JPS62254433A - Formation of oxide film on silicon substrate - Google Patents

Formation of oxide film on silicon substrate

Info

Publication number
JPS62254433A
JPS62254433A JP9882486A JP9882486A JPS62254433A JP S62254433 A JPS62254433 A JP S62254433A JP 9882486 A JP9882486 A JP 9882486A JP 9882486 A JP9882486 A JP 9882486A JP S62254433 A JPS62254433 A JP S62254433A
Authority
JP
Japan
Prior art keywords
oxide film
silicon
silicon substrate
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9882486A
Other languages
Japanese (ja)
Inventor
Toru Dan
徹 壇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9882486A priority Critical patent/JPS62254433A/en
Publication of JPS62254433A publication Critical patent/JPS62254433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To prevent deterioration in substrate characteristics by a method wherein a silicon oxide film is grown on an amorphous silicon layer, and then the amorphous silicon layer is modified into the layer which is substantially same as the silicon substrate. CONSTITUTION:A silicon substrate 1 is placed on a susceptor 2, a quartz tube 3 is closed with a cap 4, and after the quartz tube 3 has been brought into a vacuum state using a discharge device 5, the silicon substrate 1 is heated up with an infrared-ray lamp 6, and Ar gas is introduced from a gas introducing tube 7. Then, Ar plasma is generated using a high frequency power source 9 and a coil 10, and the substrate surface is cleaned. Subsequently, an amorphous silicon layer 13 is deposited on the silicon substrate 1 by introducing SiH4 gas from a gas introducing tube 11. Then, a silicon oxide film 14 is deposited on the amorphous silicon layer 13. Then, the amorphous silicon layer 13 is modified into the layer which is substantially the same as the silicon substrate 1 by an epitaxial growth method in solid phase on the layer 13. As a result, a silicon oxide film having excellent interfacial characteristics can be formed at a low temperature.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は高速化に選するraに利用されるシリコン基板
上の酸化膜形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for forming an oxide film on a silicon substrate used in RA for increasing speed.

−1従来の技術 ICの微細化、高速化を推進するために、低温プロセス
の開発が不可欠になってきている。父、最近ではMOS
デバイスにおいてもエピタキシャル膜が用いられるよう
になってき九が、エピタキシャル成長にシいても不純物
のイードドーピングを抑える為に、低温でのエピタキシ
ャル成長が必要であり、アモルファスシリコンを用いた
固相成長法が研究されている。シリコン基板上にシリコ
ン酸化膜を形成する場合、最も一般的には高温の酸素雰
囲気中でシリコン基板の表面を熱酸化する方法(「日経
マイクロデバイス」1985年10月号9IpI51頁
参照)が、界面特性の良いシリコン酸化膜を形成するた
めに用いられている。例えば5011m(ナノメータ)
のシリコン酸化膜な形成するためにJLi1000℃の
酸素雰囲気中で1800秒の酸化が必要である。このよ
うに長時曲、高温中に基板をさらすとシリコン基板中の
不純物が再拡散を起こし、10の微細化を妨げる結果と
なる。このような理由で、低温で酸化シリコン膜を形成
する方法が必要とされでいる。このように低温で酸化シ
リコンIll!を形成する方法としては気相成長法によ
シ酸化シリコン膜を形成する方法があるが、界面特性が
劣り、MOBデバイスの特にゲート酸化膜として用いる
のは困難であった。
-1 Conventional technology In order to promote miniaturization and speeding up of ICs, the development of low-temperature processes has become essential. Father, these days MOS
Epitaxial films have come to be used in devices as well, but in order to suppress the doping of impurities, epitaxial growth is required at low temperatures, and solid-phase growth methods using amorphous silicon are being researched. ing. When forming a silicon oxide film on a silicon substrate, the most common method is to thermally oxidize the surface of the silicon substrate in a high-temperature oxygen atmosphere (see "Nikkei Micro Device", October 1985 issue, 9IpI, p. 51). It is used to form silicon oxide films with good characteristics. For example, 5011m (nanometer)
To form a silicon oxide film, JLi requires oxidation for 1800 seconds in an oxygen atmosphere at 1000°C. If the substrate is exposed to high temperature conditions for a long time in this way, impurities in the silicon substrate will be re-diffused, which will hinder the miniaturization of the silicon substrate. For these reasons, there is a need for a method of forming silicon oxide films at low temperatures. In this way, silicon oxide at low temperatures Ill! There is a method of forming a silicon oxide film using a vapor phase growth method, but it has poor interface properties and is difficult to use, especially as a gate oxide film, in MOB devices.

(ハ)発明が解決しようとする問題点 上述のようにシリコン基板上に熱酸化によりシリコン酸
化膜を形成した場合、高温により不純物の再拡散が起こ
り、IOの微細化の妨げとなるという問題点がある。又
、気相成長法によりシリコン基板表面上に酸化シリコン
膜を形成した場合。
(c) Problems to be solved by the invention As mentioned above, when a silicon oxide film is formed on a silicon substrate by thermal oxidation, re-diffusion of impurities occurs due to high temperatures, which hinders the miniaturization of IOs. There is. Also, when a silicon oxide film is formed on the surface of a silicon substrate by vapor phase growth.

界面特性が劣るという問題点がある。There is a problem that the interfacial properties are poor.

本発明は以上の点に留意してなされたものであり、低温
プロセスを用いてシリコン基板内の特性劣化を防ぐと共
に、シリコン基板とシリコン酸化膜の界面の界面特性の
低下を防ぐシリコン基板上の酸化膜形成方法を提供しよ
うとするものである。
The present invention has been made with the above points in mind, and uses a low-temperature process to prevent the deterioration of characteristics within a silicon substrate, as well as to prevent deterioration of the interfacial characteristics of the interface between the silicon substrate and silicon oxide film. The present invention attempts to provide a method for forming an oxide film.

に)問題点を解決する念めの手段 本発明は、シリコン基板表面の洗浄をプラズマ励起シた
アルゴンイオンのスパッタリングにヨリ実行する工程と
、洗浄されたシリコン基板上にアモルファスシリコン層
を気相成長法によって形成する工程と、前記アモルファ
スシリコン階上にシリコン酸化腰下を気相成長法によっ
て形成する工程と、前記シリコン酸化腰下の前記アモル
ファスνリプン111に固相エビタキVヤル成長法によ
って上記v I)コン基板と実質的に同じものに変成す
る工程とを含むことを特徴とするシリコン基板の酸化膜
形成方法である。
2) A precautionary measure to solve the problem The present invention involves a process of cleaning the surface of a silicon substrate by sputtering plasma-excited argon ions, and a process of vapor phase growth of an amorphous silicon layer on the cleaned silicon substrate. a step of forming a silicon oxide bottom layer on the amorphous silicon layer by a vapor phase growth method; and a step of forming a silicon oxide layer 111 on the silicon oxide layer layer by a solid phase epitaxy method. I) A method for forming an oxide film on a silicon substrate, which is characterized by including the step of transforming the silicon substrate into a material substantially the same as a silicon substrate.

(ホ)作 用 本発明は上述の如く、シリコ/酸化膜は敞初アモルファ
スVリコン層の上に成長させ、その後上記アモルファス
Vリコン層tvリコン基板と実質的に同じものに変成す
るようにしているので、低温プロセスが可能であり基板
特性の低下を防止することができ、父、シリコ/酸化膜
との間の界面特性の劣化を防止することができる。
(E) Function As described above, the present invention is arranged so that the silicon/oxide film is grown on the initial amorphous V-recon layer and then transformed into the amorphous V-recon layer and the TV recon substrate. This makes it possible to perform low-temperature processes and prevent deterioration of the substrate properties, as well as the deterioration of the interfacial properties between silicon and the oxide film.

(へ)実施例 本発明の実施例を図面な参照して説明する。第1図は本
発明方法を実施する装置の概略構成図である。化学的洗
浄を施したシリコン基板(すをサセプタ(2)上に置き
1石英管(3)の中央部に設置する。
(F) Embodiments An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of an apparatus for carrying out the method of the present invention. A chemically cleaned silicon substrate is placed on a susceptor (2) and placed in the center of a quartz tube (3).

この石英管(3層をキャップ(41で閉じ、減圧排気装
置(5)で石英管(3)内を1X10  )−ルの真空
状態に設定する。その後、赤外線ランプ(6)によシリ
コン基板(1)を500℃に加熱する。次に、ガス導入
管())からArガスを100007分導入し1石英管
内V0.1 )−ルに保ち、シリコン基板(1)に直流
電#1(81によF)−500Vのバイアスな与える。
This quartz tube (3 layers) is closed with a cap (41), and the inside of the quartz tube (3) is set to a vacuum state of 1×10 μm using a vacuum evacuation device (5). 1) is heated to 500°C.Next, Ar gas is introduced from the gas introduction tube ()) for 100,007 minutes, and the voltage inside the quartz tube is maintained at V0.1). F) Apply a bias of -500V.

高周波電#(9)とコイル顛とによりIS、56MHz
IS, 56MHz by high frequency electric # (9) and coil structure
.

5Wの高周波を石英管内に与え、ATのプラズマを発生
させる。Ar  イオンはシリコン基板(1)のバイア
スによシ該ンリプン基板上に衝突し、該ンリコン基板表
11i]t−洗浄する(m2図)、この洗浄を5分間実
行した&、A!”ガスの導入を停止し。
A 5W high frequency wave is applied to the quartz tube to generate AT plasma. Ar ions collided onto the silicon substrate due to the bias of the silicon substrate (1), and the silicon substrate was cleaned (Fig. m2), and this cleaning was carried out for 5 minutes &,A! ``Stop introducing gas.

次いでガス導入管QllからB1H4ガスY 10 t
3c1/分導入し、熱分解によりアモルファスシリコン
をHe<  1   st  II  −q  yうe
 & l l S  しy  IH7、m  nl −
P  〒c  m、=−rスシリコン#(13を堆積さ
せる([1llC)。このアモルファスVリコ7F#i
?Iを堆積した後、81H4ガスの供給を停止し、基板
温度を、シリコン酸化膜の形成温度420℃に設定する
。次いで、ガス導入管(7)からBIE4ガスを500
 aa/分、ガス導入管t11)から02ガスを150
 co/分、更にガス導入管αりからN2ガスv5 /
/分の割合でそれぞれ石英管(3)内に導入し、気相成
長法によりシリコン酸化膜(14)をアモルファスシリ
コン層a3上に堆積する(第4図)。このシリコン酸化
膜証瘤が10nm堆積し一#、後、上記各ガスの供給を
停止し、その後、シリコン基板(1)の温度を600〜
900℃に上げ、アモルファスシリコン層a3のアモル
ファスシリコンをシリコ/酸化膜U@との界iioまで
固相エピタキシャル成長させてシリコン基5ij(11
と実質的に同じもの(IsK変成する(第5図)。
Next, B1H4 gas Y 10 t is supplied from the gas introduction pipe Qll.
3c1/min and converts amorphous silicon by thermal decomposition into He<1 st II -q yue
& l l S y IH7, m nl −
Deposit P 〒c m,=-rs silicon#(13([1llC).This amorphous Vlico7F#i
? After I is deposited, the supply of 81H4 gas is stopped, and the substrate temperature is set to 420° C., the temperature for forming a silicon oxide film. Next, 500 ml of BIE4 gas was supplied from the gas introduction pipe (7).
aa/min, 150 02 gas from gas inlet pipe t11)
co/min, and further N2 gas v5/min from the gas inlet pipe α
/min into the quartz tube (3), and a silicon oxide film (14) is deposited on the amorphous silicon layer a3 by vapor phase growth (FIG. 4). After 10 nm of this silicon oxide film has been deposited, the supply of each of the above gases is stopped, and the temperature of the silicon substrate (1) is then raised to 600~600℃.
The temperature is raised to 900°C, and the amorphous silicon of the amorphous silicon layer a3 is solid-phase epitaxially grown to the silicon/oxide film U@ boundary io to form a silicon group 5ij (11
Substantially the same as (IsK metamorphoses (Fig. 5)).

(ト)発明の効果 以上のようにして得られ光シリコン酸化膜の緒特性を、
従来のシリコン基板を熱酸化して得られるシリコン酸化
膜、及びシリコン基板上に気相成良法により堆積して得
られるシリコン酸化膜と比較すると以下の如くなる。
(g) Effects of the invention The characteristics of the photo-silicon oxide film obtained as described above,
A comparison between a silicon oxide film obtained by thermally oxidizing a conventional silicon substrate and a silicon oxide film obtained by depositing on a silicon substrate by a vapor deposition method is as follows.

熱酸化で得られる酸化膜は界面特性が良いが不純物(ポ
ロン)の再拡散長が大きいという欠点がある。−万、気
相成長法で得られる酸化膜は不純物の再拡散長が小さい
が界面特性が劣る。これらに比べて本発明方法によれば
不純物の拡散長を小さく抑えかつ艮好な界面特性が得ら
れる。このように1本発明方法によシ、低温において界
面特性の良いシリコン酸化膜を形成することができ、プ
ロセス温度の実効的な低温化、特にゲート酸化膜のプロ
セスに有用となり、10の微細化に大きな効果がある。
Although the oxide film obtained by thermal oxidation has good interfacial properties, it has the disadvantage that the re-diffusion length of impurities (poron) is long. - The oxide film obtained by vapor phase growth has a small re-diffusion length of impurities, but its interface properties are poor. Compared to these, according to the method of the present invention, the diffusion length of impurities can be kept small and good interface characteristics can be obtained. In this way, the method of the present invention can form a silicon oxide film with good interfacial properties at low temperatures, and is useful for effectively lowering the process temperature, especially for gate oxide film processes, and for miniaturization of 10. has a big effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する装置の概略構成図、tJ
12図〜′IJ15図は本発明方法の工程説明図である
。 (l)・・・シリコ/基板、(13・・・アモルファス
シリコン層、 (14・・・シリコン酸化膜、09・・
・変成されたシリコン基板。
FIG. 1 is a schematic diagram of an apparatus for carrying out the method of the present invention, tJ
Figures 12 to 15 are explanatory diagrams of the steps of the method of the present invention. (l)...Silicon/substrate, (13...Amorphous silicon layer, (14...Silicon oxide film, 09...
- Metamorphosed silicon substrate.

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン基板表面の洗浄をプラズマ励起したアル
ゴンイオンのスパッタリングにより実行する工程と、洗
浄されたシリコン基板上にアモルファスシリコン層を気
相成長法によつて形成する工程と、前記アモルファスシ
リコン層上にシリコン酸化膜を気相成長法によつて形成
する工程と、前記シリコン酸化膜下の前記アモルファス
シリコン層を固相エピタキシヤル成長法によつて上記シ
リコン基板と実質的に同じものに変成する工程とを含む
ことを特徴とするシリコン基板上の酸化膜形成方法。
(1) A step of cleaning the surface of the silicon substrate by sputtering of plasma-excited argon ions, a step of forming an amorphous silicon layer on the cleaned silicon substrate by vapor phase growth, and a step of forming an amorphous silicon layer on the amorphous silicon layer. a step of forming a silicon oxide film by a vapor phase growth method, and a step of transforming the amorphous silicon layer under the silicon oxide film into something substantially the same as the silicon substrate by a solid phase epitaxial growth method. A method for forming an oxide film on a silicon substrate, the method comprising:
(2)前記各工程を1つの石英管内で実施することを特
徴とする特許請求の範囲第(1)項記載のシリコン基板
上の酸化膜形成方法。
(2) The method for forming an oxide film on a silicon substrate according to claim (1), wherein each of the steps is carried out in one quartz tube.
JP9882486A 1986-04-28 1986-04-28 Formation of oxide film on silicon substrate Pending JPS62254433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9882486A JPS62254433A (en) 1986-04-28 1986-04-28 Formation of oxide film on silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9882486A JPS62254433A (en) 1986-04-28 1986-04-28 Formation of oxide film on silicon substrate

Publications (1)

Publication Number Publication Date
JPS62254433A true JPS62254433A (en) 1987-11-06

Family

ID=14230046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9882486A Pending JPS62254433A (en) 1986-04-28 1986-04-28 Formation of oxide film on silicon substrate

Country Status (1)

Country Link
JP (1) JPS62254433A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120365A (en) * 1989-09-27 1991-05-22 Internatl Business Mach Corp <Ibm> Sio2-adhering process
KR100242829B1 (en) * 1997-07-26 2000-03-02 이장무 Alumina strengthening method
KR100542690B1 (en) * 1998-12-30 2006-03-28 주식회사 하이닉스반도체 Silicon oxide film formation method of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120365A (en) * 1989-09-27 1991-05-22 Internatl Business Mach Corp <Ibm> Sio2-adhering process
KR100242829B1 (en) * 1997-07-26 2000-03-02 이장무 Alumina strengthening method
KR100542690B1 (en) * 1998-12-30 2006-03-28 주식회사 하이닉스반도체 Silicon oxide film formation method of semiconductor device

Similar Documents

Publication Publication Date Title
US3385729A (en) Composite dual dielectric for isolation in integrated circuits and method of making
JPS58130517A (en) Manufacture of single crystal thin film
KR930006821A (en) Method of manufacturing a semiconductor device comprising an improved polycrystalline silicon film having a reduced resistivity
WO2006137192A1 (en) Method of surface reconstruction for silicon carbide substrate
Hofmann et al. Defect formation in thermal SiO2 by high‐temperature annealing
JPH04174517A (en) Manufacture of diamond semiconductor
Learn et al. Growth morphology and crystallographic orientation of β-SiC films formed by chemical conversion
JPS62254433A (en) Formation of oxide film on silicon substrate
JPH1167757A (en) Formation of thin oxide film
JP2000001398A (en) Production of silicon carbide semiconductor substrate
JPH10261615A (en) Surface morphology control method of sic semiconductor and growing method of sic semiconductor thin film
JPH04146619A (en) Thin film growth method
JPH07183231A (en) Semiconductor substrate and its manufacture
JP3221129B2 (en) Semiconductor device manufacturing method
JPS63119268A (en) Manufacture of semiconductor device
JP3157280B2 (en) Method for manufacturing semiconductor device
JP2961188B2 (en) Method for manufacturing SOI substrate
KR20010062215A (en) Single crystal silicon layer, its epitaxial growth method and semiconductor device
JP2003528443A5 (en)
JPS6012775B2 (en) Method for forming a single crystal semiconductor layer on a foreign substrate
JPH0427116A (en) Method of forming semiconductor heterojunction
JPH01287920A (en) Manufacture of multilayer thin film
JPH02102520A (en) Vapor epitaxial deposition
JPH01152719A (en) Formation of soi structure
JPS61292315A (en) Selection epitaxial method