JPS62254052A - Ultrasonic flaw detection of joint - Google Patents

Ultrasonic flaw detection of joint

Info

Publication number
JPS62254052A
JPS62254052A JP61097434A JP9743486A JPS62254052A JP S62254052 A JPS62254052 A JP S62254052A JP 61097434 A JP61097434 A JP 61097434A JP 9743486 A JP9743486 A JP 9743486A JP S62254052 A JPS62254052 A JP S62254052A
Authority
JP
Japan
Prior art keywords
probe
flaw detection
inspected
tandem
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61097434A
Other languages
Japanese (ja)
Inventor
Masakazu Takahashi
雅和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP61097434A priority Critical patent/JPS62254052A/en
Publication of JPS62254052A publication Critical patent/JPS62254052A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable simultaneous detection of a defect at the center and on the surface across the thickness, by detecting a defect at a joint using a probe in alternate operations of a tandem type flaw detection and a single probe type flaw detection at a proper cycle. CONSTITUTION:In the flaw detection of material to be inspected, defects are detected at the center thereof across the thickness with a probe 27 in a tandem mode. In a single probe mode, a probe 29 is controlled in scanning by an operation control means 28to detect flaws on the entire press-fit surface of the material being inspected across the thickness. Here, according to an operation command signal from an operation time setting means 22, a flaw detection mode selection means 23 controls the work to operate the tandem mode system 24 and the single probe mode system 25 alternately at a proper cycle. This enables simultaneous flaw detection at the center and on the surface of the material being inspected across the thickness, thereby making the flaw detection work simple and efficient.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧接部や溶接部等の接合部の欠陥状態を探傷
する接合部の超音波探傷法に係わり、特に?J11i査
材の板厚中央部に存在する探傷面に垂直な方向の疵や表
面およびその表面近傍に存在する疵を能率良く探傷可能
な接合部の超音波探傷法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an ultrasonic flaw detection method for joints, which detects defects in joints such as pressure welds and welds. This invention relates to an ultrasonic flaw detection method for joints that can efficiently detect flaws in the direction perpendicular to the flaw detection surface that exist in the center of the thickness of a J11i inspection material, and flaws that exist on the surface and in the vicinity of the surface.

〔従来の技術〕[Conventional technology]

この種の超音波探傷法としては、−探触子法を用いて圧
接部や溶接部の全面を探傷するのが一般的である。第4
図は一探触子法を用いて圧接面を探Inする斜角探1例
を示′!j図であって、これは被検査材が溶接部であっ
ても全く同じである。すなわち、この探傷法は、被検査
材の圧接面全域を探mする場合、その被検査材の形態に
よってその走査方式が多少異なる。例えば第4図に示す
ようtこ被検査材1の(板厚)側面部分を圧接面2とプ
るものでは斜角探触子3を図示矢印(イ)方向つまり前
後方向に走査しながら超音波ビーム4を送波し、直接反
射方式により圧接面2の全域をti21nするものであ
る。また、被検査材1が板状のものである場合、被検査
材1の圧接面2と平行な状態を維持させながら斜角探触
子3を左右方向走査と前後方向走査を繰返し行うことに
より、被検査材1の圧接面2の全域に超音波ビーム4を
送波し、その圧接面2の全域を探傷するものである。更
に、被検査材1が円筒状のものである場合、被検査材1
を固定した後、前記板状の場合と同様に斜角探触子3を
円周方向走査と前1す方向走査により探傷を行っている
。当然、例えば円筒状の被検査材1を回転させながら斜
角探触子3を前後方向に走査し、或いはこの逆の場合も
あり、種々の組合せが考えられるが、本質的な而ではそ
れほど変わらない。また、必要に応じて圧接面2の反対
面から第4図と同+Sな走査を行い、または反対側面(
板厚裏面)から走査を行う場合もある。
As this type of ultrasonic flaw detection method, it is common to use a -probe method to detect flaws on the entire surface of a pressure welded part or a welded part. Fourth
The figure shows an example of an angle probe that searches for a pressure contact surface using the one-probe method. This is exactly the same even if the material to be inspected is a welded part. That is, in this flaw detection method, when searching the entire pressure contact surface of a material to be inspected, the scanning method differs somewhat depending on the form of the material to be inspected. For example, as shown in Fig. 4, when the side surface (of the plate thickness) of the material to be inspected 1 is used as the pressure contact surface 2, the bevel probe 3 is scanned in the direction of the arrow (A) shown in the figure, that is, in the front-rear direction. A sound wave beam 4 is transmitted and the entire area of the pressure contact surface 2 is ti21n by a direct reflection method. In addition, when the material to be inspected 1 is plate-shaped, the angle probe 3 can be repeatedly scanned in the left-right direction and the front-back direction while maintaining a state parallel to the pressure contact surface 2 of the material to be inspected 1. , an ultrasonic beam 4 is transmitted over the entire area of the press-contact surface 2 of the material 1 to be inspected, and the entire area of the press-contact surface 2 is inspected for flaws. Furthermore, when the inspected material 1 is cylindrical, the inspected material 1
After fixing, flaw detection is performed by scanning the oblique probe 3 in the circumferential direction and in the forward direction in the same manner as in the case of the plate shape. Of course, various combinations can be considered, such as scanning the bevel probe 3 in the front and back direction while rotating the cylindrical inspected material 1, or vice versa, but the essential difference is not that much. do not have. In addition, if necessary, perform the same +S scan as in Fig. 4 from the opposite side of the pressure contact surface 2, or perform the opposite side (
In some cases, scanning is performed from the back side of the plate.

一方、超呂波自動探閏法にあっては、被検査材1の板厚
方向となる圧接面2の全域をカバーするために、複r1
1個の探触子を使用する場合があるが、以下は説明を簡
単化するために1個の探触子を用いた場合に限定して説
明する。なお探触子としては、被検査材1の圧接面2の
厚さ、幾何学的形状。
On the other hand, in the super wave automatic probing method, in order to cover the entire area of the pressure welding surface 2 in the thickness direction of the material 1 to be inspected, multiple r1
Although one probe may be used, the following explanation will be limited to the case where one probe is used to simplify the explanation. As for the probe, the thickness and geometric shape of the pressure contact surface 2 of the material 1 to be inspected.

寸法、検出したい欠陥の種類、形状、大きさ、欠陥の発
生位置等を考慮し、探傷に最も適した探触子が使用され
る。通常、被検査材1が鋼の場合、周波数2〜5 M 
Hz 、振動子寸法10X10.20×20.屈折角4
5°、60°、70°等(特殊の場合には35°〜40
°)ものが使用される。
The most suitable probe for flaw detection is used, taking into account the dimensions, the type, shape, size, and location of the defect to be detected. Usually, when the material 1 to be inspected is steel, the frequency is 2 to 5 M.
Hz, vibrator dimensions 10x10.20x20. Refraction angle 4
5°, 60°, 70°, etc. (35° to 40° in special cases)
°) things are used.

次に、第5図は被検査材1に感度較正用の種・贅の人工
疵を設けた図であって、同図(a)[よスリッi〜疵5
、同図(1))は横穴疵6、同図(c)はi厚中央部の
ドリルホール疵7(横穴平底面)を示す。同図(a)の
スリット疵5の場合、そのスリット深さは検査目的によ
り決定されるが、一般的には被検査材1の板厚の5%・
〜12.5%であり、またスリッ]〜深さは超音波探傷
に影響しないが、スリット深さの2倍以下とする規格も
ある。
Next, FIG. 5 is a diagram in which artificial flaws such as seeds and warts for sensitivity calibration are provided on the material 1 to be inspected.
, the same figure (1)) shows the horizontal hole flaw 6, and the same figure (c) shows the drill hole flaw 7 (horizontal hole flat bottom surface) in the central part of the i thickness. In the case of the slit flaw 5 shown in FIG.
~12.5%, and the slit depth does not affect ultrasonic flaw detection, but some standards require it to be less than twice the slit depth.

スリブ1−良さは25〜5Qmm程度に形成される。Slab 1 - The quality is formed to be about 25 to 5 Qmm.

同図(b)の横穴疵6の場合、その横穴疵の位置は例え
ば被検査材1の板厚1/2.1/4等であり、かつ、そ
の穴径は2.0〜4.0φmmである。
In the case of the horizontal hole flaw 6 in the same figure (b), the position of the horizontal hole flaw is, for example, 1/2. It is.

一方、同図(e)に示すドリルホール疵7の場合、その
その小−ル疵径は一般的には2φ〜5.6φ程度である
。従って、以上のような各種人工疵5゜6.7を設けた
場合、かかる人工疵5.6.78利用して超音波探傷装
置の感度調整を行った後、被検査材1の圧接面全域の探
傷を行うようにしている。らなみに、第6図及び第7図
は一探触子法を用いた実験例であって、そのうち第6図
は実験用試験片を示し、第7図番よその実験方法を示す
On the other hand, in the case of the drill hole flaw 7 shown in FIG. 6(e), the diameter of the small hole flaw is generally about 2φ to 5.6φ. Therefore, when various artificial flaws 5.6.7 as described above are provided, after adjusting the sensitivity of the ultrasonic flaw detection device using such artificial flaws 5.6.78, the entire pressure contact surface of the inspected material 1 is We are conducting flaw detection. Incidentally, FIGS. 6 and 7 are experimental examples using the one-probe method, of which FIG. 6 shows an experimental test piece, and FIG. 7 shows the experimental method for other numbers.

すなわら、試験片11に図示寸法に従って3.2φノト
リルホール疵7と深さQ、55111X幅1.0III
11×長さ251011のスリット疵5とを設け、探触
子として例えば2Z10x10A40.A45゜A60
.5Z10X10A35.A40.A45゜A60.A
70等を用い、第7図に示す如くEDMノツチ疵0.5
Sによる直接反射方式(ロ)を基準にしてドリルホール
疵0.758へ三角反射方式(ハ)を用いてエコー高さ
を測定する例である。第8図はその実験結果を示す図で
あって、3.2φのドリルホール疵7とスリット疵5で
は12dB以上の差があり、第6図に示すスリン1〜疵
5を超音波探傷装置の感a調整用人工疵として使用した
場合、板厚中央部のドリルホール疵7が検出不能となる
。このことは、板表面、裏面(近傍も含む)の欠陥が検
出できるが、被検査問圧接而の板厚中央部の欠陥が検出
できないことを意味する。
In other words, a 3.2φ notrile hole flaw 7, depth Q, 55111 x width 1.0 III is made on the test piece 11 according to the dimensions shown in the diagram.
A slit flaw 5 of 11×length 251011 is provided, and the probe is, for example, 2Z10×10A40. A45゜A60
.. 5Z10X10A35. A40. A45°A60. A
70 etc., as shown in Fig. 7, the EDM notch flaw is 0.5.
This is an example in which the echo height is measured using the triangular reflection method (c) to a drill hole flaw of 0.758 using the direct reflection method (b) by S as a reference. Fig. 8 is a diagram showing the experimental results, and there is a difference of 12 dB or more between the 3.2φ drill hole flaw 7 and the slit flaw 5. When used as an artificial flaw for sensitivity a adjustment, the drill hole flaw 7 in the center of the plate thickness becomes undetectable. This means that defects on the front and back surfaces of the board (including those in the vicinity) can be detected, but defects in the center of the thickness of the pressure weld to be inspected cannot be detected.

一方、第6図の板厚と異なる板厚であって板中央部に深
さ0.5mmx@1.Oms、長さ25to+スリット
底面疵5を設けた試験片11(第9図)を用意し、かつ
、5ZlOxlOA37の探触子を用い、第10図にし
たがってEDMノツチ疵1、O8を基準にしてスリット
底面疵5の1]−高さおよびビーム路程を調べると、第
11図および第12図のような結果が得られた。第10
図(a)は1回反射方式、同図cb>は三角形反射方式
、同図(C)は基準用に用いられたものである。この実
験結果から明らかなように、第9図に示すスリット底面
疵5に対し例えばエコー高さが13.5〜24.Oおと
非常に低く、−探触1法では肉厚中央部の欠陥は検出で
きず、欠陥の深さくスリット幅)が変わっても検出感度
に大差がない。
On the other hand, the thickness of the plate is different from that shown in Fig. 6, and the center part of the plate has a depth of 0.5 mm x @1. Prepare a test piece 11 (Fig. 9) with a length of 250 ms and a slit bottom flaw 5, and use a probe of 5ZlOxlOA37 to form a slit with EDM notch flaws 1 and O8 as a reference according to Fig. 10. 1]-height and beam path of the bottom surface flaw 5, results as shown in FIGS. 11 and 12 were obtained. 10th
Figure (a) shows a single reflection method, Figure cb> shows a triangular reflection method, and Figure (C) shows one used as a reference. As is clear from this experimental result, the echo height for the slit bottom flaw 5 shown in FIG. 9 is, for example, 13.5 to 24. - The probe 1 method cannot detect defects in the center of the wall thickness, and there is no significant difference in detection sensitivity even if the defect depth (slit width) changes.

そこで、板厚中央部の欠陥不能を解決する手段としては
、第13図に示すタンデム方式を採用する必要がある。
Therefore, as a means to solve the problem of defects in the central part of the plate thickness, it is necessary to adopt the tandem system shown in FIG. 13.

このタンデム方式の探(−(ま、彼倹表材の所定位置に
送信用振動子12aおよび受信用振動子12bを持った
タンデム探触子12を設置するとともに、送信用振動子
12aから超音波ビームを送波し、例えば板厚中央部に
設けたドリルホール平底面部で反射させ、更に被検査材
の底面で反射させて得られる反射エコーを受信用振動子
12bで受信し探傷する方式である。しかし、このタン
デム方式にあっては板厚表面の欠陥を検出しない可能性
があるので、第6図の実験時に使用した試験片と同様な
試験片を用い、かつ、5Z5x10A4.5タンデム探
触子12と第11図の実験で使用した時と同様な5Z1
0X10A37の通常斜角探触子3(実測39°)を用
いて!!!度を調査すると、タンデム探触子12を使用
して3.2φの横穴平底のドリルホール疵7で感度調整
をした場合にはスリット疵5は−27,5<18と低く
なり、逆にスリット疵5で感度調整を行った場合には横
穴平底のドリルホール疵7は−30,5dBと低くなる
。このことはタンデム方式を採用した場合には被検査材
の圧接面中央部の欠陥が検出できるが、板表面の欠陥を
検出できないことを意味することになる。
In this tandem method, a tandem probe 12 having a transmitting transducer 12a and a receiving transducer 12b is installed at a predetermined position on the surface material, and an ultrasonic beam is transmitted from the transmitting transducer 12a. This is a method for detecting flaws by transmitting a wave, for example, reflecting it at the flat bottom of a drill hole provided in the center of the plate thickness, and further reflecting it at the bottom of the material to be inspected, and receiving the reflected echo obtained by the receiving transducer 12b. However, since this tandem method may not detect defects on the plate thickness surface, we used a test piece similar to the test piece used in the experiment shown in Figure 6, and a 5Z5x10A4.5 tandem probe. 12 and 5Z1 similar to those used in the experiments in Figure 11.
Using 0X10A37 normal angle probe 3 (actually measured 39°)! ! ! When investigating the degree of sensitivity, when the tandem probe 12 was used and the sensitivity was adjusted with the drill hole flaw 7 with a horizontal flat bottom of 3.2φ, the slit flaw 5 became low at -27.5<18, and conversely, the slit flaw 5 When the sensitivity is adjusted using the flaw 5, the drill hole flaw 7 with the flat bottom of the horizontal hole becomes as low as -30.5 dB. This means that when the tandem method is adopted, defects in the center of the pressure contact surface of the inspected material can be detected, but defects on the plate surface cannot be detected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従って、以上述べたように、−探触子法を用いた場合に
は板厚中央部の欠陥を検出することが困難であり、一方
、タンデム方式を用いた場合には板厚表面及び表面近傍
の欠陥を検出することが困難であり、このため−探触子
法による超音波深inを実施後、全く別体的にタンデム
方式による超音波探傷を実施することになり、超音波探
傷Ii!同。
Therefore, as mentioned above, when using the -probe method, it is difficult to detect defects in the center of the plate thickness, while when using the tandem method, defects at the plate surface and near the surface are difficult to detect. It is difficult to detect defects in the ultrasonic flaw detection Ii! same.

感r!i調整および超音波探傷法作業をそれぞれ2回ず
つ行う必要があるために、作業の煩雑さおよび探傷作業
の能率低下を招き、生産ライン中で探傷を行う場合に大
きな問題となっている。
Feeling! Since it is necessary to perform i-adjustment and ultrasonic flaw detection twice each, the work becomes complicated and the efficiency of flaw detection decreases, which is a major problem when flaw detection is performed in a production line.

本発明は上記実情に鑑みてなされたもので、板厚中央部
の欠陥および板厚表面の欠陥等を同時に探傷可能とし、
探傷作業の簡素化および探傷1v業の能率化を図り得る
接合部の超音波探傷法を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and enables simultaneous detection of defects in the center of the plate thickness and defects on the surface of the plate thickness.
The object of the present invention is to provide an ultrasonic flaw detection method for joints that can simplify flaw detection work and improve the efficiency of flaw detection.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による接合部の超音波探傷法によれば、圧接部お
よび溶接部等の接合部を探傷する接合部の超音波探傷法
において、前記接合部を有する被検査材の所定位置に少
なくとも送信用S動子および受信用振動子を持った少な
くとも1個の探触子を設置し、この探触子を適宜な周期
で交互にタンデム方式探Illおよび一探触子法探lの
動作111!lを行って前記接合部の欠陥を探傷するも
のである。
According to the ultrasonic flaw detection method for joints according to the present invention, in the ultrasonic flaw detection method for joints that detects joints such as pressure welds and welds, at least a At least one probe having an S transducer and a receiving transducer is installed, and this probe is alternately used at an appropriate period to perform tandem method detection Ill and single probe method probing 111! 1 to detect defects in the joint.

〔作用〕[Effect]

従って1以上のような手段とすることにより、接合部を
有する被検査材の所定位置に設置された少なくとも送信
用1iii動子および受信用振動子を持った探触子を例
えばタンデム方式の深間として動作制御し、その後、所
定方向に走査制御して一探触子法の探傷を行うので、−
回の走査でタンデム方式と一探触子法の探傷を行って被
検査材の!2厚中央部とその表面および表面近傍との欠
陥状態を同時に探傷できるものである。
Therefore, by using one or more of the above means, a probe having at least a transmitting 1III transducer and a receiving transducer installed at a predetermined position of a material to be inspected having a joint part can be used for example in a tandem type deep depth probe. Since the operation is controlled as
The tandem method and single probe method are used to perform flaw detection on the inspected material in one scan! It is possible to simultaneously detect defects in the central part of two thicknesses, the surface thereof, and the vicinity of the surface.

〔実施例〕〔Example〕

以下、本発明の一実施例について第1図および第2図を
参照して説明する。第1図は本発明方法を適用してなる
探傷装置の模式的な構成図、第2図は一探触子法とタン
デム方式の構成を示す図である。これらの図において2
1は各構成部に所要とする制御信号を与えたり、探傷結
果の信号を受は取って出力する探(! 1.lI 計部
であって、これには動作時間設定手段22および探(n
方式選択手段23が接続されている。この動作時間設定
手段22は、例えばタイマ、インバータまたはパルス発
生器9分周器その他必要により論理回路等で構成され、
人為的または自動的に直接または探1n制御1部21を
介してタイマまたはパルス発生器に動作時間が設定され
、この設定動作11HFIIに基づいて動作指令信号を
出力するものである。前記探傷方式選択手段23は、切
替スイッチによって構成され、動作時間設定手段22か
らのU作指令信号に基づいてタンデム方式系24と一探
触子法系25とを交互に所定時間選択して探傷制御部2
1に接続し、各県24.25を動作制御するものである
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a schematic block diagram of a flaw detection apparatus to which the method of the present invention is applied, and FIG. 2 is a diagram showing the configurations of a single probe method and a tandem method. In these figures 2
Reference numeral 1 denotes a detector (!1.lI meter) which gives required control signals to each component, receives and outputs signals of flaw detection results, and includes an operating time setting means 22 and a probe (n).
A method selection means 23 is connected. This operation time setting means 22 is composed of, for example, a timer, an inverter, a pulse generator, a frequency divider, and other logic circuits as necessary.
The operating time is set in the timer or pulse generator manually or automatically directly or via the control unit 21, and an operating command signal is output based on this setting operation 11HFII. The flaw detection method selection means 23 is constituted by a changeover switch, and performs flaw detection by alternately selecting the tandem method system 24 and the one-probe method system 25 for a predetermined time based on the U operation command signal from the operation time setting means 22. Control unit 2
1 and controls the operation of each prefecture 24.25.

前記タンデム方式系24は、励起信号その也の信号を授
受する動作制御手段26とタンデム方式用探触子27と
を有し、感度調整および探(具に際し前記探触子27が
試験ハ31に対し第2図(a>の如く設置される。、な
お、探触子27は送信用振動子27a8よび受信用振動
子27bとを備えている。32は板厚中央部に設けた平
底面部を有するドリルホールを示5゜一方、−探触子法
系25は、励起信用その他の信号の授受および所定の方
向に走査寸ろ動作制御手段28!3よび一探触子法用探
触子29とを有し、例えば第2図(b)に示すように試
験片31にスリット疵33が設けられ、かつ、試験片3
1のスリン1−疵3311’lと反対側の面に送受信用
振動子29aおよび受fi用振紡子29bを有する前記
探触子29が設置され、前記動作制御手段28により図
示へ−B間で前後走査を行うように駆動制御される。3
0はCR7表示部である。
The tandem type system 24 has an operation control means 26 for transmitting and receiving excitation signals and a tandem type probe 27, and the probe 27 is connected to the test chamber 31 during sensitivity adjustment and detection. On the other hand, the probe 27 is installed as shown in FIG. On the other hand, the -probe method system 25 transmits/receives excitation and other signals and scans in a predetermined direction.Dimension operation control means 28!3 and one-probe method probe 29 For example, as shown in FIG. 2(b), a slit flaw 33 is provided on the test piece 31, and the test piece 3
The probe 29 having a transmitting/receiving vibrator 29a and a receiving fi vibrating spindle 29b is installed on the surface opposite to the sulin 1 flaw 3311'l of No. 1, and the operation control means 28 moves the probe 29 between The drive is controlled to perform forward and backward scanning. 3
0 is the CR7 display section.

しかして、以上のような探傷装置において、動作時間設
定手段22に動作時間を設定するとともに、各試験片3
1の所定装置にそれぞれ探触子27 j5 J:び29
を設置した侵、んず最初に探(h制(財)部21から動
作開始指令を与えτ例λば一探触子法系25を用いて感
度調整を行い、引き続さ゛、タンデム方式系24を用い
て感度調整を行う例について述べる。探傷制御部21か
ら動作開始指令信号を出力づ“ると、動作時間設定手段
22はその動作指令信号を受けて選択指令信号を探1絽
乃式jル択手段23に供給する。ここで、探傷方式)パ
択手段23は、動作設定時間中、−探触7法系25をf
f m ib制御部21側に接続する。その後、探傷制
塾1部21から動作制御手段28に制御信号が与えられ
、これにより動作制御手段2Bは送受信用振動子29a
を励振し、振動子29aから超名波ビームを送波する。
Therefore, in the flaw detection device as described above, the operation time is set in the operation time setting means 22, and each test piece 3
Probes 27 and 29 are attached to each of the predetermined devices of 1.
When the probe is installed, the first step is to give a command to start operation from the search department 21, adjust the sensitivity using the one-probe system 25, and then continue with the tandem system. An example will be described in which the sensitivity is adjusted using the flaw detection controller 24.When the flaw detection control section 21 outputs an operation start command signal, the operation time setting means 22 receives the operation command signal and selects the selection command signal. The flaw detection method) selection means 23 selects the −probe 7 method system 25 during the operation setting time.
f m Connected to the ib control unit 21 side. Thereafter, a control signal is given from the flaw detection system section 1 21 to the operation control means 28, and as a result, the operation control means 2B
is excited, and an ultrahigh wave beam is transmitted from the vibrator 29a.

この超音波ビームは試験片31を伝播され、スリット疵
33で反射され、反射工]−として返ってくる。この反
射エコーは探爆制陣部21を介してCRT表示部30に
送られ、スリット疵33からの反射エコー鳳二〉が表示
される(第3図(a))。この反射エコーは規定の高さ
に11整することにより感度調整を行う。
This ultrasonic beam is propagated through the test piece 31, reflected by the slit flaw 33, and returned as a reflector. This reflected echo is sent to the CRT display section 30 via the detection bomb control section 21, and the reflected echo from the slit flaw 33 is displayed (FIG. 3(a)). The sensitivity of this reflected echo is adjusted by adjusting it to a specified height.

−探触子法による感度調整後、タンデム方式による感1
m[調整を行う。この感度調整は、動作時間設定手段2
2から選択指令信号が出力され、これを受けて環l方式
選択手段23はタンデム方式系24を探傷む1111部
21に接続する。このとき、動作制御手段26が探1制
御部21から制御信号を受けると各振動子27a、27
bを励起すると、送信用振動子27aから超音波ビーム
が送波される。このL3音波ビームは試験片31を伝播
され、横穴ドリルホール32の平底面部で反射され、更
に試験片31の底面で反射されて受信用振動子27bで
横穴ドリルボール平底面部からの反射エコーを受信する
。そして、CR,T表示部30 km 、1’jいて第
3図(b)に示す反射エコー(ホ)が表示され、ここで
該反射エコーが規定の高さとなる嫌に調整され、感度調
整が行われる。なお、上記感度調整において試験片31
と探触子27.29との間に当然に接触a質があるが、
ここではそれを省略しである。また、探傷目的、?!!
検査問の形状。
- After sensitivity adjustment using the probe method, sensitivity 1 using the tandem method
m [Perform adjustment. This sensitivity adjustment is performed by the operating time setting means 2.
A selection command signal is output from 2, and in response to this, the ring type selection means 23 connects the tandem type system 24 to the 1111 section 21 for flaw detection. At this time, when the operation control means 26 receives a control signal from the probe 1 control section 21, each vibrator 27a, 27
When the ultrasonic beam b is excited, an ultrasonic beam is transmitted from the transmitting transducer 27a. This L3 sound beam is propagated through the test piece 31, reflected at the flat bottom of the horizontal drill hole 32, further reflected at the bottom of the test piece 31, and the receiving transducer 27b receives the reflected echo from the flat bottom of the horizontal drill ball. do. Then, the reflected echo (e) shown in FIG. 3(b) is displayed on the CR, T display section 30 km, 1'j, and the reflected echo is adjusted to a specified height, and the sensitivity adjustment is performed. It will be done. In addition, in the above sensitivity adjustment, test piece 31
Naturally there is a quality of contact between the and the probe 27.29, but
It is omitted here. Also, for flaw detection purpose? ! !
The shape of the test question.

寸法および表面粗さ等により適宜感度を堵減することが
あり得ること塾よ右うまでもない。
It goes without saying that sensitivity may be reduced depending on dimensions, surface roughness, etc.

そして、以北のようにして感r!1調整を行った後、検
査材の圧接面の探tを行うが、例えばスリット疵33お
よび横穴ドリルホール32を被検査材の圧接面であると
仮定すれば、前述した感11itJ整と同様な手順によ
って行なえばよい。
And it feels like it's north! After performing the first adjustment, the pressure contact surface of the test material is searched. For example, assuming that the slit flaw 33 and the horizontal drill hole 32 are the pressure contact surface of the test material, the same adjustment as the above-mentioned adjustment is performed. Just follow the steps.

ところで、被検査材の探傷に際し、タンデム方式では図
示する如く第21i<(a>の0点に探触子27の端部
を設定プることにより、板波検査材板厚方向の中央部を
探傷することができる。また、−探触子法の場合には動
作制御手段26により探触子29を第2図(b)に示す
A−8の範囲で走査でるように制@すれば、被検査材板
厚方向の圧接面全域くべ)を探111′ることができる
。そして、かかる動作制御を所定の)!i1期で繰り返
すこと1こより探傷を行うものである。従って、以上の
点から明らかなように、1個の動作制御手段26および
1個の探触子27を用い、動作時間設定手段22からの
動作指令信号を受けて探備方式選択手段23が例えばタ
ンデム方式環筒として選択し、1′2触子27を第2図
(a)に示t C点に所定時間設置することにより、タ
ンデムによる探10を行い、しかる後、動作時間設定手
段22からの動作指令信号で探傷方式選択手段23が一
探噛子法探(Uどして選択し、探触子27を第2図(b
)に示t A点に移動させ、このA点からB点に走査し
ながら超音波ビームを送波し探傷動作を(jうよ・うに
づれば、タンデム方式の探傷と一探触子法の探傷を1回
の走査で同時に行うことができる。したがって、1個の
探触子を用いてタンデム方式と一探触子法の探傷を行う
ことができる。なお、感度調整も同様な構成で行うこと
ができる。勿論、被検査材の探傷として、第1図に示す
ように予めタンデム方式系24と一探触子法系25に分
け、適宜選択して探傷の用に供せしめる構成であっても
よい。
By the way, when detecting flaws in the material to be inspected, in the tandem method, as shown in the figure, by setting the end of the probe 27 at the 0 point of the 21i<(a>), the central part of the plate wave inspection material in the thickness direction is detected. In addition, in the case of the -probe method, if the probe 29 is controlled by the operation control means 26 so that it can scan within the range A-8 shown in FIG. 2(b), It is possible to search 111' for the entire pressure contact surface in the thickness direction of the material to be inspected. Then, such operation control is predetermined)! Flaw detection is performed from step 1, which is repeated in the i1 stage. Therefore, as is clear from the above points, using one operation control means 26 and one probe 27, the exploration method selection means 23 receives the operation command signal from the operation time setting means 22, for example. By selecting the tandem type ring tube and installing the 1'2 probe 27 at point tC shown in FIG. In response to the operation command signal, the flaw detection method selection means 23 selects the single probe method (U), and the probe 27 is selected as shown in FIG.
), the ultrasonic beam is sent while scanning from point A to point B, and the flaw detection operation is carried out (j). can be performed simultaneously in one scan. Therefore, tandem method and single probe method can be used for flaw detection using one probe. Sensitivity adjustment can also be performed using the same configuration. Of course, for flaw detection of the material to be inspected, it is also possible to use a structure in which the tandem method system 24 and the one-probe method system 25 are divided in advance as shown in FIG. good.

なJ5、被検査材が円筒状のものである場合、被検査材
を回転しながら探触子を軸方向に走査すれば欠陥状態を
探傷できる。その探触子の移動量は探触子の有効ビーム
幅(−6dB)以下にすればよい。また、板状の被検査
材である場合には圧接線に平行に走査し、幅り向に走査
後、11:接面の直角方向C−8に有効ビーム幅だけ移
動し1土接而(ご′12−行に走査すれば、圧接面の全
j或をカバーづろことかできる。
J5, when the material to be inspected is cylindrical, defects can be detected by scanning the probe in the axial direction while rotating the material to be inspected. The amount of movement of the probe may be less than or equal to the effective beam width of the probe (-6 dB). In addition, in the case of a plate-shaped material to be inspected, scan parallel to the tangential line, scan in the width direction, and then move by the effective beam width in the direction C-8 perpendicular to the tangential surface and move 1 earth contact ( By scanning in the 12th row, it is possible to cover all of the contact surfaces.

なお、本発明は上記実施例に限定されるものぐはない。Note that the present invention is not limited to the above embodiments.

例えば探傷結果を記録する場合には深(n制陣部21に
記録装置を接続すればよく、また、探傷制御部21にW
報装置を接続すれば、反射エコーが所定レベル以上の時
に警報を発生づ゛るごとができ、かつ、その警報によっ
て被検査材の欠陥部にマーキングを付すことができる。
For example, when recording the flaw detection results, it is sufficient to connect a recording device to the depth control section 21, and also connect the recording device to the flaw detection control section 21.
If an alarm device is connected, an alarm can be generated when the reflected echo exceeds a predetermined level, and the defective part of the inspected material can be marked by the alarm.

また、1個の超音波ビームに2個の振動子を一般けたが
、3 G1以上設けてもよいものである。
Further, one ultrasonic beam generally has two transducers, but it is also possible to provide three transducers or more.

(発明の効果) 以上こ上記したように本発明によれば、被検査材の所定
位置に少なくとも送信用振vJ′f−および受信用振動
子を持った探触子を設置し、タンデム方式に基づいて探
触子を動作ill t[Iし、かつ、その探触子を一探
触子法に基づいて走査υ1111すれば、1回の動作制
御により一探触f−法による探傷とタン−1I′ム方式
による探(mとを同時に行うことができ、よって、被検
査材の板厚中央部および板表面の探傷が可能になり、か
つ、探傷作業の1!!!素化および探傷作業を効率的に
行い得る接合部の超音波探傷法を提供できる。
(Effects of the Invention) As described above, according to the present invention, a probe having at least a transmitting vibration vJ'f- and a receiving vibrator is installed at a predetermined position of a material to be inspected, and a tandem method is used. If the probe is operated based on illt[I and the probe is scanned υ1111 based on the one-probe method, flaw detection using the one-probe f-method and tan- 1 I'm method detection (m) can be performed simultaneously, making it possible to detect flaws in the central part of the thickness of the material to be inspected and on the surface of the plate, as well as flaw detection work 1!!! Rating and flaw detection work It is possible to provide an ultrasonic flaw detection method for joints that can efficiently perform the following steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明方法の一実施例を説明する
ために示したもので、第1図は本発明方法を適用した探
mixの模式的な構成図、第2図はタンデム方式と一探
触子法の構成を説明する図、第3図はタンデム方式と一
探触子法とによる反射エコーの表示状態を示す図、第4
図ないし第12図は従来における一探触子法を説明する
ための図であって、第4図は一探触子法による圧!1面
の探傷例図、第5図は各種の人工疵vAJ3よびその探
傷構成図、第6図は実験用試験片を示す図、第7図は実
験方法を説明する図、第8図は実験結果を示づ特性図、
第9図ないし第12図は第6図とは異なるな→板厚の試
験片を用いた実験例を説明づる図、第13図はタンデム
方式による探傷構成図である。 21・・・探傷制御部、22・・・動作時間設定子11
.23・・・探傷方式選択手段、24・・・タンデム方
式糸、25・・・−探触子法系、26.28・・・動作
制御3114−12゜27.29・・・探触子、27a
・・・送信用振動子、27b・・・受信用tIiii1
1子、29a・・・通受信用振仙了、31・・・試験ハ
、32.33・・・疵。 出願人代理人 弁理士 鈴 )・■ 武 彦第1図 3′1 (a) (a)  ご53N (b) 第5図 第7図 第8図 第9図 (e) スリメト高さ (ITITI) −・      スリ
/1・高さくm11)−−−第11図
Figures 1 to 3 are shown to explain one embodiment of the method of the present invention. Figure 1 is a schematic configuration diagram of a search mix to which the method of the present invention is applied, and Figure 2 is a tandem system. Figure 3 is a diagram explaining the configuration of the one-probe method; Figure 3 is a diagram showing the display state of reflected echoes in the tandem method and the one-probe method;
12 to 12 are diagrams for explaining the conventional one-probe method, and FIG. 4 shows the pressure measurement by the one-probe method. Figure 5 shows various types of artificial flaws vAJ3 and its detection configuration, Figure 6 shows test specimens for experiment, Figure 7 explains the experimental method, Figure 8 shows the experiment. Characteristic diagram showing the results,
Figures 9 through 12 are diagrams illustrating an experimental example using a test piece with a thickness different from Figure 6, and Figure 13 is a diagram showing a flaw detection configuration using a tandem method. 21...Flaw detection control section, 22...Operation time setter 11
.. 23... Flaw detection method selection means, 24... Tandem method thread, 25...-probe method system, 26.28... Operation control 3114-12° 27.29... Probe, 27a
...Transmission transducer, 27b...Reception tIiii1
1st child, 29a...Sentence for communication and reception, 31...Examination Ha, 32.33...Flaws. Applicant's agent Patent attorney Suzu )・■ Takehiko Figure 1 3'1 (a) (a) Go53N (b) Figure 5 Figure 7 Figure 8 Figure 9 (e) Thrime height (ITITI) --- Pickpocket/1・Height m11) ---Figure 11

Claims (1)

【特許請求の範囲】[Claims] 圧接部および溶接部等の接合部を探傷する接合部の超音
波探傷法において、前記接合部を有する被検査材の所定
位置に少なくとも送信用振動子および受信用振動子を持
った少なくとも1個の探触子を設置し、この探触子を適
宜な周期で交互にタンデム方式探傷および−探触子法探
傷の動作制御を行って前記接合部の欠陥を探傷すること
を特徴とする接合部の超音波探傷法。
In an ultrasonic flaw detection method for joints that detects joints such as pressure welds and welds, at least one transducer having at least a transmitting transducer and a receiving transducer is placed at a predetermined position of the material to be inspected having the joint. A joint part characterized in that a probe is installed, and the operation of the probe is controlled alternately in tandem method flaw detection and -probe method flaw detection at appropriate intervals to detect defects in the joint part. Ultrasonic flaw detection method.
JP61097434A 1986-04-26 1986-04-26 Ultrasonic flaw detection of joint Pending JPS62254052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61097434A JPS62254052A (en) 1986-04-26 1986-04-26 Ultrasonic flaw detection of joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61097434A JPS62254052A (en) 1986-04-26 1986-04-26 Ultrasonic flaw detection of joint

Publications (1)

Publication Number Publication Date
JPS62254052A true JPS62254052A (en) 1987-11-05

Family

ID=14192270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61097434A Pending JPS62254052A (en) 1986-04-26 1986-04-26 Ultrasonic flaw detection of joint

Country Status (1)

Country Link
JP (1) JPS62254052A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305111A (en) * 2000-04-20 2001-10-31 Tokimec Inc Ultrasonic rail flaw detector
WO2010058783A1 (en) * 2008-11-19 2010-05-27 住友金属工業株式会社 Ultrasonic flaw detection method and device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305111A (en) * 2000-04-20 2001-10-31 Tokimec Inc Ultrasonic rail flaw detector
WO2010058783A1 (en) * 2008-11-19 2010-05-27 住友金属工業株式会社 Ultrasonic flaw detection method and device
JP2010122072A (en) * 2008-11-19 2010-06-03 Sumitomo Metal Ind Ltd Ultrasonic flaw detection method and device
CN102282462A (en) * 2008-11-19 2011-12-14 住友金属工业株式会社 Ultrasonic flaw detection method and device
US8393218B2 (en) 2008-11-19 2013-03-12 Nippon Steel & Sumitomo Metal Corporation Ultrasonic testing method and apparatus

Similar Documents

Publication Publication Date Title
US6948369B2 (en) Methods for ultrasonic inspection of spot and seam resistance welds in metallic sheets and a spot weld examination probe system (SWEPS)
US3712119A (en) Material tester
TW490553B (en) Ultrasonic austenitic weld seam inspection method and apparatus
US3944963A (en) Method and apparatus for ultrasonically measuring deviation from straightness, or wall curvature or axial curvature, of an elongated member
KR101641014B1 (en) Defect detection device, defect detection method, and storage medium
EP0829714A1 (en) Ultrasonic flaw detector and ultrasonic flaw-detecting method
US3178933A (en) Method and apparatus for ultrasonic weld inspection and display
US20020184950A1 (en) Non-contact inspection system for large concrete structures
JP2011163814A (en) Ultrasonic flaw detection testing method
JP2004500560A (en) Ultrasonic inspection method of welding seam of welded turbine rotor
JPS62254052A (en) Ultrasonic flaw detection of joint
US4480474A (en) Method and apparatus for ultrasonic flaw detection of T-welded portion of steel product
JP4633268B2 (en) Ultrasonic flaw detector
JPH1137982A (en) Position detector for manual ultrasonic flaw-detector
CA2725297A1 (en) Improved non-destructive ultrasonic testing with coupling check
JPH08136512A (en) Ultrasonic flaw detection method at seam welded part of steel pipe
JP2003262621A (en) Ultrasonic inspection method
JP2747825B2 (en) Ultrasonic tomography detection method and apparatus
JPS59151057A (en) Ultrasonic flaw detector
JP2001324484A (en) Ultrasonic flaw detection method and apparatus
JPH0627091A (en) Ultrasonic probe
JP3389599B2 (en) Ultrasonic flaw detection method for steel pipe and ultrasonic flaw detection apparatus for steel pipe
CN103217485B (en) A kind of measurement test block of angle probe ultrasonic field sound pressure distribution
JPS62192653A (en) Ultrasonic flaw detecting method for steel tube weld seam part
KR100814091B1 (en) An Apparatus For Detecting Butt Joint of Pipe Using Parallel Connected Element And Method Thereof