when the left image 12 is displayed on the screen of the image display device 11, the light blocking film [14] of the left window blocks the incident light to the left eye 1, and only the right eye 2 The user looks at the image display device 11.

この状態を第1図(八)に示す。一方、右画像13につ
いては第1図(B)  に示すように、第1図(A) 
 に示す動作とは逆に、眼鏡8の8窓の光遮断膜15が
右目2への入射光を遮断し、左目lだけで画像表示装置
11に表示された右画像13を見るようにする以上の表
示操作を時間軸tで表わしたのが第2図である。本図の
Aは画像表示装置11が左右別々の画像を交互に時分割
で表示する様子を示す。ここで図示の“右”は右側の画
面を表示し、“左”は左側の画面を表示することを示す
。この右側の撮影画面には左画像13が表示され、左側
の撮影画面には右画像12が表示される。本図のBは右
光遮断膜15、本図のCは左光遮断1i14の開閉の時
期を示し“Hルベルで開、L” レベルで閉となるもの
とする。この開閉の時間間隔tdを例えば数十ms以下
にすることにより、画像のちらつきをなくすことができ
る。
This state is shown in FIG. 1 (8). On the other hand, as for the right image 13, as shown in Fig. 1(B), Fig. 1(A)
Contrary to the operation shown in , the light blocking film 15 of the 8 windows of the glasses 8 blocks the incident light to the right eye 2, and the right image 13 displayed on the image display device 11 is viewed only with the left eye 1. FIG. 2 shows the display operation on the time axis t. A in this figure shows how the image display device 11 displays separate left and right images alternately in a time-sharing manner. Here, "right" in the figure indicates that the right screen is displayed, and "left" indicates that the left screen is displayed. The left image 13 is displayed on the right photographing screen, and the right image 12 is displayed on the left photographing screen. In this figure, B indicates the opening/closing timing of the right light shielding film 15, and C in this figure indicates the opening/closing timing of the left light shielding film 1i14, which is assumed to be open at the "H level" and closed at the "L" level. By setting the opening/closing time interval td to, for example, several tens of milliseconds or less, flickering of the image can be eliminated.

このように、本発明では、時分割で交互に出力される左
右の出力表示画像12.13を、その出力同期して開閉
する左右の光遮断膜14. isにより時分割で左右の
目1.2に別々に送り込むようにしているので両眼1.
2の視差を容易に正確に作り出すことができ、従来のカ
ラーフィルターや偏光フィルターを用いた従来技術とは
根本的に異なり、同時に左右の画像を出力していないの
で、目を傾けても立体感は変化せず、目の軸を所定方向
に固定しなくても自然のカラー表示による3次元立体画
像が認識できる。
As described above, in the present invention, the left and right output display images 12 and 13 that are output alternately in a time-sharing manner are controlled by the left and right light shielding films 14 and 14 that open and close in synchronization with the output. Since the IS is used to time-divide the signals to the left and right eyes 1.2, the signals are sent to the left and right eyes 1.2 separately.
2 parallax can be easily and accurately created, which is fundamentally different from conventional technology that uses conventional color filters and polarizing filters, and because it does not output left and right images at the same time, it is possible to create a three-dimensional effect even if you tilt your eyes. does not change, and a three-dimensional stereoscopic image with natural color display can be recognized without fixing the eye axis in a predetermined direction.

A、全体構成 第3図は本発明の実施例の概略構成を示す。第3図にお
いて、16は立木9人物、車等の立体的な被写体、17
は人間の左目(左眼球)1の視界を有する左側撮像カメ
ラ、18は人間の右目(右眼球)2の視界を有する右側
撮像カメラ、19はアナログスイッチ回路である。アナ
ログスイッチ回路19は左側撮像カメラ17から出力さ
れる画像信号りと右側撮像カメラ18から出力される画
像信号Rとを左右画像切換同期信号発振器20の切換同
期信号21に同期して切換出力する。22はアナログス
イッチ回路19から交互に選択出力される画像信号り、
Rを増幅してCRTや液晶ディスプレイ等の画像表示装
置11へ供給する画像信号増幅回路である。
A. Overall configuration FIG. 3 shows a schematic configuration of an embodiment of the present invention. In Figure 3, 16 is a standing tree 9, a three-dimensional subject such as a person or a car, 17
18 is a left imaging camera having a field of view of a human's left eye (left eyeball) 1; 18 is a right imaging camera having a field of view of a human's right eye (right eyeball) 2; and 19 is an analog switch circuit. The analog switch circuit 19 switches and outputs the image signal R output from the left imaging camera 17 and the image signal R output from the right imaging camera 18 in synchronization with the switching synchronization signal 21 of the left and right image switching synchronization signal oscillator 20. 22 is an image signal selectively outputted alternately from the analog switch circuit 19;
This is an image signal amplification circuit that amplifies R and supplies it to an image display device 11 such as a CRT or a liquid crystal display.

発振器20はフレーム同期信号に同期して画像切換同期
信号21と開閉同期信号23を発生する。開閉同期信号
23は右側の光遮断膜15にそのまま送られると同時に
、位相反転回路24により反転され、反転された開閉同
期信号24は左側の光遮断膜14に送られる。被写体1
6を撮像した左側1最像カメラ17の画像信号りがアナ
ログスイッチ回路19を通って画像表示装置11に表示
されているときに、左目lの前方の光遮断膜14が開、
右目2の光遮断膜15が閉となり、また右側撮像カメラ
18の画像信号りが表示されているときには逆動作とな
るように、同期信号21.23.25が発生する。
An oscillator 20 generates an image switching synchronization signal 21 and an opening/closing synchronization signal 23 in synchronization with the frame synchronization signal. The opening/closing synchronization signal 23 is sent as is to the light shielding film 15 on the right side, and at the same time is inverted by the phase inversion circuit 24, and the inverted opening/closing synchronization signal 24 is sent to the light shielding film 14 on the left side. Subject 1
When the image signal from the leftmost camera 17 that has taken an image of 6 is being displayed on the image display device 11 through the analog switch circuit 19, the light blocking film 14 in front of the left eye 1 opens,
When the light shielding film 15 of the right eye 2 is closed and the image signal of the right imaging camera 18 is being displayed, synchronization signals 21, 23, and 25 are generated so that the operation is reversed.

B、!?l]作 次に動作を説明すると、まず被写体16を左右別々の撮
像カメラ17および18で撮影して3次元立体画像情報
り、Rを得た後、フレーム時間に応じた数十msの時間
間隔でその左右の画像信号り、Rをアナログスイッチ回
路1gで切り換えて、画像信号増幅回路22へ送る。そ
の結果、画像表示装置11では上述の第1図(A) 、
 (B)に示すように数+ms置に左右の撮像カメラ1
7.18で択えられた映像が交互に表示されることにな
る。一方、眼鏡の窓に取り付けられた光遮断@14およ
び15は、左右の開閉同期信号(画像切換信号) 23
.25によって入射光路の開閉を行う。この遮断膜の動
作は上述した第2図のタイミングチャートに従うものと
すれば、人間の左眼球1には左の撮像カメラ17で択え
た画像だけが送り込まれ、右眼球2についてはこれと逆
に右の撮像カメラ18で択えた画像だけが送り込まれる
ことになる。
B,! ? l] To explain the operation next, first, the subject 16 is photographed with separate left and right imaging cameras 17 and 18 to obtain three-dimensional stereoscopic image information and R, and then a time interval of several tens of ms according to the frame time is taken. Then, the left and right image signals R are switched by the analog switch circuit 1g and sent to the image signal amplification circuit 22. As a result, in the image display device 11, the above-mentioned FIG. 1(A),
As shown in (B), the left and right imaging cameras 1 are
The images selected in 7.18 will be displayed alternately. On the other hand, the light shields @14 and 15 attached to the windows of the glasses are left and right opening/closing synchronization signals (image switching signals) 23
.. 25 opens and closes the incident optical path. Assuming that the operation of this blocking film follows the timing chart shown in FIG. Only the images selected by the right imaging camera 18 will be sent.

また、画像の切換時間が上述のように数十msと速く設
定されているので人間の目には、残像効果によって一連
のちらつきのない映像が認識される。ここで、画像表示
装置11として通常使用されるカラーテレビのブラウン
管等を用いればカラー画像の立体像を容易にかつ簡単に
表示することができる。また、本発明では時分割で左右
の画像を分けているので人間の目の位置が画像表示装置
に対して多少傾いても左右の画像がだぶって見えるよう
な従来の偏光板方式における欠点は生じない。
Further, since the image switching time is set as fast as several tens of milliseconds as described above, the human eye perceives a series of flickering-free images due to the afterimage effect. Here, if a commonly used color television cathode ray tube or the like is used as the image display device 11, a three-dimensional color image can be easily and easily displayed. Furthermore, since the present invention separates the left and right images on a time-sharing basis, the drawbacks of the conventional polarizing plate method, such as the left and right images appearing overlapping even if the position of the human eye is slightly tilted with respect to the image display device, do not occur. do not have.

C0光遮断膜 次に、第4図〜第7図を参照して、上述の本発明実施例
で眼鏡8に使用する光遮断膜14.15の構成の1例に
ついて説明する。
C0 Light-shielding Film Next, one example of the structure of the light-shielding films 14 and 15 used in the eyeglasses 8 in the above-described embodiment of the present invention will be described with reference to FIGS. 4 to 7.

第4図(^) 、  (B)には、外部電圧によって光
路の開閉ができる液晶光遮断膜の原理を示す。本図にお
いて、26は眼鏡に入射する入射光、27は直線偏光板
、28は透明電極、29はねじれたネマティックモード
(TNモード)の液晶、30は直線偏光板27の偏光軸
と垂直に置かれた検光板、および31は眼球1.2に直
接入る透過光である。本図のような構成の光遮断膜は現
在量も広く用いられているものであり、液晶としてはN
pタイプを用いるのが一般的である。このタイプの開閉
応答速度は10n+s〜50m5である。
Figures 4(^) and 4(B) show the principle of a liquid crystal light shielding film that can open and close the optical path using an external voltage. In this figure, 26 is the incident light incident on the glasses, 27 is a linear polarizing plate, 28 is a transparent electrode, 29 is a twisted nematic mode (TN mode) liquid crystal, and 30 is placed perpendicular to the polarization axis of the linear polarizing plate 27. and 31 is the transmitted light that enters directly into the eyeball 1.2. The light blocking film with the structure shown in this figure is currently widely used, and as a liquid crystal, N
It is common to use p type. The opening/closing response speed of this type is 10n+s to 50m5.

第4図(A)は2板の電極28の間の電圧がゼロの状態
のときの液晶分子の配向構造を示している。
FIG. 4(A) shows the alignment structure of liquid crystal molecules when the voltage between the two electrodes 28 is zero.

周知のように、Ch液晶(コレステリック液晶)の光学
的性質において、液晶分子の配向のラセンピッチPと光
の波長λの関係が、P〉λの場合には、旋光性を示す。
As is well known, in the optical properties of Ch liquid crystal (cholesteric liquid crystal), when the relationship between the helical pitch P of the orientation of liquid crystal molecules and the wavelength λ of light is P>λ, optical rotation is exhibited.

この場合、ねじれ角はほぼ90度で、旋光角も同じにな
る。従って、第4図(A)に示すように偏光板27と検
光板30が互いに90°となる板の間に液晶29を挟む
と、電圧ゼロの状態で光が透過できる状態となる。一方
、電圧を印加したときには第4図(B) に示すように
、閾値以上の電圧ならば両板27.30間の中心部分で
は液晶29の分子はほぼ垂直に立ってしまい、そのため
旋光能力をほとんど失ってしまう。その結果、光は検光
板30で遮断され、眼球1.2に達しない。
In this case, the twist angle is approximately 90 degrees and the optical rotation angle is also the same. Therefore, when the liquid crystal 29 is sandwiched between the polarizing plate 27 and the analyzing plate 30 at an angle of 90 degrees to each other as shown in FIG. 4(A), light can be transmitted in a state where the voltage is zero. On the other hand, when a voltage is applied, as shown in Figure 4 (B), if the voltage is above the threshold, the molecules of the liquid crystal 29 stand almost vertically in the center between the two plates 27 and 30, and therefore lose their optical rotation ability. I almost lose it. As a result, the light is blocked by the analyzer plate 30 and does not reach the eyeball 1.2.

第5図は第4図(A) 、  (B)で示したTNモー
ドセルの光遮断膜の遮光特性を実験的に調べた特性値を
示す。本発明のように、カラー画像を取扱う場合には可
視領域において十分な遮光特性が得られなければならな
い。本図から明らかなように、本例の光遮断膜は波長4
00nm〜700 nmの可視領域における7vの電圧
印加時の光透過率が最大でも4%以下となっていること
が分り、実用上十分な遮光特性が得られることが分る。
FIG. 5 shows experimentally investigated light-shielding characteristics of the light-shielding film of the TN mode cell shown in FIGS. 4(A) and 4(B). When handling color images as in the present invention, sufficient light-shielding properties must be obtained in the visible region. As is clear from this figure, the light blocking film of this example has a wavelength of 4
It can be seen that the light transmittance when a voltage of 7 V is applied in the visible range of 00 nm to 700 nm is 4% or less at the maximum, and it is understood that a practically sufficient light shielding property can be obtained.

また、第6図(A)には、第4図(A) 、 CB)に
示した光遮断膜における印加電圧と光透過率の関係を示
している。この実験例では、印加電圧がゼロ(オフ)で
光透過率は約33%、印加電圧が6v以上(オン)で光
透過率は約3%となることが分る。
Moreover, FIG. 6(A) shows the relationship between the applied voltage and the light transmittance in the light blocking film shown in FIG. 4(A) and CB). In this experimental example, it can be seen that when the applied voltage is zero (off), the light transmittance is about 33%, and when the applied voltage is 6 V or more (on), the light transmittance is about 3%.

第6図(B)は第6図(A)の特性の光遮断膜の透過光
に対する心理的な明度を示す。第6図(A)と第6図(
B)  との特性曲線の相違は、人間の目が暗さに慣れ
た場合や、心理的な明度の直線性が原因となって、心理
的な明度りが物理的な絶対量Yとは異なるためである。
FIG. 6(B) shows the psychological brightness of the light shielding film having the characteristics shown in FIG. 6(A) with respect to transmitted light. Figure 6 (A) and Figure 6 (
The difference in the characteristic curve from B) is due to the fact that the human eye becomes accustomed to the darkness, or due to the linearity of psychological brightness, and the psychological brightness differs from the physical absolute amount Y. It's for a reason.

実験の結果では、印加電圧がオフで約52%、印加電圧
がオンで約15%程度の心理的な明度となることが確認
されている。
Experimental results have confirmed that the psychological brightness is about 52% when the applied voltage is off and about 15% when the applied voltage is on.

D、眼鏡窓 第7図は第4図(A) 、 (B)で示した液晶光遮断
膜の原理を利用した眼鏡窓の構成例を示す。液晶光遮断
膜の場合は、光遮断膜に対して垂直方向の光が効率良く
開閉されるので、本図に示すように、眼球1.2を中心
にほぼ球面状に左右の光遮断膜14.15を構成する。
D. Spectacle window FIG. 7 shows an example of the configuration of a spectacle window using the principle of the liquid crystal light blocking film shown in FIGS. 4(A) and 4(B). In the case of a liquid crystal light blocking film, the light in the direction perpendicular to the light blocking film is efficiently opened and closed, so as shown in this figure, the left and right light blocking films 14 are formed approximately spherically around the eyeball 1.2. .15 constitutes.

光遮断膜14.15の光路開閉を行う制御信号は共通線
32を共通アースとして、本図のように接続した信号線
23 L 、 ’25 Lを介して供給される。信号線
23L、25Lには光遮断時に6V以上の電圧をそれぞ
れ印加する。
Control signals for opening and closing the optical paths of the light shielding films 14 and 15 are supplied via signal lines 23L and '25L connected as shown in the figure, using the common line 32 as a common ground. A voltage of 6 V or more is applied to the signal lines 23L and 25L, respectively, when the light is interrupted.

E、同期信号 画像表示系については、現在のテレビ画像信号の処理系
をそのまま適用することができる。また、眼鏡側と画像
表示側との同期をとるための信号系については第3図の
ように信号線で発振器21と光遮断膜14.15を接続
する必要はなく、例えば第8図に示すように、画像表示
装置11側に内蔵した発振器21から開閉同期信号を光
や電波等によって発信し、その受信装置を眼鏡側8に備
えるようにすることにより同期信号を伝送する接続コー
ドを除去できる。
E. As for the synchronization signal image display system, the current television image signal processing system can be applied as is. Furthermore, regarding the signal system for synchronizing the glasses side and the image display side, it is not necessary to connect the oscillator 21 and the light shielding film 14, 15 with a signal line as shown in Fig. 3, and for example, as shown in Fig. 8. As shown in FIG. 1, the opening/closing synchronization signal is transmitted by light or radio waves from the oscillator 21 built into the image display device 11 side, and the connection cord for transmitting the synchronization signal can be removed by providing the receiving device on the glasses side 8. .

その−例として、第9図に発光ダイオード34を開閉同
期信号で変調し、その変調光35をフォトダイオード3
6で受光して同期信号を得る信号伝送方式を示している
。まず、左右画像切換同期信号発振器20の開閉同期信
号23を用いて、 FSK (FrequencySh
ift Keying)変調回路33により発光ダイオ
ード34を周波数変調する。その周波数変調は例えば、
左画像の表示においては1200Hz、右画像において
は24001(zとする。発光ダイオード34からの光
ビーム(変調光)35を眼鏡8等に取付けられたフォト
ダイオード36で受光し、その光の変調成分を検波回路
37で抽出し、光遮断膜14.15の開閉信号を得る。
As an example, in FIG.
6 shows a signal transmission system in which light is received and a synchronization signal is obtained. First, using the open/close synchronizing signal 23 of the left/right image switching synchronizing signal oscillator 20,
Ift Keying) The light emitting diode 34 is frequency modulated by the modulation circuit 33. The frequency modulation is, for example,
In the display of the left image, the frequency is 1200 Hz, and in the right image, it is 24001 (z).The light beam (modulated light) 35 from the light emitting diode 34 is received by the photodiode 36 attached to the glasses 8, etc., and the modulated component of the light is is extracted by the detection circuit 37 to obtain opening/closing signals of the light shielding films 14 and 15.

光遮断膜14.15を構成する液晶はインピーダンスが
高いので、光遮断のための電力は極めてわずかで済むと
いう特徴を有している。そのため、眼鏡8側の電気回路
を0MO5−IC等の低消費電力回路で構成することに
より、小型で携帯に便利な眼鏡を実現できる。眼鏡8か
ら同期のための通信線(通信用コード)を無くすことは
、見る側の自由度を確保する点において極めて重要なこ
とである。
Since the liquid crystal constituting the light blocking films 14 and 15 has high impedance, it has the characteristic that an extremely small amount of electric power is required for light blocking. Therefore, by configuring the electric circuit on the side of the glasses 8 with a low power consumption circuit such as an OMO5-IC, it is possible to realize glasses that are small and convenient to carry. Eliminating the communication line (communication code) for synchronization from the glasses 8 is extremely important in ensuring the degree of freedom on the viewing side.

なお、上述した本発明実施例では立体テレビの如きディ
スプレイ装置に適用した場合を示したが、本発明はこれ
に限定されず、立体映画においても映写コマに同期した
第8図に示すような左右切換眼鏡を用いることにより、
実現できる。
Although the above-described embodiments of the present invention are applied to a display device such as a three-dimensional television, the present invention is not limited to this, and can also be applied to a three-dimensional movie, where the left and right display as shown in FIG. 8 is synchronized with the projection frames. By using switching glasses,
realizable.

[発明の効果コ 以上説明したように、本発明によれば、3次元画像の認
識に必要な左右の画像をそれぞれ別々に時分割で左右の
目に交互に送り込むことによりカニ 工1tJ−/1蕾
も1k l’1山+し^1呼1プ11又ハ弔見る角度や
位置に依存せず、かつ簡潔な構成で3次元の立体画像表
示を実現できる効果が得られる。
[Effects of the Invention] As explained above, according to the present invention, the left and right images required for three-dimensional image recognition are sent alternately to the left and right eyes separately and in a time-sharing manner. The effect of realizing a three-dimensional three-dimensional image display with a simple configuration is achieved without depending on the viewing angle or position.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A) 、 (B)は本発明の基本構成を示す斜
視図、 第2図は本発明の原理を示すタイミングチャート、 第3図は本発明の実施例の概略構成を示す回路図、 第4図(A) 、 CB)は本発明実施例の液晶光遮断
膜の原理を示す斜視図、 第5図は本発明実施例の液晶光遮断膜の光透通事特性を
示す波形図、 第6図(八) 、 (B)は本発明実施例の液晶光遮断
膜の印加電圧に対する特性を示す波形図、 第7図は本発明実施例の眼鏡窓の構成を示す平面図、 第8図は本発明実施例における同期信号の伝送方式の一
例を示す斜視図、 第9図は第8図の伝送方式を実現する回路の一例を示す
回路図、 第10図は3次元立体像を認識する原理を示す平面図、 第11図は左目と右目の映像の位置の相違を示す説明図
、 第12図は従来の3次元立体表示方法を示す斜視図であ
る。 1・・・左眼球、 2・・・右眼球 3・・・被写体、 4・・・左目の視界、 5・・・右目の視界、 6・・・左眼球から見た被写体の2次元画像、7・・−
右眼球から見た被写体の2次元画像、8・・・眼鏡、 9、lO・・・左および右眼鏡の窓、 11・・・画像表示装置、 12、13・・・右画像および左画像、14、15・・
・左窓および右窓の光遮断膜、16・・・被写体、 17、18・・・左側および右側の撮像カメラ、19・
・・アナログスイッチ回路、 20・・・画像切換同期信号発振器、 21・・・切換同期信号、 22・・・増幅回路 23.25・・・開閉同期信号、 24・・・位相反転回路、 26・・・入射光、 27・・・偏光板、 28・・・電極、 29・・・液晶、 30・・・検光板、 31・・・透過光、 32・・・共通アース、 33・・・FSに変調回路、 34・・・発光ダイオード、 35・・・発光ダイオードからの光、 36・・・受光用フォトダイオード、 37・・・同期信号検波回路。 代 理 人  弁理士  谷  義− 木登B馳菟本積膚tホオa 411図 第1図 <      =      ロ リ −へ 光透過率(%) (A)ルミナンスY 印加電圧V (B)心理計測量明度L* 実於イ列の浪晶大」!鴫月臭の特性と示す浪形図第6図 し−一一フ ミ 戸 槽 蝙 第8図の伝送方式芝実現13回蹄の一1川とホオ回9台
図第9図 3″J′に元立1本イ象とt胚徴する原理き示す平面図
左目とも目の日東イ象の1廿置の相見@示す平面図第1
1図 従来の3ン′に元在イ木表示方潰奮ホオや目地図第12
Figures 1 (A) and (B) are perspective views showing the basic configuration of the present invention, Figure 2 is a timing chart showing the principle of the invention, and Figure 3 is a circuit diagram showing the schematic configuration of an embodiment of the present invention. , Fig. 4(A) and CB) are perspective views showing the principle of the liquid crystal light blocking film of the embodiment of the present invention, and Fig. 5 is a waveform diagram showing the light transmission characteristics of the liquid crystal light blocking film of the embodiment of the present invention. , FIG. 6(8), (B) is a waveform diagram showing the characteristics of the liquid crystal light shielding film according to the embodiment of the present invention with respect to applied voltage, FIG. 7 is a plan view showing the structure of the spectacle window of the embodiment of the present invention, Fig. 8 is a perspective view showing an example of a synchronization signal transmission method according to an embodiment of the present invention, Fig. 9 is a circuit diagram showing an example of a circuit realizing the transmission method of Fig. 8, and Fig. 10 is a three-dimensional stereoscopic image. FIG. 11 is a plan view showing the principle of recognition; FIG. 11 is an explanatory diagram showing the difference in the position of left-eye and right-eye images; and FIG. 12 is a perspective view showing a conventional three-dimensional display method. 1... Left eyeball, 2... Right eyeball, 3... Subject, 4... Left eye field of view, 5... Right eye field of view, 6... Two-dimensional image of the subject seen from left eyeball, 7...-
Two-dimensional image of the subject seen from the right eyeball, 8... Glasses, 9, lO... Windows of left and right glasses, 11... Image display device, 12, 13... Right image and left image, 14, 15...
・Light blocking film for left window and right window, 16... Subject, 17, 18... Left and right imaging cameras, 19.
...Analog switch circuit, 20...Image switching synchronization signal oscillator, 21...Switching synchronization signal, 22...Amplification circuit 23.25...Opening/closing synchronization signal, 24...Phase inversion circuit, 26. ...Incoming light, 27...Polarizing plate, 28...Electrode, 29...Liquid crystal, 30...Analysis plate, 31...Transmitted light, 32...Common ground, 33...FS A modulation circuit, 34...Light emitting diode, 35...Light from the light emitting diode, 36... Photodiode for light reception, 37... Synchronous signal detection circuit. Agent Patent Attorney Yoshi Tani - Kito B, Sumimoto Sekiha, 411 Figure 1 < = Light transmittance (%) to Lolly (A) Luminance Y Applied voltage V (B) Psychometric quantity Brightness L* Actually, I'm the best in the world"! Characteristics of the Shizuki odor and Namigata map shown in Figure 6 - 11 Fumitotanba Figure 8 Transmission method Shiba realization 13th Hoofi 11 River and Hoo times 9th Figure 9 Figure 3''J' A plan view showing the principle of formation of a single-eye elephant and a t-embryo.A plan view showing the relationship between the left and right eyes of a Nitto-eye elephant.
Figure 1 shows how to display the original tree in the conventional 3' map.
figure

Claims (1)

【特許請求の範囲】 1)同一の被写体を両眼の各々の視界で撮影した各画像
を交互に出力表示する画像表示手段と、前記両眼への入
射光を単眼づつ交互に遮断する機能を備えた眼鏡とを用
い、 左眼の視界で撮影した右画像を前記画像表示手段で表示
しているときには前記眼鏡により左眼への入射光を遮断
し、次に右眼の視界で撮影した左画像を前記画像表示手
段で表示しているときには前記眼鏡により右眼への入射
光を遮断して、時分割で左右の眼にそれぞれ別々に左右
の画像を送り込み、眼の残像効果で表示画像に対する左
右の視差を作り、立体画像を認識することを特徴とする
立体画像表示方法。 2)同一の被写体を両眼の各々の視界で撮影した各画像
を交互に出力表示する画像表示手段と、 両眼への入射光を交互に遮断する機能を備えた眼鏡と、 該眼鏡の遮断時期と前記画像表示手段の表示時期の同期
をとる同期手段とを具備したことを特徴とする立体画像
表示装置。 3)特許請求の範囲第2項記載の装置において、前記眼
鏡は前記両眼への透過窓がそれぞれ液晶光遮断膜で構成
され、該液晶光遮断膜の液晶の分子配向を電気的に制御
することにより前記両眼への透過光を交互に遮断するよ
うにしたことを特徴とする立体画像表示装置。 4)特許請求の範囲第2項または第3項に記載の装置に
おいて、前記同期手段は、前記画像表示手段側に設けた
発光素子と、前記眼鏡側に設けた受光素子とを有し、前
記発光素子と前記受光素子とを光通信によって同期させ
るようにしたことを特徴とする立体画像表示装置。
[Scope of Claims] 1) Image display means for alternately outputting and displaying images of the same subject photographed with each field of view of both eyes, and a function of alternately blocking incident light to each of the eyes for each monocular. When the right image taken in the field of view of the left eye is displayed on the image display means, the glasses are used to block incident light to the left eye, and then the left image taken in the field of view of the right eye is displayed. When an image is displayed on the image display means, the glasses block the incident light to the right eye, and the left and right images are sent separately to the left and right eyes in a time-sharing manner, so that the afterimage effect of the eyes can affect the displayed image. A stereoscopic image display method characterized by creating left and right parallax and recognizing a stereoscopic image. 2) Image display means for alternately outputting and displaying images of the same subject taken with each field of view of both eyes, glasses having a function of alternately blocking incident light to both eyes, and blocking of the glasses. A stereoscopic image display device comprising: synchronization means for synchronizing the display time of the image display means with the display time of the image display means. 3) In the device according to claim 2, in the glasses, each of the transmission windows to the both eyes is constituted by a liquid crystal light blocking film, and the molecular orientation of the liquid crystal in the liquid crystal light blocking film is electrically controlled. A three-dimensional image display device characterized in that the transmitted light to both eyes is alternately blocked. 4) In the device according to claim 2 or 3, the synchronizing means includes a light emitting element provided on the image display means side and a light receiving element provided on the eyeglasses side, and A stereoscopic image display device characterized in that a light emitting element and the light receiving element are synchronized by optical communication.
JP61096870A 1986-04-28 1986-04-28 Stereoscopic picture display method and its device Pending JPS62254594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61096870A JPS62254594A (en) 1986-04-28 1986-04-28 Stereoscopic picture display method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61096870A JPS62254594A (en) 1986-04-28 1986-04-28 Stereoscopic picture display method and its device

Publications (1)

Publication Number Publication Date
JPS62254594A true JPS62254594A (en) 1987-11-06

Family

ID=14176466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61096870A Pending JPS62254594A (en) 1986-04-28 1986-04-28 Stereoscopic picture display method and its device

Country Status (1)

Country Link
JP (1) JPS62254594A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7784938B2 (en) 2007-05-09 2010-08-31 Dolby Laboratories Licensing Corporation Method and system for shaped glasses and viewing 3D images
KR100985401B1 (en) 2007-05-09 2010-10-06 돌비 레버러토리즈 라이쎈싱 코오포레이션 System for 3d image projections and viewing
US7959295B2 (en) 2007-05-18 2011-06-14 Dolby Laboratories Licensing Corporation Spectral separation filters for 3D stereoscopic D-cinema presentation
US9313482B2 (en) 2006-04-05 2016-04-12 Bose Corporation Forming spectral filters
US10809543B2 (en) 2017-01-23 2020-10-20 Dolby Laboratories Licensing Corporation Glasses for spectral and 3D imaging

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9313482B2 (en) 2006-04-05 2016-04-12 Bose Corporation Forming spectral filters
US8459796B2 (en) 2007-05-09 2013-06-11 Dolby Laboratories Licensing Corporation Method and system for shaped glasses and viewing 3D images
US9146402B2 (en) 2007-05-09 2015-09-29 Dolby Laboratories Licensing Corporation Method and system for shaped glasses and viewing 3D images
US11994702B2 (en) 2007-05-09 2024-05-28 Dolby Laboratories Licensing Corporation System for 3D image projections and viewing
US7784938B2 (en) 2007-05-09 2010-08-31 Dolby Laboratories Licensing Corporation Method and system for shaped glasses and viewing 3D images
US9547179B2 (en) 2007-05-09 2017-01-17 Dolby Laboratories Licensing Corporation Method and system for shaped glasses and viewing 3D images
US8537463B2 (en) 2007-05-09 2013-09-17 Dolby Laboratories Licensing Corporation Method and system for shaped glasses and viewing 3D images
US11585971B2 (en) 2007-05-09 2023-02-21 Dolby Laboratories Licensing Corporation System for 3D image projections and viewing
KR100985401B1 (en) 2007-05-09 2010-10-06 돌비 레버러토리즈 라이쎈싱 코오포레이션 System for 3d image projections and viewing
US8503078B2 (en) 2007-05-09 2013-08-06 Dolby Laboratories Licensing Corporation Method and system for shaped glasses and viewing 3D images
US9921412B2 (en) 2007-05-09 2018-03-20 Dolby Laboratories Licensing Corporation Method and system for shaped glasses and viewing 3D images
US9958693B2 (en) 2007-05-09 2018-05-01 Dolby Laboratories Licensing Corporation System for 3D image projections and viewing
US10338399B2 (en) 2007-05-09 2019-07-02 Dolby Laboratories Licensing Coporation Method and system for shaped glasses and viewing 3D images
US10802293B2 (en) 2007-05-09 2020-10-13 Dolby Laboratories Licensing Corporation System for 3D image projections and viewing
US7959295B2 (en) 2007-05-18 2011-06-14 Dolby Laboratories Licensing Corporation Spectral separation filters for 3D stereoscopic D-cinema presentation
US8403489B2 (en) 2007-05-18 2013-03-26 Dolby Laboratories Licensing Corporation Spectral separation filters for 3D stereoscopic D-cinema presentation
US10809543B2 (en) 2017-01-23 2020-10-20 Dolby Laboratories Licensing Corporation Glasses for spectral and 3D imaging

Similar Documents

Publication Publication Date Title
US4281341A (en) Stereoscopic television system
JP2762677B2 (en) Optical device
JP3129719B2 (en) Video display device
US20020122145A1 (en) Method and apparatus of flicker reduction for LC shutter glasses
EP1606944B1 (en) 3d video conferencing
JP2002082307A (en) Three-dimensional image recording device and method for displaying three-dimensional image
JP2003177356A (en) 2d/3d convertible display
JPH10239641A (en) Polarizing spectacles and image display system
US6510002B1 (en) Apparatus for three-dimensional display
JP3628967B2 (en) Three-dimensional display method and apparatus
JPS59131286A (en) Stereoscopic television device
JPS62254594A (en) Stereoscopic picture display method and its device
JPH0426289A (en) Spectacle type video display device
JPS62191819A (en) Stereoscopic image display device
JPH08327961A (en) Stereoscopic video display device
JPH08160556A (en) Stereoscopic video display device
JP4804586B1 (en) 3D image display device and 3D image viewing glasses
JPH1198537A (en) Stereoscopic eyeglass
KR20100137695A (en) Stereoscopic image system adapted for liquid crystal shutter and eyewear filter
JPH0730928A (en) Stereoscopic image observing device
CN108037593A (en) A kind of 3D display device and 3D display system
JP3330129B2 (en) Video display device
CN108051928A (en) A kind of virtual reality glasses and 3D display system
JPH06165221A (en) Binocular parallax system picture display controller
JPH09133891A (en) Stereoscopic display device