JP2003177356A - 2d/3d convertible display - Google Patents

2d/3d convertible display

Info

Publication number
JP2003177356A
JP2003177356A JP2002256815A JP2002256815A JP2003177356A JP 2003177356 A JP2003177356 A JP 2003177356A JP 2002256815 A JP2002256815 A JP 2002256815A JP 2002256815 A JP2002256815 A JP 2002256815A JP 2003177356 A JP2003177356 A JP 2003177356A
Authority
JP
Japan
Prior art keywords
display
liquid crystal
crystal layer
image
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002256815A
Other languages
Japanese (ja)
Inventor
Takao Tomono
孝夫 友野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2003177356A publication Critical patent/JP2003177356A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/16Stereoscopic photography by sequential viewing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/307Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using fly-eye lenses, e.g. arrangements of circular lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/322Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using varifocal lenses or mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a 2D/3D convertible display which can easily be switched to 2D or 3D by using an electrooptic material whose refractive index varies according to applied electric power. <P>SOLUTION: A stereoscopic display has an image formation display and a lens part which is formed on the front surface of the image formation display and converts a video from the image formation display into a three-dimensional video. The lens part includes a liquid crystal layer which includes the electrooptic material whose refractive index is selectively adjusted with applied electric power according to its position and serves as a lens according to sequential variation in the refractive index. Consequently, the display can easily be switched to 2D or 3D in fields which require more advanced video information, e.g. medical science, engineering, simulation, and future stereoscopic video television fields. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はマイクロレンズアレ
イを用いた2次元(2D)及び3次元(3D)兼用ディ
スプレイに係り、より詳細には、電源の印加有無に応じ
て屈折率が変わる電気光学物質を用いて2Dまたは3D
に容易に切り換えできる2D/3D兼用ディスプレイに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-dimensional (2D) and three-dimensional (3D) dual-purpose display using a microlens array, and more specifically, an electro-optical device whose refractive index changes depending on whether a power source is applied or not. 2D or 3D using substance
The present invention relates to a 2D / 3D dual-purpose display that can be easily switched to.

【0002】[0002]

【従来の技術】広い意味で立体画像及び3D画像を含む
概念である3D映像を表示する立体映像ディスプレイ
は、各々立体表示方式、視点、観察条件、観察者が別途
の眼鏡着用有無に応じて各種の方式に分類できる。ディ
スプレイから与えられる映像を観察者に立体的に認識さ
せるために主に両眼視差が用いられるが、両眼に相異な
る角度から観察された映像が入力されれば、頭脳の作用
によって空間感を認識しうる。立体映像ディスプレイ方
法は、2眼方式と3次元方式とに大別できる。2眼方式
は、両眼視差を有する2枚の2次元画像を左右両眼各々
に分離して与えて立体的に認識させる方式である。しか
し、これは、2眼方式により撮影された左右画像を表示
するがゆえに、単一方向の視点でしか立体映像を認識し
得ないという短所がある。これに対し、3次元方式は、
物体を多方向で撮影して立体的に画像を表示する。従っ
て、観察する位置を変えた場合、すなわち、多方向で観
察する場合であっても3D画像が得られるという長所が
ある。
2. Description of the Related Art A stereoscopic image display for displaying a 3D image, which is a concept including a stereoscopic image and a 3D image in a broad sense, has various types according to a stereoscopic display method, a viewpoint, an observation condition, and whether an observer wears separate glasses. Can be classified into the following methods. Binocular parallax is mainly used to stereoscopically recognize the image given from the display, but if the images observed from different angles are input to both eyes, the action of the brain gives a sense of space. Recognizable. The stereoscopic image display method can be roughly classified into a binocular method and a three-dimensional method. The two-lens system is a system in which two two-dimensional images having binocular parallax are separated and given to each of the left and right eyes to be stereoscopically recognized. However, this has a disadvantage that stereoscopic images can be recognized only from a single-direction viewpoint because the left and right images captured by the twin-lens method are displayed. On the other hand, the three-dimensional method
The object is photographed in multiple directions to display a stereoscopic image. Therefore, there is an advantage that a 3D image can be obtained even when the observation position is changed, that is, even when the observation is performed in multiple directions.

【0003】多方向で撮影された両眼視差画像を表示す
る3次元画像表示方式には、パララックスパノマラグラ
ム方式、レンチキューラ方式、IP(integral
photography or volumetric
−graph)方式、スリットスキャン方式などがあ
る。
Three-dimensional image display methods for displaying binocular parallax images taken in multiple directions include parallax panoramagram method, lenticular method, and IP (integral) method.
photography or volumetric
-Graph) method, slit scan method and the like.

【0004】これらの方式のうち、IP方式は、別途の
観察用眼鏡を必要とせず、しかも、所望の位置において
立体映像を自動的に得ることができるので、3D映像を
作り出す上で極めて有用である。IP方式のディスプレ
イはマイクロレンズアレイまたはピンホールアレイなど
を含み、これは医学、工学、シミュレーション等の分野
において汎用されている。
Of these methods, the IP method does not require additional spectacles for observation and can automatically obtain a stereoscopic image at a desired position, which is extremely useful in producing a 3D image. is there. The IP type display includes a microlens array or a pinhole array, which is widely used in the fields of medicine, engineering, simulation and the like.

【0005】図1は、従来の技術による3D映像具現シ
ステム及びその具現方法を説明するための図である。ま
ず、3D映像具現システムについて説明すれば、光拡散
層112が第1及び第2マイクロレンズアレイ111及
び113、例えばフライアイレンズの間に形成されてお
り、第2マイクロレンズアレイ113と対向して同じ構
成の第3マイクロレンズアレイ114がテレビピックア
ップチューブ116の光感知層115の前面に形成され
る。
FIG. 1 is a view for explaining a conventional 3D image embodying system and a method for embodying the same. First, the 3D image embodying system will be described. The light diffusion layer 112 is formed between the first and second microlens arrays 111 and 113, for example, the fly-eye lens, and faces the second microlens array 113. A third microlens array 114 having the same structure is formed on the front surface of the light sensing layer 115 of the TV pickup tube 116.

【0006】そして、ディスプレイ119は蛍光スクリ
ーン120を含み、観客により映像が認知される前面部
に第4マイクロレンズアレイ121が形成されている。
ここで、マイクロレンズシステムを通じてカメラにより
撮影された映像を含む3D信号は、送信部117を介し
て受信部118に送られる。かかる伝送システムは通常
の信号送受信方式により動作される。受信部118を介
して受信された信号はディスプレイ119の蛍光スクリ
ーン120に映像を形成し、この映像は第4レンズアレ
イ121を介して認識される。ここで、このように蛍光
スクリーン120に形成された映像は第1,第2及び第
3マイクロレンズアレイ111,113,114を介し
てテレビピクチャチューブ116の感光層115に形成
された映像と同じである。ディスプレイ119に形成さ
れた第4マイクロレンズアレイ121はテレビピックア
ップチューブ116上に形成されたレンズシステムと同
じ構成を有し、ディスプレイ119に対するマイクロレ
ンズシステムの関係は、テレビピックアップチューブ1
16に対するマイクロレンズシステムのそれと同じであ
る。従って、視聴者は、ディスプレイ119の第4レン
ズアレイ121の前面においてマイクロレンズシステム
を介して映像を見ることにより、実物の仮想的な立体映
像を認知しうる。
The display 119 includes a fluorescent screen 120, and a fourth microlens array 121 is formed on the front surface where the image is recognized by the audience.
Here, the 3D signal including the image captured by the camera through the microlens system is sent to the receiving unit 118 via the transmitting unit 117. Such a transmission system operates according to a normal signal transmission / reception method. The signal received through the receiver 118 forms an image on the fluorescent screen 120 of the display 119, and the image is recognized through the fourth lens array 121. Here, the image formed on the fluorescent screen 120 is the same as the image formed on the photosensitive layer 115 of the television picture tube 116 through the first, second and third microlens arrays 111, 113 and 114. is there. The fourth microlens array 121 formed on the display 119 has the same structure as the lens system formed on the TV pickup tube 116, and the relationship between the microlens system and the display 119 is as follows.
The same as that of the microlens system for 16. Therefore, the viewer can perceive a virtual virtual stereoscopic image by viewing the image through the microlens system on the front surface of the fourth lens array 121 of the display 119.

【0007】しかし、実際にディスプレイが使われるシ
ミュレーションまたは医学分析システムにおいては、か
かる3D映像に加えて2D映像がさらに必要となる。し
かし、前記従来の技術による3D映像ディスプレイによ
っては、2D映像及び3D映像を選択的に具現し得ない
という問題点がある。
However, in a simulation or medical analysis system in which a display is actually used, a 2D image is required in addition to the 3D image. However, depending on the 3D image display according to the related art, there is a problem that 2D images and 3D images cannot be selectively implemented.

【0008】[0008]

【発明が解決しようとする課題】そこで、本発明は、前
記従来の技術の問題点を解決するために、2D映像及び
3D映像を別途の装置無しに単一のディスプレイ内にお
いて容易に具現しうるディスプレイを提供することを目
的とする。
Therefore, in order to solve the problems of the conventional techniques, the present invention can easily realize 2D images and 3D images in a single display without a separate device. It is intended to provide a display.

【0009】[0009]

【課題を解決するための手段】本発明では、前記従来の
技術の問題点を解決するために、イメージ形成ディスプ
レイと、前記イメージ形成ディスプレイの前面に形成さ
れ、前記イメージ形成ディスプレイから出力される映像
を3次元映像に変えるレンズ部とを含む立体映像ディス
プレイにおいて、前記レンズ部は、印加される電源によ
りその位置に応じて屈折率を選択的に調節しうる電気光
学物質を含み、屈折率の順次的な変化によりレンズの役
割が果たせる液晶層を含むことを特徴とする2D/3D
兼用ディスプレイを提供する。
SUMMARY OF THE INVENTION In order to solve the problems of the prior art, the present invention provides an image forming display and an image formed on the front surface of the image forming display and output from the image forming display. In the stereoscopic image display including a lens unit for converting the image into a three-dimensional image, the lens unit includes an electro-optical material whose refractive index can be selectively adjusted according to the position of an applied power source. 2D / 3D characterized by including a liquid crystal layer that can play the role of a lens depending on a change
Provides a dual-purpose display.

【0010】本発明において、前記レンズ部は、第1透
明基板と、前記第1透明基板上に形成された下部電極
と、前記下部電極上に形成され、電気光学物質を含む液
晶層と、前記液晶層上に形成された上部電極と、前記上
部電極上に形成された第2透明基板とを含むことが望ま
しい。
In the present invention, the lens unit includes a first transparent substrate, a lower electrode formed on the first transparent substrate, a liquid crystal layer formed on the lower electrode and containing an electro-optical material, and It is desirable to include an upper electrode formed on the liquid crystal layer and a second transparent substrate formed on the upper electrode.

【0011】本発明において、前記下部電極及び前記上
部電極に対して電源を印加しうる電源印加部をさらに含
み、前記イメージ形成ディスプレイは、CRT、LC
D、プラズマディスプレイまたはELディスプレイを含
むことが望ましい。
In the present invention, the image forming display may further include a power supply unit capable of applying power to the lower electrode and the upper electrode, and the image forming display may be a CRT or LC.
It is desirable to include a D, plasma display or an EL display.

【0012】本発明において、第1透明基板及び前記第
2透明基板は、同一方向に配向処理が施されており、前
記液晶層は、3Dモード時に前記下部電極及び前記上部
電極各々を介して選択的に電源が印加され、その位置に
応じて屈折率が次第に変わって前記液晶層がセルフフォ
ーカシングレンズの形状を有することが望ましい。
In the present invention, the first transparent substrate and the second transparent substrate are aligned in the same direction, and the liquid crystal layer is selected through the lower electrode and the upper electrode in the 3D mode. It is preferable that the liquid crystal layer has the shape of a self-focusing lens in which the power is applied and the refractive index gradually changes depending on the position.

【0013】本発明において、前記液晶層の電気光学物
質は、ネマチック物質であることを特徴とする。
In the present invention, the electro-optical material of the liquid crystal layer is a nematic material.

【0014】[0014]

【発明の実施の形態】以下、添付した図面に基づき、本
発明に係る2D/3D兼用ディスプレイを詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A 2D / 3D dual-purpose display according to the present invention will be described in detail below with reference to the accompanying drawings.

【0015】図2は、本発明に係る2D/3D兼用ディ
スプレイの断面図である。本発明に係る2D/3D兼用
ディスプレイは、イメージ形成ディスプレイ21と、レ
ンズ部27及びレンズ部27に対して選択的に電源を供
給しうる電源供給部(図示せず)を含む。
FIG. 2 is a sectional view of a 2D / 3D dual-purpose display according to the present invention. The 2D / 3D combined display according to the present invention includes an image forming display 21, and a lens unit 27 and a power supply unit (not shown) that can selectively supply power to the lens unit 27.

【0016】イメージ形成ディスプレイ21は、通常の
映像ディスプレイであり、その具体例としては、映像を
形成するための高解像度及び狭ピッチを有するテレビ、
モニター、LCD、プラズマディスプレイ、ELディス
プレイ等がある。従って、イメージ形成ディスプレイ2
1は、映像信号を入力されてそのまま出力するものであ
って、通常の映像具現媒体であれば、特別な制限無しに
使用可能である。
The image forming display 21 is an ordinary image display, and its specific example is a television having a high resolution and a narrow pitch for forming an image,
There are monitors, LCDs, plasma displays, EL displays, etc. Therefore, the image forming display 2
Reference numeral 1 denotes an image signal input and output as it is, and any ordinary image embodying medium can be used without any special limitation.

【0017】レンズ部27は、イメージ形成ディスプレ
イ21の前面に位置し、イメージ形成ディスプレイ21
から出力される映像を3次元映像に変える役割を果た
す。ここで、レンズ部27は、第1透明基板22と、前
記透明基板上に形成された下部電極23と、前記下部電
極上に形成された液晶層24と、液晶層24上に形成さ
れた上部電極25及び前記上部電極上に形成された第2
透明基板26を含む。また、基板22,26の間、及び
上部電極23及び下部電極25の間には絶縁層がさらに
介在される場合もある。
The lens portion 27 is located in front of the image forming display 21 and is provided in the image forming display 21.
It plays the role of changing the image output from the 3D image. Here, the lens portion 27 includes a first transparent substrate 22, a lower electrode 23 formed on the transparent substrate, a liquid crystal layer 24 formed on the lower electrode, and an upper portion formed on the liquid crystal layer 24. Electrode 25 and a second electrode formed on the upper electrode
A transparent substrate 26 is included. In addition, an insulating layer may be further interposed between the substrates 22 and 26 and between the upper electrode 23 and the lower electrode 25.

【0018】下部電極23及び上部電極25は、第1透
明基板22及び第2透明基板26と同様に透光性材料、
例えばITO(In,Sn,Oxide)から形成でき
る。
The lower electrode 23 and the upper electrode 25 are made of a transparent material, like the first transparent substrate 22 and the second transparent substrate 26.
For example, it can be formed from ITO (In, Sn, Oxide).

【0019】下部電極23及び上部電極25はライン状
に交差形成され、下部電極23及び上部電極25の幅は
イメージ形成ディスプレイ21のピクセルに応じて決ま
る。これにより、液晶層24の電源印加部分がイメージ
形成ディスプレイ21のピクセル単位に合わせて調節可
能になる。
The lower electrode 23 and the upper electrode 25 are formed to intersect each other in a line shape, and the widths of the lower electrode 23 and the upper electrode 25 are determined according to the pixels of the image forming display 21. As a result, the power application part of the liquid crystal layer 24 can be adjusted according to the pixel unit of the image forming display 21.

【0020】本発明に係る2D/3D兼用ディスプレイ
を特徴づける液晶層24は、外部電源により屈折率が変
わる電気光学物質から形成される。例えば、米国特許第
4,037,929号公報に記載されているネマチック
物質から形成される。液晶層24に対して公知の技術に
よる配向処理を施し、液晶層24の電気光学物質を平面
方向に配向させる。これにより、図2に示されたよう
に、電源が印加されていない状態では液晶層24の電気
光学物質が全体的に同一方向に配向される。そして、こ
のような液晶層24に対して電源が印加されれば、例え
ばネマチック物質の場合、屈折率が1.52から1.7
5へと変わる。このような屈折率の変化に伴い光透過量
が変わる。
The liquid crystal layer 24, which characterizes the 2D / 3D dual-purpose display according to the present invention, is formed of an electro-optical material whose refractive index is changed by an external power source. For example, it is formed from the nematic material described in US Pat. No. 4,037,929. The liquid crystal layer 24 is subjected to an alignment treatment by a known technique to align the electro-optical material of the liquid crystal layer 24 in the plane direction. As a result, as shown in FIG. 2, the electro-optical material of the liquid crystal layer 24 is generally oriented in the same direction when no power is applied. When a power source is applied to the liquid crystal layer 24, the refractive index of the nematic material is 1.52 to 1.7.
Change to 5. The amount of light transmission changes with such a change in the refractive index.

【0021】次に、本発明に係る2D/3D兼用ディス
プレイの2D映像及び3D映像の具現方法について説明
する。
Next, a method for implementing 2D and 3D images on the 2D / 3D combined display according to the present invention will be described.

【0022】図3を参照し、3D映像の具現方法の一実
施形態について説明する。まず、外部電源供給部により
電源が印加されれば、下部電極33及び上部電極35を
介して前記液晶層に電源が印加される。この時、下部電
極33への印加電源の大きさを異にする。これは上部電
極35の場合にも同様である。上部電極33及び下部電
極35への印加電源の大きさを異にすれば、液晶層34
の各部位ごとへの印加電源の大きさが異なってくる。よ
って、液晶層34の電気光学物質の配向方向が各部位ご
とに異なってくる。
An embodiment of a method for implementing a 3D image will be described with reference to FIG. First, when power is applied by the external power supply unit, power is applied to the liquid crystal layer through the lower electrode 33 and the upper electrode 35. At this time, the magnitude of the power supply applied to the lower electrode 33 is made different. This also applies to the upper electrode 35. If the magnitude of the power supply applied to the upper electrode 33 and the lower electrode 35 is different, the liquid crystal layer 34
The size of the power supply applied to each part of the above will differ. Therefore, the orientation direction of the electro-optical material of the liquid crystal layer 34 is different for each part.

【0023】図3は、このように上部電極33及び下部
電極35への印加電源を異にする場合に液晶層34の配
向方向が変わる例を示している。これを参照すれば、3
hは電源を印加しなかった部位であり、この時にはイメ
ージ形成ディスプレイ31による光透過量が極めて小で
ある。そして、3a及び3oは前記電気光学物質の配向
方向の変化が最も多く得られる大きさの電源を印加した
ものであり、垂直方向に変わった。この場合には、イメ
ージ形成ディスプレイ31から発せられる光透過量が最
も多い。すなわち、前記電源の印加により前記液晶層の
各部位ごとに光透過量が異なってくるのである。このよ
うな原理に基づき、液晶層の3a領域から3o領域まで
を一つのレンズとして仮定でき、このようにして具現さ
れたレンズをセルフフォーカシングレンズまたはGRI
N(GRated INdex)レンズと呼ぶ。よっ
て、受信された映像をイメージ形成ディスプレイ31を
介して前記レンズの役割を与える液晶層34により3D
映像として具現しうる。
FIG. 3 shows an example in which the alignment direction of the liquid crystal layer 34 changes when the power supplies applied to the upper electrode 33 and the lower electrode 35 are different. If you refer to this, 3
Reference numeral h denotes a portion to which power is not applied, and at this time, the amount of light transmitted by the image forming display 31 is extremely small. And, 3a and 3o are the ones to which a power source having a magnitude that can obtain the most change in the orientation direction of the electro-optical material is applied, and changed in the vertical direction. In this case, the amount of light transmitted from the image forming display 31 is the largest. That is, the amount of light transmission varies with each part of the liquid crystal layer due to the application of the power source. Based on such a principle, it is possible to assume that the regions 3a to 3o of the liquid crystal layer are one lens, and the lens embodied in this way is a self-focusing lens or a GRI.
It is referred to as an N (GRated Index) lens. Therefore, the received image is displayed in 3D by the liquid crystal layer 34 which functions as the lens through the image forming display 31.
It can be embodied as a video.

【0024】前記の如き原理により各種のレンズを具現
しうる。すなわち、図4Aのように、フライアイレンズ
またはレンチキューラレンズを具現しうる。前述の通
り、レンズ部37の下部電極33及び上部電極35を介
して液晶層34に印加される電源の大きさを少しずつ異
にすれば、液晶層34の各部位における透光量が異なっ
て液晶層34がセルフフォーカシング形状を有し、これ
により液晶層34がレンズとして機能しうる。従って、
レンズの形状は特別の形状に限定されることなく、その
大きさ及び形状が調節可能である。
Various lenses can be embodied according to the above-described principle. That is, as shown in FIG. 4A, a fly-eye lens or a lenticular lens may be implemented. As described above, if the magnitude of the power source applied to the liquid crystal layer 34 via the lower electrode 33 and the upper electrode 35 of the lens unit 37 is made slightly different, the amount of light transmission at each portion of the liquid crystal layer 34 will be different. The liquid crystal layer 34 has a self-focusing shape, which allows the liquid crystal layer 34 to function as a lens. Therefore,
The shape of the lens is not limited to a particular shape, and its size and shape can be adjusted.

【0025】そして、2D映像の具現は、イメージ形成
ディスプレイ21,31から出力される映像そのものを
前記レンズ部によりろ過することなく通過させることに
よりなされる。すなわち、レンズ部27,37の下部電
極23,33及び上部電極25,35に印加される電源
を同一に維持すれば、液晶層24,34はガラス板のよ
うな役割を果たすだけであり、別途の位置における光透
過量を同一にすることにより2D映像は容易に具現され
る。
The 2D image is embodied by allowing the image itself output from the image forming displays 21 and 31 to pass through the lens unit without being filtered. That is, if the powers applied to the lower electrodes 23 and 33 and the upper electrodes 25 and 35 of the lens units 27 and 37 are kept the same, the liquid crystal layers 24 and 34 only serve as glass plates and are separately provided. A 2D image can be easily embodied by setting the same light transmission amount at the positions.

【0026】従って、このような外部電源の印加有無に
応じて、両透明基板32,36間の屈折率を一致させて
液晶層34を形成する。そして、液晶層34への印加電
源の大きさを各電極ごとに別々にして印加すれば、液晶
層34への印加電源の大きさも互いに異なってくる。こ
れにより、光透過量にも違いが出る。このように、液晶
層の各部位への印加電源の大きさを調節して反復的に印
加すれば、液晶層34はセルフフォーカシングレンズの
ように一種のレンズの機能を行える。よって、同一のデ
ィスプレイ内においてレンズ部37への印加電源の大き
さを調節することにより、2D/3D兼用ディスプレイ
を具現しうる。
Therefore, the liquid crystal layer 34 is formed by matching the refractive indexes of the transparent substrates 32 and 36 in accordance with the presence or absence of the application of the external power source. If the voltage applied to the liquid crystal layer 34 is applied separately to each electrode, the voltage applied to the liquid crystal layer 34 will be different from each other. This causes a difference in the amount of light transmission. In this way, by adjusting the magnitude of the power supply applied to each part of the liquid crystal layer and repeatedly applying the power, the liquid crystal layer 34 can function as a kind of lens like a self-focusing lens. Therefore, a 2D / 3D dual-purpose display can be realized by adjusting the magnitude of the power supply applied to the lens unit 37 in the same display.

【0027】前述の如き原理により各種のレンズを具現
しうる。図4Aは、本発明の一実施形態によるレンズ部
42の液晶層がレンチキューラレンズの機能を行うこと
を示すものであり、4枚のレンチキューラレンズが形成
されていることを陰影を変えて示している。そして、図
4Bは、本発明の他の実施形態によるレンズ部42がフ
ライアイレンズの機能を行うことを示すものであり、1
6枚の単位フライアイレンズが形成されていることを陰
影を変えて示している。前記図4A及び前記図4Bの実
施形態はどちらも、上部電極及び下部電極に印加される
電源を選択的に調節すれば容易に得られる。
Various lenses can be embodied according to the principle as described above. FIG. 4A illustrates that the liquid crystal layer of the lens unit 42 functions as a lenticular lens according to an exemplary embodiment of the present invention, and changes the shading that four lenticular lenses are formed. Is shown. 4B shows that the lens unit 42 according to another embodiment of the present invention functions as a fly-eye lens.
The shades are shown to indicate that six unit fly-eye lenses are formed. Both the embodiments of FIGS. 4A and 4B can be easily obtained by selectively adjusting the power source applied to the upper electrode and the lower electrode.

【0028】[0028]

【発明の効果】以上述べたように、本発明によれば、一
層進んだ映像情報が要されている分野、例えば、医学、
工学、シミュレーション及び今後の立体映像テレビ分野
において2Dまたは3Dに容易に切り換えできる。
As described above, according to the present invention, fields requiring more advanced image information, such as medicine,
You can easily switch to 2D or 3D in engineering, simulation and future stereoscopic television fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の技術による3次元映像ディスプレイの構
造図である。
FIG. 1 is a structural diagram of a conventional 3D image display.

【図2】本発明に係る2D/3D兼用ディスプレイの断
面図である。
FIG. 2 is a cross-sectional view of a 2D / 3D combined display according to the present invention.

【図3】本発明に係る2D/3D兼用ディスプレイにお
いて、3D映像を具現する原理を説明するための断面図
である。
FIG. 3 is a cross-sectional view for explaining the principle of embodying a 3D image in the 2D / 3D combined display according to the present invention.

【図4A】本発明に係る2D/3D兼用ディスプレイに
おいて、前記レンズ部がレンチキューラレンズの機能を
行うことを示す分解斜視図である。
FIG. 4A is an exploded perspective view showing that the lens unit functions as a lenticular lens in the 2D / 3D combined display according to the present invention.

【図4B】本発明に係る2D/3D兼用ディスプレイに
おいて、前記レンズ部がフライアイレンズの機能を行う
ことを示す分解斜視図である。
FIG. 4B is an exploded perspective view showing that the lens unit functions as a fly-eye lens in the 2D / 3D combined display according to the present invention.

【符号の説明】[Explanation of symbols]

21,31,41 イメージ形成ディスプレイ 22,32 第1透明基板 23,33 下部電極 24,34 液晶層 25,35 上部電極 26,36 第2透明基板 27,37,42 レンズ部 21, 31, 41 image forming display 22, 32 First transparent substrate 23,33 Lower electrode 24, 34 Liquid crystal layer 25,35 upper electrode 26, 36 Second transparent substrate 27,37,42 Lens part

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 イメージ形成ディスプレイと、 前記イメージ形成ディスプレイの前面に形成され、前記
イメージ形成ディスプレイから出力される映像を3次元
映像に変えるレンズ部とを含む立体映像ディスプレイに
おいて、 前記レンズ部は、印加される電源によりその位置に応じ
て屈折率を選択的に調節しうる電気光学物質を含み、屈
折率の順次的な変化によりレンズの役割が果たせる液晶
層を含むことを特徴とする2D/3D兼用ディスプレ
イ。
1. A stereoscopic image display, comprising: an image forming display; and a lens unit formed on the front surface of the image forming display and converting an image output from the image forming display into a three-dimensional image. 2D / 3D characterized by including an electro-optical material whose refractive index can be selectively adjusted according to its position by an applied power source, and including a liquid crystal layer which can play the role of a lens by a sequential change of the refractive index. Dual-purpose display.
【請求項2】 前記レンズ部は、 第1透明基板と、 前記第1透明基板上に形成された下部電極と、 前記下部電極上に形成され、電気光学物質を含む液晶層
と、 前記液晶層上に形成された上部電極と、 前記上部電極上に形成された第2透明基板とを含むこと
を特徴とする請求項1に記載の2D/3D兼用ディスプ
レイ。
2. The lens unit includes a first transparent substrate, a lower electrode formed on the first transparent substrate, a liquid crystal layer formed on the lower electrode and containing an electro-optical material, and the liquid crystal layer. The 2D / 3D combined display according to claim 1, further comprising an upper electrode formed on the upper electrode and a second transparent substrate formed on the upper electrode.
【請求項3】 前記下部電極及び前記上部電極に対して
電源を印加しうる電源印加部をさらに含むことを特徴と
する請求項2に記載の2D/3D兼用ディスプレイ。
3. The 2D / 3D dual-purpose display according to claim 2, further comprising a power supply unit that can apply power to the lower electrode and the upper electrode.
【請求項4】 前記イメージ形成ディスプレイは、CR
T、LCD、プラズマディスプレイまたはELディスプ
レイを含むことを特徴とする請求項2に記載の2D/3
D兼用ディスプレイ。
4. The image forming display is a CR
2D / 3 according to claim 2, characterized in that it comprises a T, LCD, plasma display or EL display.
Dual-use display.
【請求項5】 第1透明基板及び前記第2透明基板は、
同一方向に配向処理が施されていることを特徴とする請
求項2に記載の2D/3D兼用ディスプレイ。
5. The first transparent substrate and the second transparent substrate,
The 2D / 3D dual-use display according to claim 2, wherein the alignment treatment is performed in the same direction.
【請求項6】 前記液晶層は、3Dモード時に前記下部
電極及び前記上部電極各々を介して選択的に電源が印加
され、その位置に応じて屈折率が次第に変わって前記液
晶層がセルフフォーカシングレンズの形状を有すること
を特徴とする請求項2に記載の2D/3D兼用ディスプ
レイ。
6. The liquid crystal layer is selectively applied with power through the lower electrode and the upper electrode in the 3D mode, and the refractive index gradually changes according to the position of the liquid crystal layer so that the liquid crystal layer is self-focusing lens. The 2D / 3D combined display according to claim 2, having the shape of.
【請求項7】 前記液晶層の電気光学物質は、ネマチッ
ク物質であることを特徴とする請求項2に記載の2D/
3D兼用ディスプレイ。
7. The 2D / according to claim 2, wherein the electro-optical material of the liquid crystal layer is a nematic material.
3D combined display.
JP2002256815A 2001-09-11 2002-09-02 2d/3d convertible display Pending JP2003177356A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2001-055917 2001-09-11
KR10-2001-0055917A KR100440956B1 (en) 2001-09-11 2001-09-11 2D/3D Convertible Display

Publications (1)

Publication Number Publication Date
JP2003177356A true JP2003177356A (en) 2003-06-27

Family

ID=19714170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256815A Pending JP2003177356A (en) 2001-09-11 2002-09-02 2d/3d convertible display

Country Status (4)

Country Link
US (1) US20030063186A1 (en)
JP (1) JP2003177356A (en)
KR (1) KR100440956B1 (en)
DE (1) DE10242026A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226231A (en) * 2006-02-20 2007-09-06 Samsung Electronics Co Ltd Stereoscopic image conversion panel and stereoscopic image display apparatus having same
CN100451748C (en) * 2005-03-03 2009-01-14 友达光电股份有限公司 Two-dimensional / three-dimensional display and method for forming three-dimensional images
JP2010170068A (en) * 2008-12-22 2010-08-05 Sony Corp Lens array element and image display device
JP2011008167A (en) * 2009-06-29 2011-01-13 Nippon Hoso Kyokai <Nhk> Stereoscopic image display
JP2012137662A (en) * 2010-12-27 2012-07-19 Toshiba Corp Gradient index type liquid crystal optical element and image display device
JP2012141575A (en) * 2010-12-28 2012-07-26 Samsung Electronics Co Ltd Image display device using diffractive element
US8334952B2 (en) 2010-05-06 2012-12-18 Au Optronics Corp. 2D and 3D switchable display device
JP2013117731A (en) * 2013-01-28 2013-06-13 Toshiba Corp Refractive index distribution type liquid crystal optical element and image display device

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060103664A1 (en) * 2002-08-27 2006-05-18 Sharp Kabushiki Kaisha Contents reproduction device capable of reproducing a contents in optimal reproduction mode
JP4093833B2 (en) * 2002-09-25 2008-06-04 シャープ株式会社 Electronics
JP2004309868A (en) * 2003-04-08 2004-11-04 Sony Corp Imaging device and stereoscopic video generating device
KR20050084733A (en) * 2004-02-24 2005-08-29 하경수 Structure of optical filters
CN101006733B (en) 2004-08-18 2010-05-05 夏普株式会社 Image data display apparatus
KR100861476B1 (en) * 2004-08-18 2008-10-02 샤프 가부시키가이샤 Image data display apparatus
KR100684402B1 (en) * 2004-12-02 2007-02-22 엘지마이크론 주식회사 Stereoscopic image display apparatus
DE102004059798A1 (en) * 2004-12-10 2006-06-29 Ovd Kinegram Ag Optically variable element with electrically active layer
JP4863044B2 (en) * 2005-07-21 2012-01-25 ソニー株式会社 Display device, display control method, and program
CN101278567B (en) * 2005-09-28 2010-08-11 皇家飞利浦电子股份有限公司 Switchable display device
KR100728120B1 (en) * 2005-11-03 2007-06-13 삼성에스디아이 주식회사 Three dimensional display device
KR100707609B1 (en) 2005-12-02 2007-04-13 삼성에스디아이 주식회사 2d and 3d image selectable display device
WO2007072289A2 (en) * 2005-12-20 2007-06-28 Koninklijke Philips Electronics N.V. Autostereoscopic display device
KR101258081B1 (en) * 2005-12-30 2013-04-25 엘지디스플레이 주식회사 Autostereoscopic 3d display device
KR100811818B1 (en) * 2006-01-05 2008-03-10 주식회사 엘지에스 Lenticular LC shutter for 2D/3D image display and diplay device having the same
KR100784080B1 (en) * 2006-02-15 2007-12-10 엘지.필립스 엘시디 주식회사 2-dimension image and 3-dimension image display device
KR100786468B1 (en) * 2007-01-02 2007-12-17 삼성에스디아이 주식회사 2d and 3d image selectable display device
KR100851207B1 (en) * 2007-01-16 2008-08-07 삼성에스디아이 주식회사 2D and 3D image selectable display device
EP2140304B1 (en) 2007-04-17 2011-08-31 Koninklijke Philips Electronics N.V. Beam-shaping device
US8467007B2 (en) * 2007-06-27 2013-06-18 Thomson Licensing Display having diagonally ordered columns of lenticular lens
KR101362158B1 (en) * 2007-07-05 2014-02-13 엘지디스플레이 주식회사 Liquid Crystal Lens Electrically driven and Stereoscopy Display Device
US8305550B2 (en) * 2007-07-11 2012-11-06 Lg Display Co., Ltd. Electrically-driven liquid crystal lens and stereoscopic device using the same
KR101362160B1 (en) * 2007-07-11 2014-02-13 엘지디스플레이 주식회사 Lens of Liquid Crystal electrically driven, Stereoscopic Display device using the same and Method for Driving thereof
KR20090018528A (en) * 2007-08-17 2009-02-20 삼성전자주식회사 Apparatus of 2d/3d convertible display and driving method thereof
KR101274705B1 (en) * 2007-12-14 2013-06-12 엘지디스플레이 주식회사 Liquid Crystal Lens Electrically driven and Stereoscopy Display Device Using the Same
EP2250820A2 (en) * 2008-02-08 2010-11-17 Koninklijke Philips Electronics N.V. Autostereoscopic display device
KR101472052B1 (en) 2008-07-30 2014-12-12 삼성디스플레이 주식회사 Display device
TWI398669B (en) 2009-06-01 2013-06-11 Univ Nat Chiao Tung Three dimensional display
KR101603237B1 (en) * 2009-10-27 2016-03-15 엘지디스플레이 주식회사 Liquid Crystal Lens Electrically driven and Stereoscopy Display Device Using the Same
KR101722661B1 (en) 2010-07-20 2017-04-04 삼성디스플레이 주식회사 2d/3d switchable display device
US9645399B2 (en) * 2010-10-19 2017-05-09 Superd Co. Ltd. Autostereoscopic display apparatus and method
KR101729682B1 (en) 2010-11-04 2017-04-25 삼성디스플레이 주식회사 Optical unit and display device having the same
GB2488978A (en) * 2011-03-07 2012-09-19 Sharp Kk Switching lenses for multi-view displays
JP2013064996A (en) * 2011-08-26 2013-04-11 Nikon Corp Three-dimensional image display device
KR20130042980A (en) * 2011-10-19 2013-04-29 한국전자통신연구원 Stereo-scopic image panel, stereo-scopic image display apparatus having the same and driving method thereof
CN102402096A (en) * 2011-11-11 2012-04-04 昆山龙腾光电有限公司 Liquid crystal lens, liquid crystal display panel and liquid crystal display device
KR101928939B1 (en) 2011-11-30 2019-03-13 삼성디스플레이 주식회사 2 dimension/3 dimension switchable display apparatus
CN105242405A (en) * 2012-06-07 2016-01-13 冯林 3D display method based on electrically-induced refractive index change
KR102062255B1 (en) * 2013-08-12 2020-01-03 한국전자통신연구원 Microlens array and method for fabricating thereof
CN103605245B (en) * 2013-11-20 2016-04-20 深圳市华星光电技术有限公司 A kind of liquid crystal lens and 3 d display device
KR102120422B1 (en) 2014-02-05 2020-06-09 삼성디스플레이 주식회사 Display device including lens
KR102371780B1 (en) 2015-01-08 2022-03-08 삼성디스플레이 주식회사 A liquid crystal panel and a display apparatus comprising the same
KR20160087461A (en) 2015-01-13 2016-07-22 삼성디스플레이 주식회사 Optical modulation device and driving method thereof
GB2550885A (en) * 2016-05-26 2017-12-06 Euro Electronics (Uk) Ltd Method and apparatus for an enhanced-resolution light field display
GB2564850A (en) * 2017-07-18 2019-01-30 Euro Electronics Uk Ltd Apparatus and method of light field display

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290606A (en) * 1976-01-25 1977-07-30 Hiroshi Sakai Method of producing light permeable decorating wood material
JP3136178B2 (en) * 1991-10-09 2001-02-19 株式会社リコー Display device
US5493427A (en) * 1993-05-25 1996-02-20 Sharp Kabushiki Kaisha Three-dimensional display unit with a variable lens
GB9623682D0 (en) * 1996-11-14 1997-01-08 Philips Electronics Nv Autostereoscopic display apparatus
JP2000029028A (en) * 1998-07-14 2000-01-28 Mitsubishi Electric Corp Liquid crystal display device and its formation

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451748C (en) * 2005-03-03 2009-01-14 友达光电股份有限公司 Two-dimensional / three-dimensional display and method for forming three-dimensional images
KR101201848B1 (en) 2006-02-20 2012-11-15 삼성디스플레이 주식회사 Stereo-scopic image conversion panel and stereo-scopic image display apparatus having the same
JP2007226231A (en) * 2006-02-20 2007-09-06 Samsung Electronics Co Ltd Stereoscopic image conversion panel and stereoscopic image display apparatus having same
JP2010170068A (en) * 2008-12-22 2010-08-05 Sony Corp Lens array element and image display device
JP2011008167A (en) * 2009-06-29 2011-01-13 Nippon Hoso Kyokai <Nhk> Stereoscopic image display
US8334952B2 (en) 2010-05-06 2012-12-18 Au Optronics Corp. 2D and 3D switchable display device
JP2012137662A (en) * 2010-12-27 2012-07-19 Toshiba Corp Gradient index type liquid crystal optical element and image display device
US8675148B2 (en) 2010-12-27 2014-03-18 Kabushiki Kaisha Toshiba Gradient refractive index liquid crystal optical apparatus and image display apparatus
US9036101B2 (en) 2010-12-27 2015-05-19 Kabushiki Kaisha Toshiba Gradient refractive index liquid crystal optical apparatus and image display apparatus
US9176349B2 (en) 2010-12-27 2015-11-03 Kabushiki Kaisha Toshiba Gradient refractive index liquid crystal optical apparatus and image display apparatus
JP2012141575A (en) * 2010-12-28 2012-07-26 Samsung Electronics Co Ltd Image display device using diffractive element
US9256075B2 (en) 2010-12-28 2016-02-09 Samsung Display Co., Ltd. Image display device using diffractive element
US9823483B2 (en) 2010-12-28 2017-11-21 Samsung Display Co., Ltd. Image display device using diffractive element
JP2013117731A (en) * 2013-01-28 2013-06-13 Toshiba Corp Refractive index distribution type liquid crystal optical element and image display device

Also Published As

Publication number Publication date
KR20030022583A (en) 2003-03-17
DE10242026A1 (en) 2003-04-03
US20030063186A1 (en) 2003-04-03
KR100440956B1 (en) 2004-07-21

Similar Documents

Publication Publication Date Title
JP2003177356A (en) 2d/3d convertible display
US7397444B2 (en) 2D/3D convertible display
US8059063B2 (en) Barrier device, autostereoscopic display using the same and driving method thereof
US7760429B2 (en) Multiple mode display device
US8471968B2 (en) Liquid crystal panel having a light refracting device, and display device having liquid crystal panel
JPH01283546A (en) Stereoscopic video display device
US20100238097A1 (en) 2-D and 3-D switchalbe and multi-full size image dispaly system
TW201126205A (en) Autostereoscopic display apparatus
JPH10221643A (en) Stereoscopic picture display device
JP2013117724A (en) Electronic video apparatus
TWI399570B (en) 3d display and 3d display system
US20090295909A1 (en) Device and Method for 2D-3D Switchable Autostereoscopic Viewing
TWI397719B (en) Stereoscopic display device and stereoscopic image displaying method
KR101207861B1 (en) The panel structure and methode of manufacture for stereoscopic lcd
KR100440955B1 (en) 2D / 3D convertible display
JPH075325A (en) Polarizing film for stereoscopic display and stereoscopic display device
JP2005520216A (en) 3D stereoscopic display
KR101951297B1 (en) Image display device
TWI386035B (en) Three-dimensional display device and three-dimensional display method
KR20150004028A (en) 3 dimensional stereography image displayable device
JP4227187B2 (en) 3D image viewing glasses
JPH07199143A (en) Liquid crystal display device
JP3085321B2 (en) Display device
JPH05257083A (en) Stereoscopic display device
KR101799935B1 (en) 3 dimensional image displayable system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060117