JPS6225415B2 - - Google Patents

Info

Publication number
JPS6225415B2
JPS6225415B2 JP54104710A JP10471079A JPS6225415B2 JP S6225415 B2 JPS6225415 B2 JP S6225415B2 JP 54104710 A JP54104710 A JP 54104710A JP 10471079 A JP10471079 A JP 10471079A JP S6225415 B2 JPS6225415 B2 JP S6225415B2
Authority
JP
Japan
Prior art keywords
resin
adsorbent
acid
ions
oxide hydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54104710A
Other languages
Japanese (ja)
Other versions
JPS5628638A (en
Inventor
Tatsuro Takeuchi
Masaki Tsukakawa
Ryuzo Kimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP10471079A priority Critical patent/JPS5628638A/en
Priority to US06/177,508 priority patent/US4362626A/en
Priority to CA000358240A priority patent/CA1144140A/en
Priority to GB8026796A priority patent/GB2056429B/en
Publication of JPS5628638A publication Critical patent/JPS5628638A/en
Publication of JPS6225415B2 publication Critical patent/JPS6225415B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、酞化チタン、酞化ゞルコニりムたた
は酞化スズの氎和物たたはそれらの混合物を甚い
た吞着剀に関する。 近幎、瀬戞内海や琵琶湖などの閉鎖性氎域にお
ける富栄逊化珟象は進捗の䞀歩をたどり、今や倧
きな瀟䌚問題ずなり぀぀ある。特にその原因物質
の぀であるリン酞むオンの陀去は、早急に解決
すべき重芁な課題ずな぀おいる。 ずころで、珟状でのリン酞むオン陀去技術ずし
おは、リン酞むオンを含む排氎にカルシりムやア
ルミニりムなどの金属むオンを含む化孊薬品を添
加し、リン酞むオンを難溶性のリン酞塩ずしお陀
去する、いわゆる凝集沈柱法が唯䞀の方法ずされ
おいる。しかしながら、この方法では倧量のスラ
ツゞが発生するため、次公害の恐れもあり、か
ならずしも満足な方法ずは蚀えず、曎に新しいリ
ン酞むオン陀去技術の開発が切望されおいる。 他方、酞化チタン、酞化ゞルコニりム、酞化ス
ズの氎和物は、むオン亀換䜓ずしおの性質を良し
おおり、たずえば酞性溶液䞭ではH+を固定しお
アニオン亀換䜓ずなり、リン酞むオン、フツ玠む
オン、硫酞むオン、塩玠むオンなどの酞玠酞むオ
ンやハロゲンむオンなどを吞着する。 たた、アルカリ性溶液では、OH-を固定し、
カチオン亀換䜓ずしお䜜甚するこずが埓来から知
られおいる。 このようにむオン亀換䜓ずしお有甚なこずは知
られおいるが、これらの氎和物をむオン亀換䜓ず
しお䜿甚可胜な皋床に機械的匷床を有したものに
するこずが難しいので、工業的には䜿甚されおい
ないのが実状である。 本発明者らは前蚘の酞化金属氎和物のアニオン
亀換胜力、特に遞択的なリン酞むオンの吞着胜力
に着目し、前蚘酞化金属氎和物を甚いた吞着剀に
぀いお鋭意怜蚎を重ねた結果、前蚘酞化金属氎和
物たたはそれらの混合物を玄1/10〜倍量の゚ポ
キシ暹脂、䞍飜和ポリ゚ステル暹脂たたはポリり
レタン暹脂ず混合し、この混合物を硬化しおなる
吞着剀は工業的に䜿甚可胜な皋床に機械的匷床を
有しおおり、しかも各皮の陰むオンや陜むオンの
吞着性胜特に、リン酞むオンの遞択的吞着性胜が
すぐれおいるこずを知芋し、これらの知芋にもず
づいお本発明を完成するに至぀た。 すなわち、本発明は、酞化チタン、酞化ゞルコ
ニりムたたは酞化スズの氎和物たたはそれらの混
合物ず玄1/10〜倍量の゚ポキシ暹脂、䞍飜和ポ
リ゚ステル暹脂たたはポリりレタン暹脂ずの混合
物を硬化しおなる吞着剀である。 本発明の吞着剀を補造するのに甚いられる酞化
チタンの氎和物ずしおは、たずえば䞀般匏
TiO2・nH2O匏䞭、は0.5〜2.0の正数であ
るで衚わされるものがあげられる。具䜓的に
は、たずえばTiO2・H2OTiOOH2、
TiO2・2H2OTiOH4、TiO2・nH2O≒
0.5〜2.0などがあげられる。酞化ゞルコニりム
の氎和物ずしおは、たずえば䞀般匏ZrO2・nH2O
匏䞭、は0.5〜2.0の敎数であるで衚わされ
るものがあげられる。具䜓的には、たずえば
ZrO2・H2OZrOOH2、ZrO2・2H2OZr
OH4、ZrO2・nH2O≒1.5〜2.0などがあ
げられる。酞化スズの氎和物ずしおは、たずえば
䞀般匏SnO2・nH2O匏䞭、は0.5〜2.0の敎数
であるで衚わされるものがあげられる。具䜓的
には、たずえばSnO2・H2OSnOOH2、
SnO2・2H2OSnOH4、SnO2・nH2O≒
1.5〜2.0などがあげられる。 䞊蚘の酞化金属氎和物を䞀皮たたは二皮以䞊䜵
甚しおもよい。酞化金属氎和物の圢状は劂䜕なる
ものでもよいが、玄250Ό以䞋の粒埄のものは埌
述する暹脂ずの混合操䜜や吞着性胜などの点で特
に奜たしい。 本発明では、酞化チタン、酞化ゞルコニりムた
たは酞化スズの氎和物たたはそれらの混合物を玄
1/10〜倍量、奜たしくは玄1/5〜倍量重
量の゚ポキシ暹脂、䞍飜和ポリ゚ステル暹脂た
たはポリりレタン暹脂ず混合する。 䞊蚘暹脂の量が玄倍量をこえた堎合には吞着
剀の機械的匷床は倧きくなるが、吞着性胜は䜎䞋
する。他方、暹脂の割合が少なく、䞊蚘の玄1/10
倍量に満たない堎合は吞着性胜の点ではすぐれお
いるが、機械的匷床は䜎䞋し、工業的に䜿甚する
のに耐えられない。 本発明の吞着剀を補造するのに甚いられる゚ポ
キシ暹脂ずしおは、たずえば・2′−ビス−
ヒドロキシプニルプロパンず゚ピクロルヒド
リンあるいはメチル゚ピクロルヒドリンずの反応
によ぀お補造されたゞグリシゞル゚ヌテル、グリ
コヌル類ず゚ピクロルヒドリンあるいはメチル゚
ピクロルヒドリンずの反応によ぀お補造されたゞ
グリシゞル゚ヌテル、プノヌルずホルムアルデ
ヒドずの反応によ぀お埗られるノボラツクず゚ピ
クロルヒドリンあるいはメチル゚ピクロルヒドリ
ンずの反応により補造されたポリグリシゞル゚ヌ
テル、テトラプニレン゚タンのテトラグリシゞ
ル゚ヌテルおよびポリブタゞ゚ンから導かれた゚
ポキシ暹脂などがあげられる。 䞍飜和ポリ゚ステル暹脂ずは、たずえばマレむ
ン酞たたはその無氎物、フマル酞などの分子内に
二重結合を有するゞカルボン酞ず、たずえば゚チ
レングリコヌル、プロピレングリコヌルなどの二
䟡のアルコヌルずを公知の方法によ぀お瞮合させ
お埗られる䞍飜和線状ポリ゚ステルを、たずえば
スチレン、クロロスチレン、メタクリル酞メチ
ル、ゞアリルフタレヌトなどのビニル型単量䜓に
溶解したものをいう。前蚘のゞカルボン酞は、た
ずえばフタル酞、むタコン酞、無氎フタル酞、ア
ゞピン酞、ヘツト酞、セバシン酞、む゜フタル
酞、テレフタル酞などの䞍飜和ゞカルボン酞や飜
和ゞカルボン酞で倉性されおいおもよい。たた、
二䟡のアルコヌルも、たずえばビスプノヌル
、氎添ビスプノヌル、ブタンゞオヌル、ゞ
゚チレングリコヌル、ゞプロピレングリコヌル、
トリ゚チレングリコヌル、トリメチレングリコヌ
ル、ヘキサンゞオヌル、ペンタンゞオヌルなどの
グリコヌルで倉性されおいおもよい。 ポリりレタン暹脂ずは、分子内に個以䞊の氎
酞基を有する、たずえばポリ゚ヌテルポリオヌ
ル、ポリ゚ステルポリオヌル、ポリマヌポリオヌ
ル、ブタゞ゚ン系ポリオヌル、ポリカヌボネヌト
ゞオヌル、ひたし油などのポリオヌルず分子内に
個以䞊のむ゜シアネヌト基を有する、たずえば
トリレンゞむ゜シアネヌトTDI、ゞプニル
メタンゞむ゜シアネヌトピナアMDI、ナフタ
レンゞむ゜シアネヌトNDI、ゞメチルゞプ
ニルゞむ゜シアネヌトTODI、ポリメチレン
ポリプニルポリむ゜シアネヌトクルヌド
MDI、キシリレンゞむ゜シアネヌトXDI、ヘ
キサメチレンゞむ゜シアネヌトHMDI、む゜
ホロンゞむ゜シアネヌトIPDIなどのポリむ
゜シアネヌトずを公知の方法によ぀お反応させお
埗られるものである。このポリりレタン暹脂は通
垞、熱や架橋剀などによ぀お暹脂䞭に含たれおい
るむ゜シアネヌト基同志が反応するかたたはむ゜
シアネヌト基ずたずえば゚チレングリコヌル、プ
ロピレングリコヌル、ブタンゞオヌル、グリセリ
ン、ヘキサントリオヌル、トリメチロヌルプロパ
ン、氎などず反応しお熱硬化性暹脂ずなる。 前述の゚ポキシ暹脂、䞍飜和ポリ゚ステル暹脂
たたはポリりレタン暹脂が宀枩䞋で液状の堎合は
そのたた甚いるこずができるが、固䜓状のもので
ある堎合には、たずえばブタン、ヘキサン、シク
ロヘキサン、ベンれン、トル゚ンなどの炭化氎
玠、塩化メチレン、クロロホルム、トリクロル゚
タン、クロルベンれンなどのハロゲン化炭化氎
玠、メタノヌル、゚タノヌル、プロパノヌルなど
のアルコヌル、アセトン、メチル゚チルケトンな
どのケトン、酢酞メチル、酢酞゚チルなどの゚ス
テル、゚チル゚ヌテル、ゞオキサンなどの゚ヌテ
ルなどの有機溶剀たたはこれらの混合物あるいは
90℃以䞋の加熱などによ぀お液状にする。 酞化金属氎和物を暹脂ず混合する具䜓的な方法
ずしおは、たずえば酞化金属氎和物ず暹脂ずを撹
拌機の぀いた容噚内で高速撹拌しお混合する方
法、緎合機により回分匏あるいは連続的に混合す
る方法、あるいは固−液を混合する堎合に甚いら
れる装眮を甚いお回分匏もしくは連続的に混合す
る方法などがあげられる。 酞化金属氎和物ず暹脂ずを混合するに際しお
は、非芁ならば、゚ポキシ暹脂に察しおは、たず
えばゞ゚チレントリアミン、トリ゚チレンテトラ
ミン、メタプニレンゞアミン等のアミン硬化剀
や無氎フタル酞、無氎マレむン酞、無氎メチルナ
ゞツク酞などの酞無氎物の硬化剀などを適宜量加
えおもよい。たた、䞍飜和ポリ゚ステル暹脂に察
しおは、たずえばベンゟむルパヌオキサむド
BPO、ラりロむルパヌオキシド、アセチルパ
ヌオキシド、メチル゚チルケトンパヌオキシド、
−ブチルパヌオキシドむ゜ブチレヌトなどの觊
媒やたずえばナフテン酞コバルト、ナフテン酞マ
ンガン、ゞメチルアニリン、プニルモルホリ
ン、ゞ゚タノヌルアニリン、バナゞルアセチルア
セトネヌト、プニルホスフむン酞などの硬化促
進剀を適宜量加えおもよい。 酞化金属氎和物ず暹脂ずを混合した埌、硬化す
る。硬化する操䜜は通垞、宀枩䞋でおこなわれる
が、硬化時間が長い堎合は玄30〜90℃に加熱しお
もよい。硬化物は必芁ならばたずえばハンマヌミ
ル、ロヌルクラツシダヌなどによ぀お砎砕した
埌、粟粒しおもよい。その堎合、粒埄は玄〜60
メツシナのものが奜たしい。たた、混合物を、た
ずえばスチヌルベルトコンベアヌなどの装眮䞊に
連続的に円柱状に抌し出し、スチヌルベルトコン
ベアヌ䞊で混合物が硬化するたでの滞留時間を保
持した埌、硬化した円柱状吞着剀を適床の長さに
切断しおもよい。 たた、混合物の小粒子を栞ずしお皿型転動造粒
機や遠心流動被芆造粒機を甚いお、酞化金属氎和
物粉末ず液状暹脂を同時に䟛絊しお被芆造粒をお
こない球圢吞着剀を䜜成しおもよい。 このようにしお埗られる本発明の吞着剀は各皮
の陰むオンや陜むオンの吞着剀ずしお甚いるこず
ができるが、特に陰むオンの吞着に関しおは酞性
溶液䞭から、リン酞むオンを遞択的に吞着するの
でリン酞むオンの吞着剀ずしお䜿甚するこずがで
きる。たた、機械的匷床にもすぐれおいるので工
業的に䜿甚する堎合、固定床吞着装眮のみならず
移動床や流動床吞着装眮にも適甚できる。 たた、酞やアルカリなどの耐薬品性にもすぐれ
おいるので繰り返しお脱離や再生をおこな぀おも
劣化するこずがなく、長時間の繰り返し䜿甚が可
胜である。 以䞋に実斜䟋をあげ、本発明を具䜓的に説明す
る。 実斜䟋  オキシ塩化ゞルコニりムの1mol氎溶液100c.c.を
調敎する。本溶液䞭にはZrずしお9.1grの金属む
オンを含有しおいる。この氎溶液に6Nアンモニ
ア氎を滎䞋しおゆくず氎酞化ゞルコニりムの癜色
沈柱を生じる。沈柱が生じなくなるたで6Nアン
モニア氎を加える。この時の液のPHは6.0であ぀
た。぀ぎにこの癜色沈柱を吞匕別し、脱むオン
氎で回掗浄した埌、50℃以䞋で也燥する。収量
箄16.0gr。これを乳鉢にお120ミクロン以䞋に粉
砕しお酞化ゞルコニりム氎量物粉末ずする。ビヌ
カヌに酞化ゞルコニりム氎和物粉末16grをずり、
これをむ゜フタル酞系䞍飜和ポリ゚ステル暹脂
歊田薬品工業株匏䌚瀟補、ポリマヌル6709
16grを加え、撹拌棒で十分撹拌混合する。぀ぎに
ナフテン酞コバルト0.08grずメチル゚チルケトン
パヌオキサむド0.16grを加え十分に混合し硬化さ
せる。硬化時間は玄30〜60分である。぀ぎに固圢
化した暹脂をビヌカヌからずり出し、適圓な倧き
さに砎砕した埌、〜32meshに粟粒しお吞着剀
を埗た。 実斜䟋  実斜䟋ず同様にしお16grの酞化ゞルコニりム
氎和物粉末を埗た。぀ぎにこの氎和物粉末に実斜
䟋ず同じむ゜フタル酞系䞍飜和ポリ゚ステル暹
脂4grずナフテン酞コバルト0.02gr、メチル゚チ
ルケトンパヌオキサむド0.04grを加え十分撹拌混
合した埌、攟眮するず玄60分で硬化し固圢化す
る。この固圢化暹脂を適圓な倧きさに砎砕した
埌、〜32meshに粟粒した吞着剀を埗た。 実斜䟋  垂販の酞化チタン氎和物粉末16grをずり、以䞋
実斜䟋ず同様の方法でむ゜フタル酞系䞍飜和ポ
リ゚ステル暹脂で固圢化した吞着剀を埗た。 実斜䟋  四塩化チタン1mol氎溶液100c.c.ずオキシ塩化ゞ
ルコニりム1mol氎溶液100c.c.の等容混合液を調敎
する。この液䞭にはTiずしお4.8gr、Zrずしお
9.1grの金属むオンを含有しおいる。この混合氎
溶液に、3N NaOH溶液を滎加し、PHずする。
溶液䞭には酞化チタン氎和物ず酞化ゞルコニりム
氎和物が共沈しおいるず考えられる。぀ぎに、こ
の沈柱を掗浄、別した埌、50℃以䞋の枩床で也
燥し、120mesh以䞋に埮粉砕する。収量玄
26gr ぀ぎに粉砕品16grをずり、以䞋実斜䟋ず同様
の方法によりむ゜フタル酞系䞍飜和ポリ゚ステル
暹脂で固圢化した吞着剀を埗た。 実斜䟋  実斜䟋ず同様の方法にお16grの酞化ゞルコニ
りム氎和物粉末を埗た。぀ぎにこの氎和物粉末に
ビスプノヌル系䞍飜和ポリ゚ステル暹脂歊田
薬品工業株匏䌚瀟補、プロミネヌト−3507gr
を加え十分撹拌混合した埌、ナフテン酞コバ
ルト0.035gr、メチル゚チルケトンパヌオキサむ
ド0.07gr、曎にゞメチルアニリン0.007grを加え
おN2気流䞋十分に混合し、硬化せしめる。硬化
時間は35〜45分である。このようにしお埗た固圢
物を砎砕粟粒し、〜32meshの吞着剀を埗た。 実斜䟋  実斜䟋ず同様の方法にお16grの酞化ゞルコニ
りム氎和物粉末を埗た。この粉末を10mlの氎䞭に
懞濁させながら、これに10mlの芪氎性りレタンプ
レポリマヌ゚チレンオキシドずプロピレンオキ
シドずを共重合した芪氎性ポリ゚ヌテルポリオヌ
ルにトリレンゞむ゜シアネヌトを䞡末端に付加し
たものを混合撹拌しながら滎䞋する。盎ちに芪
氎性りレタンプレポリマヌず氎ずの反応が始た
り、炭酞ガスを発生しながら、ポリりレタンの発
泡性ゲルが圢成される。このゲル䞭には、酞化ゞ
ルコニりム氎和物粉末が分散保持されおいる。こ
のゲルを適圓なサむズに裁断しお吞着剀を埗た。 実斜䟋  実斜䟋にお詊䜜した吞着剀を粉砕しお120メ
ツシナ篩過品を埗た。぀ぎに、リン酞ナトリり
ムを甚いお䜜成したリン酞むオンの500ppmを含
有する暡擬排氎100mlPHに䞊蚘の吞着剀
粉末を䞋蚘の衚に瀺す量加えお䞀昌倜24時間
振盪埌、暡擬排氎䞭のリン酞むオン濃床を枬定
し、吞着剀のリン酞むオン吞着量を枬定した結果
を第衚に瀺す。 なお、本衚には、埓来からリン酞むオン吞着剀
ずしお知られおいる掻性アルミナ粉末の吞着量も
䜵蚘しおいる。
The present invention relates to adsorbents using titanium oxide, zirconium oxide or tin oxide hydrates or mixtures thereof. In recent years, the phenomenon of eutrophication in closed water bodies such as the Seto Inland Sea and Lake Biwa has progressed one step further and is now becoming a major social problem. In particular, the removal of phosphate ions, which is one of the causative substances, is an important issue that must be solved immediately. By the way, the current phosphate ion removal technology involves adding chemicals containing metal ions such as calcium and aluminum to wastewater containing phosphate ions, and removing the phosphate ions as poorly soluble phosphates. The coagulation-sedimentation method is considered to be the only method. However, since this method generates a large amount of sludge, there is a risk of secondary pollution, so it cannot necessarily be said to be a satisfactory method, and there is a strong need for the development of a new phosphate ion removal technology. On the other hand, hydrated titanium oxide, zirconium oxide, and tin oxide have good properties as ion exchangers; for example, in acidic solutions, they fix H + and become anion exchangers, allowing them to form phosphate ions and fluorine ions. Adsorbs oxygen acid ions such as , sulfate ions, chloride ions, and halogen ions. Also, in alkaline solutions, OH - is fixed,
It has been known for some time that it acts as a cation exchanger. Although it is known that these hydrates are useful as ion exchangers, it is difficult to make these hydrates mechanically strong enough to be used as ion exchangers, so they are not suitable for industrial use. The reality is that it is not being used. The present inventors focused on the anion exchange ability of the metal oxide hydrate, particularly the ability to selectively adsorb phosphate ions, and as a result of intensive studies on adsorbents using the metal oxide hydrate, The adsorbent obtained by mixing the metal oxide hydrate or a mixture thereof with about 1/10 to 3 times the amount of epoxy resin, unsaturated polyester resin, or polyurethane resin and curing this mixture can be used industrially. It has been found that it has a certain degree of mechanical strength, and has excellent adsorption performance for various anions and cations, especially selective adsorption performance for phosphate ions.Based on these findings, the present invention has been developed. It was completed. That is, the present invention is made by curing a mixture of titanium oxide, zirconium oxide, tin oxide hydrate, or a mixture thereof, and about 1/10 to 3 times the amount of epoxy resin, unsaturated polyester resin, or polyurethane resin. It is an adsorbent. For example, the titanium oxide hydrate used to produce the adsorbent of the present invention has the general formula
Examples include those represented by TiO 2 .nH 2 O (in the formula, n is a positive number from 0.5 to 2.0). Specifically, for example, TiO 2 H 2 O (TiO(OH) 2 ),
TiO 2・2H 2 O (Ti(OH) 4 ), TiO 2・nH 2 O (n≒
0.5 to 2.0). As a hydrate of zirconium oxide, for example, the general formula ZrO 2 · nH 2 O
(In the formula, n is an integer from 0.5 to 2.0). Specifically, for example
ZrO 2・H 2 O (ZrO(OH) 2 ), ZrO 2・2H 2 O (Zr
(OH) 4 ), ZrO 2 .nH 2 O (n≒1.5 to 2.0), and the like. Examples of tin oxide hydrates include those represented by the general formula SnO 2 .nH 2 O (wherein n is an integer from 0.5 to 2.0). Specifically, for example, SnO 2 H 2 O (SnO(OH) 2 ),
SnO 2・2H 2 O (Sn(OH) 4 ), SnO 2・nH 2 O (n≒
1.5 to 2.0). One or more of the above metal oxide hydrates may be used in combination. The metal oxide hydrate may have any shape, but particles with a particle size of about 250 ÎŒm or less are particularly preferred from the viewpoint of mixing operation with the resin and adsorption performance, which will be described later. In the present invention, a hydrate of titanium oxide, zirconium oxide or tin oxide or a mixture thereof is used.
It is mixed with 1/10 to 3 times the amount, preferably about 1/5 to 1 times the amount (by weight) of epoxy resin, unsaturated polyester resin or polyurethane resin. When the amount of the resin exceeds about three times the amount, the mechanical strength of the adsorbent increases, but the adsorption performance decreases. On the other hand, the proportion of resin is small, about 1/10 of the above
If the amount is less than double, the adsorption performance is excellent, but the mechanical strength is reduced and cannot be used industrially. Examples of the epoxy resin used to produce the adsorbent of the present invention include 2,2'-bis(4-
Diglycidyl ether produced by the reaction of hydroxyphenyl)propane with epichlorohydrin or methylepichlorohydrin, diglycidyl ether produced by the reaction of glycols with epichlorohydrin or methylepichlorohydrin, and the reaction of phenol with formaldehyde. Examples include polyglycidyl ether produced by the reaction of the novolac thus obtained with epichlorohydrin or methylepichlorohydrin, tetraglycidyl ether of tetraphenylene ethane, and epoxy resin derived from polybutadiene. Unsaturated polyester resin is produced by mixing a dicarboxylic acid having a double bond in the molecule, such as maleic acid or its anhydride, or fumaric acid, with a dihydric alcohol, such as ethylene glycol or propylene glycol, by a known method. An unsaturated linear polyester obtained by condensation is dissolved in a vinyl monomer such as styrene, chlorostyrene, methyl methacrylate, diallyl phthalate, etc. The dicarboxylic acids mentioned above may be modified with unsaturated dicarboxylic acids or saturated dicarboxylic acids, such as phthalic acid, itaconic acid, phthalic anhydride, adipic acid, hettic acid, sebacic acid, isophthalic acid, terephthalic acid. Also,
Dihydric alcohols include bisphenol A, hydrogenated bisphenol A, butanediol, diethylene glycol, dipropylene glycol,
It may be modified with glycols such as triethylene glycol, trimethylene glycol, hexanediol, and pentanediol. Polyurethane resins are polyols that have two or more hydroxyl groups in the molecule, such as polyether polyols, polyester polyols, polymer polyols, butadiene polyols, polycarbonate diols, and castor oil, and two or more isocyanate groups in the molecule. , such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (Piure MDI), naphthalene diisocyanate (NDI), dimethyl diphenyl diisocyanate (TODI), polymethylene polyphenyl polyisocyanate (crude)
It is obtained by reacting polyisocyanates such as MDI), xylylene diisocyanate (XDI), hexamethylene diisocyanate (HMDI), and isophorone diisocyanate (IPDI) by a known method. This polyurethane resin is usually produced by reacting isocyanate groups contained in the resin with each other by heat or a crosslinking agent, or by reacting with isocyanate groups such as ethylene glycol, propylene glycol, butanediol, glycerin, hexanetriol, and trimethylolpropane. , reacts with water etc. to become a thermosetting resin. If the above-mentioned epoxy resin, unsaturated polyester resin or polyurethane resin is liquid at room temperature, it can be used as is, but if it is solid, it can be used for example by carbonizing butane, hexane, cyclohexane, benzene, toluene, etc. Hydrogen, halogenated hydrocarbons such as methylene chloride, chloroform, trichloroethane, and chlorobenzene, alcohols such as methanol, ethanol, and propanol, ketones such as acetone and methyl ethyl ketone, esters such as methyl acetate and ethyl acetate, ethyl ether, dioxane, etc. Organic solvents such as ether or mixtures thereof or
Make it into a liquid by heating below 90℃. Specific methods for mixing the metal oxide hydrate with the resin include, for example, mixing the metal oxide hydrate and the resin in a container equipped with a stirrer at high speed, a batch method using a kneader, or Examples include a method of continuous mixing, and a method of batchwise or continuous mixing using a device used for mixing solids and liquids. When mixing the metal oxide hydrate and the resin, if not necessary, use an amine curing agent such as diethylenetriamine, triethylenetetramine, metaphenylenediamine, phthalic anhydride, maleic anhydride, etc. for the epoxy resin. , an acid anhydride curing agent such as methylnadic anhydride, etc. may be added in an appropriate amount. In addition, for unsaturated polyester resins, for example, benzoyl peroxide (BPO), lauroyl peroxide, acetyl peroxide, methyl ethyl ketone peroxide,
Appropriate amounts of catalysts such as t-butyl peroxide isobutyrate and curing accelerators such as cobalt naphthenate, manganese naphthenate, dimethylaniline, phenylmorpholine, diethanolaniline, vanadyl acetylacetonate, and phenylphosphinic acid are added. It's okay. After the metal oxide hydrate and resin are mixed, they are cured. The curing operation is usually carried out at room temperature, but if the curing time is long, it may be heated to about 30-90°C. If necessary, the cured product may be crushed using a hammer mill, a roll crusher, etc., and then granulated. In that case, the particle size is approximately 3-60
Preferably mesh. Alternatively, the mixture can be continuously extruded into a cylinder onto a device such as a steel belt conveyor, the residence time of the mixture can be maintained on the steel belt conveyor until the mixture has hardened, and then the hardened cylinder can be extruded for a suitable length of time. You can also cut it at the right angle. In addition, using a dish-type rolling granulator or centrifugal flow coating granulator using small particles of the mixture as cores, metal oxide hydrate powder and liquid resin are simultaneously supplied and coated and granulated to produce spherical adsorbents. You may create one. The adsorbent of the present invention obtained in this manner can be used as an adsorbent for various anions and cations, but in particular, for anion adsorption, it selectively adsorbs phosphate ions from acidic solutions. Therefore, it can be used as an adsorbent for phosphate ions. Furthermore, since it has excellent mechanical strength, when used industrially, it can be applied not only to fixed bed adsorption equipment but also to moving bed and fluidized bed adsorption equipment. Furthermore, it has excellent resistance to chemicals such as acids and alkalis, so it does not deteriorate even after repeated desorption and regeneration, and can be used repeatedly for a long time. EXAMPLES The present invention will be specifically explained below with reference to Examples. Example 1 Prepare 100 c.c. of a 1 mol aqueous solution of zirconium oxychloride. This solution contains 9.1gr of metal ions as Zr. When 6N ammonia water is added dropwise to this aqueous solution, a white precipitate of zirconium hydroxide is generated. Add 6N ammonia water until no precipitate forms. The pH of the liquid at this time was 6.0. Next, this white precipitate is separated by suction, washed three times with deionized water, and then dried at below 50°C. Yield approximately 16.0gr. This is ground to 120 microns or less in a mortar to obtain a hydrated zirconium oxide powder. Take 16g of zirconium oxide hydrate powder in a beaker,
This is an isophthalic acid-based unsaturated polyester resin (Polymer 6709, manufactured by Takeda Pharmaceutical Company Limited).
Add 16gr and mix thoroughly with a stirring rod. Next, 0.08gr of cobalt naphthenate and 0.16gr of methyl ethyl ketone peroxide are added, thoroughly mixed, and hardened. Curing time is approximately 30-60 minutes. Next, the solidified resin was taken out from the beaker, crushed into an appropriate size, and then refined into particles of 8 to 32 mesh to obtain an adsorbent. Example 2 In the same manner as in Example 1, 16 gr of zirconium oxide hydrate powder was obtained. Next, 4gr of the same isophthalic acid-based unsaturated polyester resin as in Example 1, 0.02gr of cobalt naphthenate, and 0.04gr of methyl ethyl ketone peroxide were added to this hydrate powder, stirred and mixed thoroughly, and left to harden in about 60 minutes to solidify. become After crushing this solidified resin into a suitable size, an adsorbent finely granulated to 8 to 32 mesh was obtained. Example 3 16g of commercially available titanium oxide hydrate powder was taken, and an adsorbent solidified with an isophthalic acid-based unsaturated polyester resin was obtained in the same manner as in Example 1. Example 4 An equal volume mixture of 100 c.c. of a 1 mol titanium tetrachloride aqueous solution and 100 cc. of a 1 mol zirconium oxychloride aqueous solution is prepared. This liquid contains 4.8gr as Ti and as Zr.
Contains 9.1gr of metal ions. A 3N NaOH solution is added dropwise to this mixed aqueous solution to adjust the pH to 7.
It is thought that titanium oxide hydrate and zirconium oxide hydrate are coprecipitated in the solution. Next, this precipitate is washed and separated, dried at a temperature of 50° C. or less, and pulverized to a size of 120 mesh or less. (yield approx.
26gr) Next, 16gr of the pulverized product was taken, and an adsorbent solidified with an isophthalic acid-based unsaturated polyester resin was obtained in the same manner as in Example 1. Example 5 A 16 gr zirconium oxide hydrate powder was obtained in the same manner as in Example 1. Next, 7gr of bisphenol-based unsaturated polyester resin (manufactured by Takeda Pharmaceutical Company Limited, Prominate P-350) was added to this hydrate powder.
After stirring and mixing thoroughly, 0.035gr of 1% cobalt naphthenate, 0.07gr methyl ethyl ketone peroxide, and further 0.007gr dimethylaniline were added and thoroughly mixed under a N 2 atmosphere to harden. Curing time is 35-45 minutes. The solid thus obtained was crushed and refined to obtain an adsorbent of 8 to 32 mesh. Example 6 In the same manner as in Example 1, 16 gr of zirconium oxide hydrate powder was obtained. While suspending this powder in 10 ml of water, 10 ml of hydrophilic urethane prepolymer (hydrophilic polyether polyol made by copolymerizing ethylene oxide and propylene oxide with tolylene diisocyanate added to both ends) is mixed therein. Add dropwise while stirring. A reaction between the hydrophilic urethane prepolymer and water immediately begins, and a foamable gel of polyurethane is formed while generating carbon dioxide gas. Zirconium oxide hydrate powder is dispersed and held in this gel. This gel was cut into an appropriate size to obtain an adsorbent. Example 7 The adsorbent prototyped in Example 2 was pulverized to obtain a 120 mesh sieved product. Next, add the above adsorbent powder in the amount shown in the table below to 100 ml of simulated wastewater (PH = 3) containing 500 ppm of phosphate ions prepared using monosodium phosphate, and leave it for one day and night (24 hours).
After shaking, the phosphate ion concentration in the simulated wastewater was measured, and the amount of phosphate ion adsorbed by the adsorbent was measured. The results are shown in Table 1. Note that this table also shows the amount of adsorption of activated alumina powder, which has been conventionally known as a phosphate ion adsorbent.

【衚】 アルミナ
実斜䟋  実斜䟋にお䜜成した吞着剀〜32メツシ
ナを内埄16mmφのカラムに20ml玄20gr充填
し、リン酞ナトリりムを甚いお調敎した。リン
酞むオン200ppmを含む暡擬排氎垌硫酞でPH
に調敎をSV hrの流速で通液し
た。そしお、䞀定時間毎にカラム流出液をサンプ
リングし、リン酞むオン濃床を枬定した。その結
果を第衚に瀺す。
[Table] Alumina Example 8 20 ml (approximately 20 gr) of the adsorbent prepared in Example 2 (8 to 32 meshes) was packed into a column with an inner diameter of 16 mmφ, and adjusted using monosodium phosphate. Simulated wastewater containing 200 ppm of phosphate ions (PH= with dilute sulfuric acid)
3) was passed at a flow rate of SV=2 1/hr. Then, the column effluent was sampled at regular intervals and the phosphate ion concentration was measured. The results are shown in Table 2.

【衚】 通液埌の吞着剀のリン酞むオン吞着量は、
箄47mgPO4吞着剀であ぀た。これに15
NaOH溶液40c.c.をSV hrで通液するず
吞着しおいるリン酞むオンの玄93が脱離しおい
るこずがわか぀た。たた、脱着再生した埌、䞊蚘
ず同条件におの暡擬排氎を通し、以䞋繰り返
し䜿甚を続けた結果、30回䜿甚しおも吞着胜力は
党く䜎䞋しおいないこずがわか぀た。
[Table] The amount of phosphate ion adsorbed by the adsorbent after 5 passes is:
Approximately 47 mg PO 4 /g adsorbent. 15% on this
It was found that about 93% of the adsorbed phosphate ions were desorbed when 40 c.c. of NaOH solution was passed through it at SV = 2 1/hr. Furthermore, after desorption and regeneration, the sample was repeatedly used under the same conditions as above, passing through the simulated waste water of No. 5, and it was found that the adsorption capacity did not decrease at all even after 30 uses.

Claims (1)

【特蚱請求の範囲】[Claims]  酞化チタン、酞化ゞルコニりムたたは酞化ス
ズの氎和物たたはそれらの混合物ず玄1/10〜倍
量の゚ポキシ暹脂、䞍飜和ポリ゚ステル暹脂たた
はポリりレタン暹脂ずの混合物を硬化しおなる吞
着剀。
1. An adsorbent obtained by curing a mixture of a hydrate of titanium oxide, zirconium oxide, or tin oxide, or a mixture thereof, and about 1/10 to 3 times the amount of epoxy resin, unsaturated polyester resin, or polyurethane resin.
JP10471079A 1979-08-16 1979-08-16 Adsorbent Granted JPS5628638A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10471079A JPS5628638A (en) 1979-08-16 1979-08-16 Adsorbent
US06/177,508 US4362626A (en) 1979-08-16 1980-08-12 Ion exchanger of hydrated oxide of Ti, Zr, or Sn and cured polyester, and exchange method
CA000358240A CA1144140A (en) 1979-08-16 1980-08-14 Adsorbent
GB8026796A GB2056429B (en) 1979-08-16 1980-08-15 Ion adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10471079A JPS5628638A (en) 1979-08-16 1979-08-16 Adsorbent

Publications (2)

Publication Number Publication Date
JPS5628638A JPS5628638A (en) 1981-03-20
JPS6225415B2 true JPS6225415B2 (en) 1987-06-03

Family

ID=14388028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10471079A Granted JPS5628638A (en) 1979-08-16 1979-08-16 Adsorbent

Country Status (1)

Country Link
JP (1) JPS5628638A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153940A (en) * 1984-01-25 1985-08-13 Asahi Chem Ind Co Ltd Adsorbent of dissolved fluorine ion
JPS61192340A (en) * 1985-02-21 1986-08-26 Asahi Chem Ind Co Ltd Fluorine complex ion adsorbent
JPH0620762Y2 (en) * 1985-12-13 1994-06-01 新明和工業株匏䌚瀟 Vehicle loading container replacement device
KR20030069013A (en) * 2002-02-15 2003-08-25 김임석 Method for eliminating phosphate from wastewater
JP4657680B2 (en) * 2004-11-05 2011-03-23 悠平 皲森 Recovery method of phosphorus component
JP4839445B2 (en) * 2006-01-17 2011-12-21 囜立倧孊法人広島倧孊 Phosphorous collecting material, method for producing the same, and phosphorus collecting method
JP4908261B2 (en) * 2007-02-26 2012-04-04 囜立倧孊法人広島倧孊 Phosphorus collection device unit and phosphorus collection and recovery method using the unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122691A (en) * 1977-04-01 1978-10-26 Agency Of Ind Science & Technol Process for producing composite adsorbent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122691A (en) * 1977-04-01 1978-10-26 Agency Of Ind Science & Technol Process for producing composite adsorbent

Also Published As

Publication number Publication date
JPS5628638A (en) 1981-03-20

Similar Documents

Publication Publication Date Title
US4362626A (en) Ion exchanger of hydrated oxide of Ti, Zr, or Sn and cured polyester, and exchange method
EP1078690B1 (en) Method for producing monodisperse ion exchangers with chelating groups
JPS6147134B2 (en)
EP1250373A1 (en) Modified polyurethane foamed materials used as adsorbents
EP1078688B1 (en) Method for producing monodisperse anion exchangers
WO2001021306A1 (en) Catalysts for hydrogenation of carboxylic acid
US20080272055A1 (en) Conditioning of ion exchangers for adsorption of oxoanions
US5112787A (en) Supported catalyst for oxidizing carbon monoxide
EP1656201A1 (en) Arsenic-adsorbing ion exchanger
JPS6225415B2 (en)
US20190105606A1 (en) Gas Sorbent and Carbon Dioxide Separation and Recovery System and Method
US4983566A (en) Surface-modified adsorbent comprising metal oxide/hydroxide particles reacted with one or more perfluorinated organic acids
CN108299211B (en) Synthesis process of tromethamine
US4400305A (en) Adsorbents comprising hydrated ferrites of Ti, Zr, and Sn and cured thermosetting resins
Ma et al. Novel One‐Pot Solvothermal Synthesis of High‐Performance Copper Hexacyanoferrate for Cs+ Removal from Wastewater
DE10160664A1 (en) Purification of waste waters charged with metal salts, especially heavy metal salts, by treating with magnetic adsorption agent, e.g. magnetic fly ash, then separating adsorbent using magnetic field
JP2002052340A (en) Gas adsorption method with aminomethylated bead polymer
KR101238355B1 (en) Urethane-forming reaction catalyst and method for producing urethane material
US4061565A (en) Sorption of weak organic acids from water by polyurethane
Duan et al. A core–shell structure of β-cyclodextrin polyisocyanate boosts selective recovery of acetophenone from petrochemical by-products
EP0092295B1 (en) Polyetherurethane particles having absorptive activity, a method of preparing said polyetherurethane particles as well as a method for the extraction or separation of metals from liquids by employing said particles
JPS60153940A (en) Adsorbent of dissolved fluorine ion
JPS621299B2 (en)
KR19980018372A (en) Ion adsorbent
JP2006122831A (en) Method for producing iron oxyhydroxide complex and absorbing material of iron oxyhydroxide complex